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On Bounded Weight Codes
Christine Bachoc Gérard Cohen Patrick Solé Aslan Tchamkerten

Abstract

The function B(n, d,w, ) the largest size of a binary code of length n, minimum distance d and minimum
weight ≥ w is studied in comparison with the classical functions A(n, d) and A(n, d, w). The asymptotic growth
rate b(δ, ω) of B(n, d,w) with respect to n and with fixed ratios δ = d/n and ω = w/n is shown to be equal to
a(δ), the asymptotic exponential growth rate of A(n, d), for 0 ≤ w ≤ 1/2 and to a(δ,w) the asymptotic exponential
growth rate of A(n, d, w), for 1/2 ≤ w ≤ 1. Sharp upper bounds on B(n, d, w) are derived by the semidefinite
programming (SDP) method.

Index Terms
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I. INTRODUCTION

Two classical functions in combinatorial coding theory are A(n, d) and A(n, d, w), the largest size
of, respectively, a binary code of length n, minimum distance d, and of a binary code of length n,
minimum distance d and constant weight w. A relaxation of the latter is the function B(n, d,w) where
the constant weight condition is replaced by minimum weight ≥ w. Codes satisfying these constraints are
called heavy weight codes in [7] where they were introduced to perform joint synchronization and error
correction. See the introduction of [7] and the reference [8] for details and motivation. Another relaxation of
interest is the function L(n, d, w), where the constant weight condition is replaced by maximum weight
≤ w. Corresponding codes might be called light weight codes. Complementation shows directly that
L(n, d, w) = B(n, d, n− w). This function occurs naturally in the proof of the Elias bound [14, Lemma
2.5.1]. It also occurs in the problem of list decoding when bounding the size of the list of closest codeword
as a function of the decoding radius. Thus L(n, d, w) is the largest size of a list of codewords at distance
at most w from the received vector for a binary code of length n and distance d. This function is denoted
by A′2(n, d, w) in [13], where [14, Lemma 2.5.1] is called the Johnson bound.

In the present paper we determine completely the asymptotic exponent of B(n, d,w) as a function of
those of A(n, d) and A(n, d, w). To achieve this goal we need to prove the asymptotic unimodality of
A(n, d, w), which was Conjecture 2 of [7]. We are indebted to Venkat Chandar for sketching a probabilistic
proof of this conjecture. The proof given in section III is combinatorial. In section IV we apply the
semidefinite programming method to derive upper bounds on L(n, d, w). This allows us to improve the
tables of finite values of B(n, d, w) and also to give a non asymptotic improvement of the Elias/ Johnson
Lemma.

The material is organized as follows. The next section contains elementary bounds and some tables of
B(n, d, w) derived therefrom. Section III contains the asymptotic results. Section IV is dedicated to the
SDP method. Section V explores three code construction techniques. A final section puts our results into
perspective and collects some challenging open problems.
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II. ELEMENTARY BOUNDS

In this section we establish a few basic relations between B(n, d,w) and A(n, d,w).
Note first that B(n, d,w) is increasing in n, and decreasing in d and w. Further, by definition of

B(n, d,w), we have
B(n, d,w) ≥ A(n, d, j) for j ≥ w . (1)

By taking weight classes sufficiently far apart so that they do not overlap, we get

B(n, d,w) ≥
bn−w

d
c∑

h=0

A(n, d,w + hd) (2)

where bxc denotes the largest integer not exceeding x.
Since any code is a disjoint union of constant weight codes, we have

B(n, d,w) ≤
n∑
j=w

A(n, d, j) . (3)

Removing the weight constraint can only improve the size, hence

B(n, d,w) ≤ A(n, d) = B(n, d, 0) . (4)

For reference we give the following analogue of the first half of the first Johnson bound [6, (3a)].
Proposition 1: For w ≤ n we have

B(n, d,w) ≤ n

w
B(n− 1, d,w− 1) .

Proof: Let C be a bounded weight code realizing B(n, d, w), and consider the matrix whose rows
are the codewords of C. The average weight W of a column is given by the total number of 1’s in the
matrix divided by n, i.e.,

W ≥ wB(n, d,w)

n
.

Now, say column l has weight at least W (one such column clearly exists). Pick the subcode of C given by
the codewords of C that have a 1 in the l-th position. Modify this subcode by deleting the l-th component
of each codeword. If we denote by C ′ the code obtained after the above two procedures, we conclude
that W ≤ |C ′| ≤ B(n, d, w − 1). The result follows.

It is not clear if the analogue of the second half of the first Johnson bound, i.e. [6, (3a)], holds as well:

Question: Is it true that
B(n, d,w) ≤ n

n− w
B(n− 1, d,w) ?

Finally, the following Gilbert type lower bound is immediate:
Proposition 2: For all n ≥ 1, d ≤ n, and w ≤ n

B(n, d,w) ≥
∑n

i=w

(
n
i

)∑d−1
i=0

(
n
i

) .
We conclude this section by a series of tables derived from the preceding bounds. Some trivial entries

are B(n, d, n) = 1 for all d and B(n, d, n − 1) = 1 for d ≥ 3, as well as B(n, n,w) = 1 for all w. We
limited n and d to the values where the functions A(n, d) and A(n, d,w) are known exactly (for all w)
in [5], [6]. Entries of the tables where w > n are left blank.
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TABLE I: B(n, 4,w)

n A(n, 4) w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8 w = 9
6 4 4 3-4 3 -4 1 1
7 8 8 7-8 7-8 3-5 1 1
8 16 16 15 -16 15-16 8-10 4 -6 1 1
9 20 20 19-20 19-20 18-20 12-18 4-6 1-2
10 40 40 39- 40 39-40 36-40 30-40 13-20 5-7 1

TABLE II: B(n, 6,w)

n A(n, 6) w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8 w = 9
9 4 4 4 3- 4 3- 4 3-4 1- 3 1 1
10 6 6 6 6 6 5- 6 3- 6 1-3 1- 2
11 12 12 12 11-12 11-12 11- 12 6- 9 3- 6 1- 3
12 24 24 24 23- 24 23-24 23-24 12- 24 9-16 4- 7
13 32 32 32 31-32 31- 32 31- 32 26-32 18-32 13- 20

III. ASYMPTOTICS

A. The support of b(δ, ω)

For fixed δ, ω ∈ [0, 1], we denote by b(δ, ω) the asymptotic exponent of B(n, d,w) with respect to n
with d = d(n) = bδnc and w = w(n) = bωnc, i.e.

b(δ, ω) = lim sup
n→∞

(
1

n
logB(n, d(n),w(n))

)
where the logarithm is to the base 2. The asymptotic exponents of A(n, d,w) and A(n, d) are defined
similarly and are denoted by a(δ, ω) and a(δ), respectively.

The asymptotic Plotkin bound [14, Theorem 2.10.2], shows that a(δ) = 0 for δ ∈ [1/2, 1]. Hence, by
(4) b(δ, ω) = 0 for all δ ∈ [1/2, 1] and all ω ∈ [0, 1]. In fact, the support of b(δ, ω) can be completely
characterized.

Proposition 3: b(δ, ω) > 0 if and only if δ < 2ω(1− ω) .
Proof of Proposition 3: If δ < 2ω(1−ω), then a(δ, ω) > 0 by the ‘Gilbert lower bound’ [17, p.160,

right column, bottom]

a(δ, ω) ≥ h(ω)− ωh(δ/2ω)− (1− ω)h(δ/2(1− ω)) .

Hence, b(δ, ω) > 0 by (1).
Now, restating a classical lemma of Elias [14, Lemma 2.5.1] yields

B(n, d,w) ≤ nd

nd− 2w(n− w)

whenever nd > 2w(n− w). Hence, by letting d ' δn and w ' ωn with δ > 2ω(1− ω), we get

lim sup
n→∞

B(n, d,w) ≤ δ

δ − 2ω(1− ω)
,

implying that b(δ, ω) = 0 whenever δ > 2ω(1− ω).
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TABLE III: B(n, 8,w)

n A(n, 8) w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8 w = 9
12 4 4 4 4 4 4 3- 4 3- 4 1- 4
13 4 4 4 4 4 4 4 3-4 3-4
14 8 8 8 8 8 8 8 7- 8 4- 8
15 16 16 16 16 15-16 15-16 15-16 15-16 10- 16

B. The easy half plane: ω ≤ 1/2

Theorem 1: For any δ ∈ [0, 1] and ω ∈ [0, 1/2] we have b(δ, ω) = a(δ).
Proof of Theorem 2: The Elias-Bassalygo bound [17, equation (2.8)]

A(n, d)

2n
≤ A(n, d,w)(

n
w

) (5)

together with the trivial inequality A(n, d,w) ≤ A(n, d) shows that the asymptotic exponents of A(n, d)
and A(n, d, n/2) are the same.

The result then follows by combining the bounds (1) and (4) to obtain

A(n, d, n/2) ≤ B(n, d,w) ≤ A(n, d)

for w ≤ n/2.

C. Unimodality of a(δ, ω)

The following result is of interest in its own right.
Theorem 2: For any fixed δ ∈ [0, 1] we have that a(δ, ω) is a nonincreasing function of ω ∈ [1/2, 1].

Proof: The scheme of the proof is as follows. Given two relative weights ω1, ω2 in the range 0 < ω1 <
ω2 < 1/2, we start from a constant weight code C1 of parameters (n, d, w1) such that |C1| = A(n, d, w1)
and construct, by translation by a vector t of weight w say, and expurgation a constant weight code C2 of
parameters (n, d, w2) and same size as C1 up to subexponential factors in n. Hence a(δ, ω2) ≥ a(δ, ω1).
We assume that wi grows like ωin. Based on heuristics of independence we decide to choose a w such
that

w2 = w + w1 − 2bww1/nc

or asymptotically on n
w ≈ w2 − w1

1− 2ω1

.

Now we want to compute the proportion Π of suitable t (ie such that t + C1 contains vectors of weight
w2) amongst all binary vectors of length n and weight w. Let x (resp y) denote the number of ones of t
on (resp. outside) the support of an arbitrary c ∈ C1. The bound on Π will turn out to be independent of
c. We see that

Π

(
n

w

)
=

(
w1

x

)(
n− w1

y

)
Surely x + y = w, the weight of t. Also for t to be suitable we need y − x = w2 − w1. Solving this
system, we find that x = ω1w and y = (1−ω1)w. We recall the standard estimates [15, Chap 10, Lemma
7] on the growth of binomial coefficients. For integers m ≤ n and m � λn with 0 < λ < 1, we have
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µ(λ) ≤
(
n

m

)
2−nh(λ)

√
n ≤M(λ),

where µ, M depend on λ but not on n. With these approximations we come up with the bound

Π ≥ κ(ω1, ω2)/
√
n,

where the quantity κ does not depend on n. To conclude we count the pairs (t, c). Counting c′s first, we
get A(n, d, w1)Π

(
n
w

)
. Averaging over t we see that there is a translate with at least A(n, d, w1)Π vectors

of weight w2. These vectors form a constant weight code of parameters (n, d, w2). Hence

A(n, d, w2) ≥ A(n, d, w1)Π.

The result follows upon passing to the limit on n.

D. The hard half plane ω ≥ 1/2

Theorem 3: For any δ ∈ [0, 1] and ω ∈ (1/2, 1],

b(δ, ω) = a(δ, ω).

To prepare for the proof we require the following Lemma.
Lemma 1: For any δ ∈ [0, 1] and ω ∈ [0, 1]

b(δ, ω) = sup{a(δ, ρ), ω ≤ ρ ≤ 1} .

Proof of Lemma 1: We have

max
j∈{w,w+1,...,n}

A(n, d, j) ≤ B(n, d,w)

≤ (n− w + 1) max
j∈{w,w+1,...,n}

A(n, d, j)

by (1) for the first inequality and by (3) for the second inequality. The lemma then follows, after some
algebra.

Proof of Theorem 3: The RHS of Lemma 1 is evaluated by the unimodality property, Theorem 2.

IV. UPPER BOUNDS ON L(n, d, w) FROM SEMIDEFINITE PROGRAMMING

The semidefinite programming (SDP for short) method is a far reaching generalization of Delsarte linear
programming method to obtain bounds for extremal problems in coding theory. In the present situation,
we aim at upper bounding L(n, d, w), which is the maximal number of elements of a code contained in
the ball B(w) centered at the all-zero word with radius w of the binary Hamming space Hn = {0, 1}n.
We refer to [2] for a survey on this method, and its applications to the binary Hamming space, including
the case of codes in balls. See also [3] for a survey on the more general subject of symmetry reduction of
semidefinite programs, with applications to coding theory. In a few words, L(n, d, w) is the independence
number of a certain graph with vertex set Hn, thus is upper bounded by the theta number ϑ of this graph
(or rather by its strengthening ϑ′), which is the optimal value of a certain semidefinite program. This SDP
has exponential size, but can be reduced to polynomial size by the action of the symmetry group of the
graph, which is the symmetry group of B(w), i.e. the group Sn of permutations of the n coordinates.

Let us recall that a function F : H2
n 7→ R is said to be positive definite (or positive semidefinite) if

the matrix (F (x, y)) indexed by Hn is positive semidefinite. This property is denoted F � 0. In the
symmetrization process discussed above, a description of the Sn-invariant positive definite functions on
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Hn is required. This description is in fact provided in [18], under the name of block diagonalization of
the Terwilliger algebra of the Hamming space, and in the framework of group representations in [20].
Numerical upper bounds for L(n, d, w) obtained in this way are displayed in Tables IV, V, VI.

It is worth to point out the analogy between the case of codes in Hamming balls under consideration,
and that of codes in spherical caps, studied in [4]. In the latter, the SDP method has lead to numerical
bounds and also to explicit bounds of degree up to two. We propose in the remaining to follow the same
line for Hamming balls. The bound of degree 1 obtained in this way is exactly the Elias/Johnson bound,
while a new bound is obtained from degree 2 functions (Theorem 4.5).

A. Improving the Johnson bound
We start with a more handy restatement of the SDP bound, which is essentially the dual form of the

SDP defining the theta number ϑ′. The notations are as follows: the space of functions on Hn is denoted
C(Hn) = {f : Hn 7→ C} and is endowed with the standard inner product 〈f1, f2〉 = 1

2n

∑
x∈Hn

f1(x)f2(x).
We shall consider the decomposition of this space under the action of the full automorphism group
Aut(Hn) of the Hamming space and under the action of the symmetric group Sn. Since the irreducible
components are indeed real, we can restrict to the real valued functions.

The orbit of (x, y) ∈ H2
n under the action of Sn is determined uniquely by the values of u := wt(x),

v := wt(y) and t := d(x, y). Thus the elements of F ∈ C(H2
n) which are Sn-invariant, i.e. which satisfy

F (gx, gy) = F (x, y) for all g ∈ Sn, (x, y) ∈ H2
n, are of the form F = F (u, v, t). With this notation,

F � 0 stands for: (x, y) 7→ F (wt(x), wt(y), d(x, y)) � 0.
Theorem 4.1: Let

Ω(n, d, w) := {(u, v, t) ∈ N3 : 0 ≤ u, v ≤ w, d ≤ t ≤ n,

t ≤ u+ v, u+ v − t ≡ 0 mod 2}.

Let P (u, v, t) ∈ R[u, v, t] be a polynomial symmetric in (u, v). If P satisfies the following conditions:
1) P − f0 � 0 for some f0 > 0
2) P (u, v, t) ≤ 0 for all (u, v, t) ∈ Ω(n, d, w),
3) P (u, u, 0) ≤ 1 for all u ∈ {0, . . . , w},

then
L(n, d, w) ≤ 1

f0

.

Proof: For (x, y) ∈ H2
n, let F (x, y) := P (wt(x), wt(y), d(x, y)). We consider for a code C ⊂ B(w)

with minimal distance at least equal to d, the sum

S :=
∑

(x,y)∈C2

F (x, y).

From property (1) of P , we have S ≥ f0|C|2. On the other hand, S = S1 + S2 where S1 is the sum over
pairs (x, y) ∈ C2 with x = y and S2 is the sum over the non equal pairs (x, y) ∈ C2, x 6= y. Condition
(3) insures that S2 ≤ 0 and condition (4) that S1 ≤ |C|. Altogether we obtain |C| ≤ 1/f0.

In order to apply the above theorem with specific polynomials P (u, v, t), we need an explicit description
of those who are positive definite. Such a description is indeed obtained in [18], and in [20] in terms of
orthogonal polynomials (Hahn polynomials to be precise). As we shall see, for our purpose, we need a
slightly different expression.

A general method is explained in [1], [2], [3], involving group representation. We recall that certain
matrices Ek(x, y) are associated to the isotypic components Ik of C(Hn) under the action of Sn. Here
k ∈ [0..bn/2c], Ik corresponds to the irreducible representation [n−k, k] of the symmetric group Sn, and
has multiplicity n− 2k+ 1. Moreover, Ek(x, y) is Sn-invariant thus can be expressed in terms of (u, v, t),
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namely Ek(x, y) := Yk(u, v, t). Then we have the following characterization (we use the standard notation
〈A,B〉 = Trace(AB∗) for matrices):

Proposition 4.2: For all P ∈ R[u, v, t], symmetric in (u, v), P � 0 if and only if

P (u, v, t) =

bn/2c∑
k=0

〈Fk, Ek(x, y)〉 (6)

where for k ∈ [0..bn/2c], Fk ∈ Rmk×mk , mk = n− 2k + 1, and Fk � 0.
More precisely, Ek(x, y) is computed from a decomposition of Ik into irreducible subspaces Ik =

Rk,1 ⊕ . . . Rk,mk
. If for all i, (ek,i,1, . . . , ek,i,hk

) is an orthonormal basis of Rk,i in which the action of Sn
is expressed by the same matrices (ie not depending on i), then

Ek,i,j(x, y) =

hk∑
s=1

ek,i,s(x)ek,j,s(y).

The decomposition of Ik with irreducible submodules is not unique but changes Ek(x, y) to AEk(x, y)A∗

for an invertible matrix A, see [1, Lemma 4.2]. Note that such a change does not affect the above
characterization of P being positive definite since 〈Fk, AEk(x, y)A∗〉 = 〈A∗FkA,Ek(x, y)〉 and Fk � 0 if
and only if A∗FkA � 0.

There are essentially two strategies to obtain such a decomposition. One can start from the decom-
position of X = Hn into orbits under the action of Sn, namely X = X0 ∪ · · · ∪ Xn, with Xk = {x ∈
Hn : wt(x) = k}, which leads to a decomposition of the functional space C(X) = C(X0) ⊥ · · · ⊥ C(Xn)
and then decompose each Sn-space C(Xk), following [12]. It is the method adopted in [20] where the
corresponding matrices Ek(x, y) are obtained in terms of Hahn polynomials. Another approach starts
from the decomposition of C(Hn) under the full Aut(Hn), namely C(Hn) = P0 ⊥ P1 ⊥ · · · ⊥ Pn where
Pk = ⊕wt(w)=kCχw, χw(x) = (−1)w·x, then decomposes each Pk under the action of the subgroup Sn.
Because we want to work with polynomials in (u, v, t) of low degree, this last decomposition is better
suited. Indeed, if P ∈ R[u, v, t], then x 7→ F (x, y) := P (wt(x), wt(y), d(x, y)) belongs to P0 ⊥ · · · ⊥ Pk
if and only if the total degree of P in the variables (u, t) is at most equal to k.

An isomorphism of Sn-modules between C(Xk) and Pk is given by φk:

φk : C(Xk)→ Pk

f 7→ φk(f) :=
∑

wt(w)=k

f(w)χw.

so we have exactly the same picture for the decomposition of C(Hn) when Pk replaces C(Xk), namely
the irreducible decomposition of Pk under the action of Sn that is for 0 ≤ k ≤ bn

2
c, we have

Pk = H0,k ⊥ H1,k ⊥ · · · ⊥ Hk,k (7)

and the isotypic components of C(Hn), i.e.

Ik = Hk,k ⊥ Hk,k+1 ⊥ · · · ⊥ Hk,n−k ' Hn−2k+1
k,k .

Since u = wt(x), as a function of x, is invariant under Sn, and is of degree 1, the isotypic subspace Ik
can also be decomposed as:

Ik = ⊕n−2k
i=0 uiHk,k

Moreover, starting from an orthonormal basis (ek,s) of Hk,k, we obtain an orthonormal basis (uiek,s) of
uiHk,k in which the action of Sn is expressed by the same matrices, thus we can use it to compute the
corresponding matrix Ek(x, y) the coefficients of which will be equal to:

Ek,i,j(x, y) = uivj
hk∑
s=1

ek,s(x)ek,s(y).
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In other words, it is enough to compute Zk(x, y) :=
∑hk

s=1 ek,s(x)ek,s(y), which is the zonal function
associated to Hk,k, in terms of (u, v, t). We obtain:

Proposition 4.3: We have the following expressions for Zk, up to a positive multiplicative constant:
• Z0 = 1
• Z1 = −t+ u+ v − 2uv/n
• Z2 = t2 + (2/(n − 2))(n − nu − nv + 2uv)t + (1/(n − 1)(n − 2))(4u2v2 − 4n(u2v + uv2) + (n +

2)(n− 1)(u2 + v2) + 2n(n+ 1)uv − 2n(n− 1)(u+ v))

Proof: We take the following notations: if wt(w) = 1, and wi = 1, we let χi := χw. Let
U := n− 2u =

∑n
i=1 χi(x),

V := n− 2v =
∑n

i=1 χi(y),

T := n− 2t =
∑n

i=1 χi(x)χi(y).

Following [12], and the isomorphism φk defined above, Hk,k = ker(d) where d : Pk → Pk−1 is defined
by: dχw =

∑
χw′ where the sum is over the words w′ of weight wt(w′) = wt(w) − 1, and of support

contained in the support of w. We set d = dx to specify the variable under consideration and d = dx + dy
when applied to a function F (x, y) on H2

n. Then, Zk is uniquely determined up to a multiplicative constant
by the properties:

1) Zk ∈ R[U, V, T ], is symmetric in (U, V ),
2) x 7→ Zk(x, y) belongs to Pk,
3) dZk = 0.

According to the decomposition (7) with pairwise non isomorphic irreducible subspaces, the space of
functions satisfying conditions (1) and (2) below is of dimension 1+k. In the variable x, U and T belong
to P1, and it is easy to check that U2 − n, UT − V , T 2 − n, belong to P2. Thus a basis for the space of
functions satisfying (1) and (2) is given by:

k = 0 : {1}
k = 1 : {UV, T}
k = 2 : {(U2 − n)(V 2 − n),

UV T − U2 − V 2 + n, T 2 − n}

The assertion Z0 = 1 is then trivial. In order to compute Z1 and Z2, we need formulas for the image
under d of the monomials in (U, V, T ). We compute the following:

dx1 = d1 = 0,

dxU = n thus d(UV ) = n(U + V ),

dxT = V thus dT = U + V.

With the above we obtain that Z1 is proportional to T − 1
n
UV . Similarly we obtain:

d(U2 + V 2) = 2(n− 1)(U + V ),

d(U2V 2) = 2(n− 1)(U2V + UV 2),

d(UV T ) = (U2V + UV 2) + (n− 2)(U + V )T,

d(T 2) = −2(U + V ) + 2(U + V )T.

and Z2 turns to be proportional to

T 2 − n− 2

n− 2
(UV T − U2 − V 2 + n)

+
1

(n− 1)(n− 2)
(U2 − n)(V 2 − n).
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From the identity Zk(x, x) =
∑
ek,s(x)2, we have that Zk(U,U, 0) ≥ 0 which determines the sign of the

multiplicative factor. We obtain the announced formulas.
Remark 4.4: The method used to calculate the polynomials Zk for 0 ≤ k ≤ 2 outlines an algorithmic

way to compute Zk for general k. It would be more satisfactory to have an expression of these polynomials
in terms of orthogonal polynomials.

Now we apply Theorem 4.1 in order to obtain upper bounds for L(n, d, w). We start with a polynomial
P (u, v, t) of degree one and recover Elias bound: Let

P (u, v, t) :=Z1(u, v, t) + d− 2w(1− w/n)

=d− t+ (u+ v − 2uv/n)− 2w(1− w/n).

With f0 := d−2w(1−w/n), we have P−f0 � 0. If w ≤ n/2, the maximum over [0, w]2 of u+v−2uv/n
equals 2w(1 − w/n), and is attained for u = v = w. Thus P (u, v, t) ≤ 0 for (u, v, t) ∈ Ω(n, d, w), and
P (u, u, 0) ≤ d. Thus we obtain that if w ≤ n/2 and d > 2w(1− w/n), then

L(n, d, w) ≤ d

d− 2w(1− w/n)
. (8)

It is unclear in general how to design a good polynomial P of degree k. A possible strategy is to start
from a polynomial L(t) optimizing the bound for A(n, d) and disturb it with a polynomial p(u, v), i.e.
take P = L(t) + p(u, v). Since L(t) � 0, condition (1) of Theorem 4.1, is equivalent to F0 − f0E0 � 0.
In order to fulfil condition (2), it is enough to have p(u, v) ≤ 0 for [u, v] ∈ [0, w]2 so one can take
p(u, v) = (u+v−2w)s(u, v) or p(u, v) = (u(u−w)+v(v−w))s(u, v) where s(u, v) is a sum of squares.
For the degree 1, if one follows this line and takes P = (d− t) + λ(u + v − 2w) with λ > 0, one finds
that the optimal choice of λ is λ = 1 − 2w/n and obtains again the Elias bound (8). For the degree 2,
we consider accordingly a polynomial P of the form

P = (t− d)(t− n) + λ(u(u− w) + v(v − w)),

with λ ≥ 0. The matrix F0(λ) associated to P is equal to

F0(λ) =

nd −n− d− λw 1 + λ
4n/(n− 1) + 2d/n −4/(n− 1)

4/(n(n− 1))

 .

Let f0(λ) := det(F0(λ). The lower left 2 × 2 corner of F0(λ) is positive semidefinite so the matrix
F0(λ)− f0E0 is positive semidefinite if and only if its determinant is non negative, which amounts to the
condition

f0 ≤
n2(n− 1)

8d
f0(λ).

On the other hand
P (u, u, 0) = dn+ 2λu(u− w) ≤ dn

so we obtain the bound 8d2/((n−1)f0(λ)). It remains to find the maximum of f0(λ), which is a polynomial
of degree 2 in λ:

n(n− 1)

2
f0(λ) = −((n− 1)d+ 2(n− w)2)λ2

+d(2n+ 2− 4w)λ+ d(2d− (n− 1)).

The maximum is attained for λ0 = d(n+ 1− 2w)/((n− 1)d+ 2(n−w)2), λ0 ≥ 0 if w ≤ (n+ 1)/2, and
is equal to

4d
(
d2 + 2(n−w)(n+1−2w)

n−1
d− (n− w)2

)
n((n− 1)d+ 2(n− w)2)

.
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TABLE IV: d = 4

n\w 4 5 6 7 8 9 10 11 12 13 A(n, 4) ≤
10 31 37 40
11 42 67 72
12 56 100 138 144
13 72 144 221 248 256
14 92 201 340 411 486 503 512
15 114 274 508 750 849 989 1002 1024
16 141 365 736 1184 1571 1767 1984 2012 2048
17 171 477 1039 1813 2602 2981 3276
18 205 613 1437 2703 4183 5041 6007 6324 6552
19 243 776 1947 3933 6541 9174 10532 12249 12641 13104
20 286 970 2594 5600 9976 14966 19390 21965 24834 25388 26168

This last value is positive if and only if

d >
(n− w)

(n− 1)

(√
2(n− w)(n− 1)− (n+ 1− w)

)
.

Alltogether we obtain:
Theorem 4.5: Assume w ≤ (n+ 1)/2 and

d >
(n− w)

(n− 1)

(√
2(n− w)(n− 1)− (n+ 1− w)

)
.

Then

L(n, d, w) ≤
2d
(
d+ 2(n−w)2

n−1

)
d2 + 2(n−w)(n+1−2w)

n−1
d− (n− w)2

.

Example: with the above we obtain b(n, n/2, n/2) ≤ 2n − 1. It is an almost sharp bound in view of
A(n, n/2, n/2) = 2n − 2 for values of n for which an Hadamard matrix of order n exists [6, Theorem
10]. Note that adding the all zero codeword to such an Hadamard code yields b(n, n/2, n/2) = 2n− 1.
Example: For d = 2w(1 − w/n) the degree 1 bound does not apply. The degree 2 gives a bound if
w > n/2−

√
n2/(2(n+ 1)) which equals

2w(n2 − w)
n2

2
− (n+ 1)

(
w − n

2

)2 .
B. Tables

The tables IV, V and VI give upper bounds of L(n, d, w) employing the SDP method. They improve on
that of Section II and in some cases allow us to derive exact values of L(n, d, w) by using the expurgation
technique of the next section. These cases are indicated by bold face numbers. To do that we collect the
weight enumerators of some special binary codes in the notation of [15]

The weight enumerator of the RM(2, 4) dual of the RM(1, 4) is computed by MacWilliams transform
[15, Ch. 5, Th. 1] as

x16 + y16 + 140(x12y4 + x4y12) + 448(x10y6 + x6y10)

+870x8y8.

This shows by expurgation that
L(16, 4, 4) = 141.

The weight enumerator of the Nordstrom Robinson code is
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TABLE V: d = 6

n\w 6 7 8 9 10 11 A(n, 6) ≤
14 51 56 63 64
15 74 96 113 127 128
16 113 157 207 228 255 255 256
17 159 250 318 340
18 205 409 481 563 677 680
19 259 554 752 913 1107 1280
20 324 739 1200 1519 1835 2096 2372

TABLE VI: d = 8

n\w 8 9 10 11 12 13 14 15 16 A(n, 8) ≤
18 67 72
19 100 123 137 142
20 154 222 253 256
21 245 359 465 512
22 349 598 759 870 967 990 1023 1024
23 507 831 1112 1541 1800 1843 1936 2047 2048 2048
24 760 1161 1641 2419 3336 3439 3711 3933 4095 4096

x16 + y16 + 112(x10y6 + x6y10) + 30x8y8.

This shows by expurgation
L(16, 6, 6) = 113, L(16, 6, 10) = 255.

The weight enumerator of the extended Golay code is

x24 + y24 + 759(x16y8 + x8y16) + 2576x12y12.

Shortening we obtained the dual of the perfect Golay code.

x23 + 506x15y8 + 1288x11y12 + 253x7y16.

This shows by expurgation

L(24, 8, 8) = 760, L(24, 8, 12) = 3336, L(24, 8, 16) = 4095,

and
L(23, 8, 8) = 507, L(23, 8, 16) = 2048.

V. CONSTRUCTIONS

Three well studied code construction techniques are expurgation, translation, and concatenation. In the
context of heavy weight codes, the first is perhaps mostly of theoretical interest as a good decoding
algorithm needs not, in general, provide a good decoding algorithm for a subcode. In contrast, the other
two techniques also provide practical decoding algorithms.

A. Expurgation
The following result shows that, for w ≤ d, B(n, d,w) and A(n, d) are essentially the same (recall that

B(n, d,w) ≤ A(n, d)).
Proposition 4: For 1 ≤ w ≤ d ≤ n, we have

B(n, d,w) ≥ A(n, d)− 1.
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Proof: Let C be a code achieving A(n, d). By first translating this code so that to include the all-zero
codeword, then by removing the all-zero codeword, we get a new code of size A(n, d)−1, with minimum
distance and weight both at least equal to d. The proposition follows.

Theorem 4: For all large enough and even n, all w ≤ n/2, and all d ≤ nh−1(1/2),1 we have

B(n, d,w) ≥ 2(n−2)/2.

Proof: Pick a self dual code above the Gilbert bound [16]. This code being binary self-dual, contains
the all-one codeword, and is therefore self-complementary. Hence, half of its codewords at least have
weight at least n/2.

B. Translation
The following result sharpens, in certain cases, Proposition 4. We assume that the reader has some

familiarity with the covering radius concept [10]. Define R(n, d) the largest covering radius of a code
achieving A(n, d). Trivially R(n, d) ≥ b(d − 1)/2c. A direct consequence of the sphere covering bound
gives a sharper bound.

2n ≤ A(n, d)

R(n,d)∑
i=0

(
n

i

)
.

Proposition 5: Fix two integers n ≥ 1 and d ≥ 1. If w ≤ R(n, d) then

B(n, d,w) = A(n, d).

Proof: Pick a code C realizing A(n, d). There exists a translate of C of weight w as long as w is
below the covering radius of C. This gives B(n, d,w) ≥ A(n, d). The reverse inequality is (4).

C. Concatenation
Consider a binary code of length n, size 2m, minimum weight w, and distance d. If we concatenate

this code with a code of length N , minimum weight W , and minimum distance D over GF (2m), we get
a binary code of length N2m, weight at least wW , and minimum distance dD. Hence

B(Nn, dD,wW ) ≥ B2m(N,D,W ) .

where Bq(·, ·, ·) is the natural generalization of B(·, ·, ·) to an alphabet of size q.
Efficient decoding algorithms for concatenated codes can be found in [12].

VI. PERSPECTIVE AND OPEN PROBLEMS

In the present paper we have considered the notion of codes with weight bounded either from below
(heavy weight codes) or from above (light weight codes). This led us to the definition of two combinatorial
functions B(n, d, w) and L(n, d, w). The two problems are equivalent from the combinatorial standpoint,
although the motivation is different.The asymptotic exponent attached to B(n, d, w) is reduced to that
of either A(n, d) or A(n, d, w), two very old and hard problems. On the other hand, for finite values
of the parameters, it might be possible to find new exact values of B(n, d, w) or L(n, d, w) by special
constructions. Investigating the new function R(n, d), for instance, might be worth pursuing.

1h−1(·) denotes the inverse function of the binary entropy over the range [0, 1/2].
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