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Abstra
tWe study the de
omposition of the spa
e L2(Sn�1) under the a
-tions of the 
omplex and quaternioni
 unitary groups. We give anexpli
it basis for the spa
e of zonal fun
tions, whi
h in the se
ond 
asetakes a

ount of the a
tion of the group of quaternions of norm 1. Wederive appli
ations to hermitian latti
es.keywords: latti
e, theta series, unitary groups, zonal fun
tion.
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1 Introdu
tionIt is a 
lassi
al fa
t that the fun
tional spa
e L2(Sn�1) on the unit sphereSn�1 of the Eu
lidean spa
e Rn de
omposes under the a
tion of the orthog-onal group O(Rn) into the sum of the harmoni
 spa
es Harmk of degree k.As shown by B. Venkov, the zonal spheri
al fun
tions asso
iated to this de-
omposition are a powerful tool to study Eu
lidean latti
es. A key propertyis that, if P (x) 2 Harmk, then the theta series �L;P asso
iated to P and tothe latti
e L is a modular form. This property, together with the expres-sion of the zonal spheri
al fun
tions by means of Gegenbauer polynomials,was used in [23℄ (see also [5, Chap.18℄) to re
over Niemeier's 
lassi�
ationof the even unimodular latti
es in dimension 24 and in [3℄ to prove the nonexisten
e of latti
es with 
ertain properties.In this paper, we follow the same line with respe
t to hermitian latti
es.The unitary groups over the 
omplex numbers and the quaternion numbersrepla
e the orthogonal group. We dis
uss the de
omposition of the spa
eL2(Sn�1) under their respe
tive a
tion and des
ribe a basis of the zonalspheri
al fun
tions. In the quaternioni
 
ase, the irredu
ible 
omponentshave multipli
ities greater than one, hen
e there is no 
anoni
al 
hoi
e of abasis for the zonal spheri
al fun
tions; we 
onstru
t a spe
i�
 basis whi
htakes a

ount of the a
tion of the quaternions of norm one.Then we derive expli
it results on the hermitian unimodular latti
es overthe Eisenstein ring Z[(1 + p�3)=2℄ and over the Hurwitz order. Some ofthem explain 
ertain results previously obtained by the full 
lassi�
ation ofthe 
orresponding genus. We show how the 
on
ise and elegant treatment ofthe Niemeier latti
es of minimum 2 given by B. Venkov in [23℄ (see also [5,Chap.18℄) 
an be extended to these 
ases. We also prove the non existen
eof extremal Eisenstein latti
es of (real) dimension 48.2 The group O(Rn).In this se
tion we re
all some well-known fa
ts on harmoni
 analysis forthe orthogonal group O(Rn). The spa
e Rn is 
onsidered with its usualEu
lidean stru
ture given by x � y = Pni=1 xiyi. The unit sphere Sn�1 is ahomogeneous spa
e for the a
tion of the orthogonal group; if we �x a basepoint y, the stabilizer Oy of y in O(Rn) is isomorphi
 to O(Rn�1 ). Thegroup O(Rn) a
ts on the fun
tional spa
e L2(Sn�1) by (u:f)(x) = f(xu)3



and the de
omposition into irredu
ible subspa
es is given byL2(Sn�1) = �k�0Harmk (1)where Harmk is the kernel of the Lapla
e operator � =P �2�x2i in the spa
eof homogeneous polynomials of degree k in the 
oordinates x1; : : : ; xn. (In(1) we again denote Harmk the spa
e of polynomial fun
tions on the unitsphere). Moreover, the spa
es Harmk are pairwise non isomorphi
 O(Rn)-modules, hen
e the Oy-invariant elements (so-
alled zonal spheri
al fun
-tions) are spanned by a single element Zk;y whi
h is known to be expressedin terms of the Gegenbauer polynomials Gn=2�1k (X) ([24, Se
tion 9.3.2℄ ):Zk;y(x) = Gn=2�1k (x � y): (2)3 The group U(C n).3.1 Notations.We take the following notations: the groupU(C n) := fP : P 2Mn(C ) j P �P t = Idg (3)a
ts by right multipli
ation on the ve
tor spa
e C n whi
h is endowed withthe usual hermitian form h(z; z0) := nXi=1 zi�z0i: (4)The mapping C ! R2z = x+ yi! (x; y) (5)extends to an embedding � : C n ! R2n , whi
h respe
ts the Eu
lideanstru
tures, i.e. �(z) � �(z) = h(z; z), where \�" denotes the usual s
alarprodu
t on R2n given by x � y =P2ni=1 xiyi. Hen
e this mapping indu
es anin
lusion of the groups U(C n) < O(R2n). We setU1 := f� : � 2 C j ��� = 1g: (6)4



The multipli
ative group U1 a
ts by left multipli
ation on C n as a sub-group of O(R2n). It is worth noti
ing that U(C n) is the 
entralizer of U1 inO(R2n).It follows from the next se
tion that even for every irredu
ible O(R2n)-module Harmk, the matri
es that 
ommute with the a
tion of U(C n) onHarmk are pre
isely the linear 
ombinations of elements in U1. If one wouldknow this in advan
e, this gives the de
omposition of Harmk into irredu
ibleU(C n)-modules by the double 
ommutant theorem [10, Th. 3.3.7℄. The sameholds for the pair U(H n) and Q1 in O(R4n) treated in Se
tion 4.3.2 De
omposition of Harmk under U(C n).We need to de
ompose further the spa
e Harmk (relative to the 2n realvariables) under the a
tion of the subgroup U(C n). This de
omposition isdes
ribed in [24, Se
tion 11.2℄, we re
all it here. We assume for the rest ofthe paper that k is even. In view of appli
ations to latti
es, it is the only
ase of interest. We �rst 
onsider the a
tion (by left multipli
ation on C n)of the group U1. We setV (k)w := ff : f 2 Harmk j f(�x) = �wf(x) for all � 2 U1g: (7)Be
ause U1 is abelian, the following de
omposition holds:Harmk := �w2ZV (k)w : (8)Moreover, be
ause the respe
tive a
tions of U1 and of U(C n) 
ommute,this de
omposition is preserved by U(C n). It turns out that it is the irre-du
ible de
omposition for U(C n). In order to prove this, we 
ompute thezonal fun
tions in V (k)w . We �x z0 2 S2n�1 and set Uz0 := Stabilizer(z0; U(C n)).The group Uz0 is isomorphi
 to U(C n�1). We denote by Homk the spa
e ofhomogeneous polynomials of degree k with 
omplex 
oeÆ
ients in the 2nvariables x1; y1; x2; y2; : : : ; xn; yn. The zonal fun
tions are elements of thespa
e HomUz0k := ff : f 2 Homk j f(xu) = f(x) for all u 2 Uz0g: (9)With an obvious meaning, we denote z = (z1; : : : ; zn) = (x1+iy1; : : : ; xn+iyn), and see h(z; z0) = (x1 + iy1) �z10 + � � � + (xn + iyn) �zn0 as an element ofHom1.We denote [a; b; r℄ := h(z; z0)ah(z; z0)bh(z; z)rwith the 
onvention that [a; b; r℄ = 0 if a, b or r is negative. It is worth noti
-ing that the degree of [a; b; r℄ is a+ b+ 2r and that �:[a; b; r℄ = �a�b[a; b; r℄.5



Proposition 3.1 The zonal fun
tions in Homk are the linear 
ombinationsof the elements [a; b; r℄ with a+ b+ 2r = k. Moreover,�[a; b; r℄ = 4ab[a� 1; b� 1; r℄ + 4r(a+ b+ r � 1 + n)[a; b; r � 1℄: (10)Proof. The spa
e Homk is generated by elements of the form (z �y)k�2r(z �z)rwhen r 2 [0 : : : k=2℄ and y varies in S2n�1. The identity z � y = (h(z; y) +h(z; y))=2 shows that the h(z; y)ah(z; y)bh(z; z)r with a+b+2r = k generateHomk. We 
an 
omplete z0 to an orthonormal basis (z0; e2; : : : ; en), write yon this basis, develop again and apply suitable elements of Uz0 = U(C e2 +� � �+ C en) (diagonal matri
es are enough) to see that an element of HomUz0kis a linear 
ombination of [a; b; r℄.The 
omputation of � on [a; b; r℄ is straightforward and 
an also be foundin [24, Se
tion 11.2.2(13)℄.Notation: We denote [a; b mod 
℄ the set of integers u, su
h that a � u � band u � a mod 
.Theorem 3.2 The spa
es V kw are non zero if and only if w 2 [�k; k mod 2℄,and in these 
ases they are U(C n)-irredu
ible and pairwise non isomorphi
.Proof. The formula (10) shows that there is up to a multipli
ative fa
-tor a unique zonal fun
tion in V (k)w , whi
h is a linear 
ombination of the[a; b; r℄ with a + b + 2r = k and a � b = w. Sin
e w = k � 2b � 2r, wehave w 2 [�k; k mod 2℄. It proves that dim(HarmHz0k ) = k + 1. Sin
ethe de
omposition (8) shows that at least k + 1 
omponents appear in theirredu
ible de
omposition of Harmk, Frobenius theorem proves the result.De�nition 3.3 We denote by Z(k)w the unique zonal fun
tion in V (k)w of theform Z(k)w (z; z0) = (k+w)=2Xr=0 �r[k + w2 � r; k � w2 � r; r℄ (11)with �0 = 1 and the 
oeÆ
ients �r are 
omputed re
ursively using (10).Remarks and examples� It is worth noti
ing that, 
learly Z(k)�w = Z(k)w .6



� For all k, Z(k)k (z; z0) = h(z; z0)k:� If k = 2, Z(2)0 (z; z0) = h(z; z0)h(z; z0)� 1nh(z; z).� The zonal fun
tions for the symmetri
 spa
e P(C n) are 
omputedin [11℄. They are equal to Z(k)0 (up to a normalization) be
auseZ(k)0 (�z; z0) = Z(k)0 (z; z0) for all �.4 The group U(H n).4.1 Notations.The �eld of quaternion numbers is H = R + Ri + Rj + Rk, where i2 =j2 = �1, ij = �ji = k. The 
onjugate of q = x1 + x2i + x3j + x4k isq = x1 � x2i � x3j � x4k. The isomorphism C ' R + Ri gives H thestru
ture of a left C -ve
tor spa
e. We identify R + Ri with C and denotealso q = z1 + z2j with zi 2 C . Then jz2 = z2j and q = z1 � z2j.The group U(H n) := fP : P 2Mn(H ) j P �P t = Idg (12)a
ts by right multipli
ation on the spa
e H n whi
h is endowed with the usualhermitian form H(q; q0) := nXi=1 qi�q0i: (13)The mapping (with the previous notations)H ! C 2 ! R4q ! (z1; z2) ! (x1; x2; x3; x4) (14)extends to embeddings H n ! C 2n ! R4n , whi
h respe
t the hermitianand Eu
lidean stru
tures and therefore indu
e the in
lusions of the groupsU(H n) < U(C 2n) < O(R4n). We setQ1 := f� : � 2 H j ��� = 1g: (15)The multipli
ative group Q1 a
ts by left multipli
ation on H n as a sub-group ofO(R4n) be
ause, if � 2 Q1, Tra
e(H(�q; �q0)) = Tra
e(�H(q; q0)�) =Tra
e(H(q; q0)). The elements of U(H n) are exa
tly the elements in O(R4n)whi
h 
ommute with the a
tion of Q1.7



4.2 De
omposition of Harmk under U(H n).We now des
ribe the de
omposition of Harmk (in the 4n variables) underU(H n) and the zonal fun
tions asso
iated to this de
omposition. We startwith the de
omposition under the a
tion of Q1.The multipli
ative group Q1 is isomorphi
 to SU2(C ) by� = z1 + z2j ! � z1 z2�z2 z1� : (16)Its irredu
ible representations are given by the spa
es Wp = CXp +CXp�1Y + � � �+C Y p of homogeneous polynomials in the two variables X;Yof degree p. If we denote I(Wp)(k) the isotypi
 
omponent of Wp in Harmk,we have Harmk = �pI(Wp)(k): (17)Sin
e the weights of Wp are [�p; p mod 2℄, 
learly the values of p forwhi
h I(Wp)(k) is non zero belong to [0; k mod 2℄.The group U(H n), as a subgroup of U(C 2n), preserves the de
omposition(8), and, sin
e it 
ommutes withQ1, it also preserves the de
omposition (17).So we have the de
omposition of U(H n) modules:Harmk = Mw2[�k;k mod 2℄p2[0;k mod 2℄p�w I(Wp)(k) \ V (k)w : (18)Theorem 4.1 Let R(k)p := I(Wp)(k) \ V (k)p . For all p 2 [0; k mod 2℄, thespa
es R(k)p are irredu
ible and pairwise non isomorphi
 U(H n)-modules. Forall w 2 [�p; p mod 2℄, I(Wp)(k) \ V (k)w ' R(k)p , and we have the followingde
omposition: Harmk ' �p2[0;k mod 2℄(p+ 1)R(k)p : (19)This de
omposition is also des
ribed in [12, Se
tion 1.2℄, where the Youngdiagram asso
iated to R(k)p is given. Sin
e we need a 
on
rete des
ription ofthe zonal fun
tions and sin
e su
h a des
ription leads to the de
ompositionin Theorem 4.1, we give another proof.Proof. (of Theorem 4.1)We �x q0, H(q0; q0) = 1 and de�ne Uq0 := Stabilizer(q0; U(H n)). Thegroup Uq0 is isomorphi
 to U(H n�1); the zonal fun
tions are the elements of8



HomUq0k . The orbits of Uq0 a
ting on the unit sphere are 
learly 
hara
terizedby H(q; q0), so the zonal fun
tions are fun
tions of H(q; q0). However, we
annot express them as polynomials in H(q; q0), H(q; q0) like in the 
omplex
ase be
ause these last expressions are polynomials in the 4n 
oordinateswith 
oeÆ
ients in H and hen
e do not 
ommute. We shall more 
onve-niently express them in terms of the 
omplex hermitian form h(q; q0) onC 2n . We take the following notation:[a; b; 
; d; r℄ := h(q; q0)ah(q; jq0)bh(q; q0)
h(q; jq0)dh(q; q)r: (20)Proposition 4.2 The zonal fun
tions for U(H n) in Homk are the linear
ombinations of the elements [a; b; 
; d; r℄ with a+b+
+d+2r = k. Moreover,�[a; b; 
; d; r℄ =4a
[a� 1; b; 
 � 1; d; r℄ + 4bd[a; b� 1; 
; d � 1; r℄+ 4r(k � r � 1 + 2n)[a; b; 
; d; r � 1℄: (21)Proof. Same proof as for Proposition 3.1.If � 2 U1, then �:[a; b; 
; d; r℄ = �a+b�
�d[a; b; 
; d; r℄. It is worth noti
ingthat U1 is a maximal torus of Q1. A maximal torus of U(H n) isT := fT := 0BB� �1 �1 . . . �n �n1CCA 2 U(C 2n) j �i 2 U1g: (22)Up to a 
hange of basis, we 
an assume that q0 = (1; 0; : : : ; 0) 2 H n .Then, if q = (q1; : : : ; qn) with q1 = z1+z2j, one easily 
omputes [a; b; 
; d; r℄ =za1zb2z1
z2d(Pni=1 qiqi)r, and hen
e T:[a; b; 
; d; r℄ = �a�b�
+d1 [a; b; 
; d; r℄. Sothe elements [a; b; 
; d; r℄ are weight ve
tors for respe
tively Q1 and U(H n).Note that the Lapla
e operator preserves both values a + b � 
 � d anda � b � 
 + d (from (21), or be
ause it 
ommutes with the a
tions of thegroups Q1, U(H n)). We denote by E(k)w;w0 the C -ve
tor spa
eE(k)w;w0 := spanf[a; b; 
; d; r℄ j a+ b+ 
+ d = k � 2r;a+ b� 
� d = w; (23)a� b� 
+ d = w0g:The Lapla
e operator � maps E(k)w;w0 onto E(k�2)w;w0 (one 
an see that � issurje
tive be
ause Proposition 4.2 shows that if the [a; b; 
; d; r℄ are ordered9



in su
h a way that r de
reases and then lexi
ographi
ally, the matrix of �is upper triangular with non zero 
oeÆ
ients on the diagonal). This spa
e isnot redu
ed to f0g if and only if w and w0 are even and belong to [�k : : : k℄(k is always assumed to be even). Clearly dim(E(k)w;w0) = 12 (k�max(jwj;jw0j)2 +1)(k�max(jwj;jw0j)2 +2). We obtain that dim(ker�\E(k)w;w0) = k�max(jwj;jw0j)2 +1.One 
an 
he
k thatdim(HarmUq0k ) = Xw;w02[�k;k mod 2℄ k �max(jwj; jw0j)2 = Xp2[0;k mod 2℄(p+1)2:Now we �nish the proof of Theorem 4.1. Let R be an irredu
ible U(H n)-subspa
e of R(k)p . Then, for all q 2 Q1, qR is isomorphi
 to R and is 
on-tained in one of the V (k)w . The spa
e C [Q1 ℄R is a Q1-subspa
e of I(Wp)(k),therefore it is isomorphi
 to the sum of 
opies of Wp, and hen
e it inter-se
ts non trivially all the V (k)w for w 2 [�p; p mod 2℄. Finally, there is atleast one subspa
e isomorphi
 to R in ea
h V (k)w with w 2 [�p; p mod 2℄,whi
h proves that the multipli
ity mR of R is at least equal to p + 1.By Frobenius theorem, dim(HarmUq0k ) = PRm2R, and we have 
omputedthat dim(HarmUq0k ) = Pp2[0;k mod 2℄(p + 1)2, so we 
an 
on
lude that thesubspa
es R(k)p are irredu
ible and isomorphi
 to I(Wp)(k) \ V (k)w for allw 2 [�p; p mod 2℄.4.3 A spe
ial basis of HarmUq0k .We have proved in Theorem 4.1 that I(Wp)(k) ' (p + 1)R(k)p , so the spa
eof zonal fun
tions in I(Wp)(k) is of dimension (p+ 1)2. We des
ribe in thisse
tion an algorithmi
 method that 
omputes a basis of HarmUq0k , on whi
hthe a
tion of Q1 is expli
it.We need to introdu
e a 
ertain hermitian produ
t on Homk. It is de�nedon the monomials in the 4n-indeterminates xi of the same degree k by:< x�; x� >:= Æ�;��k���1 (24)where �k�� = k!�1!:::�4n! is the multinomial 
oeÆ
ient. It has the ni
e prop-erty to be U(C 4n)-invariant (see [22℄). Therefore the irredu
ible O(R4n)-subspa
e Harmk is orthogonal to (P4ni=1 x2i )Homk�2 be
ause the latter hasno 
onstituent isomorphi
 to the dual (Harmk)� �= Harmk of Harmk.10



Lemma 4.3 Let a; b; 
; d; a0; b0; 
0; d0; r0 2 Z�0 with a+ b+ 
+ d = a0 + b0 +
0 + d0 + 2r0 = k. Then< [a; b; 
; d; 0℄; [a0 ; b0; 
0; d0; r0℄ >= 8><>:2kh(q0;q0)k�r0( r0a�a0)( ka;b;
;d) if (a� a0 = 
� 
0 � 0b� b0 = d� d0 � 00 otherwise :Proof. We �rst assume that h(q0; q0) = 1. Then, we 
an repla
e q0 by q0uwith u 2 U(C 2n), and assume that q0 = (1; 0; : : : ; 0) 2 C 2n . If (z1; : : : ; z2n)are the 
omplex 
oordinates of q, then [a; b; 
; d; r℄ = za1zb2z1
z2d(P2ns=1 zszs)r.If zs = x2s�1 + x2si, [a; b; 
; d; r℄ = (x1 + x2i)a(x3 + x4i)b(x1 � x2i)
(x3 �x4i)d(P4ns=1 x2s)r. LetU := 0BBB� 1 1i �i 1 1i �i p2 . . . p21CCCA 2M4n(C )then UU t = 2Id4n and hen
e 1p2U 2 U4n(C ). If we let (y1; : : : ; y4n) =(x1; : : : ; x4n)U , one has [a; b; 
; d; r℄ = ya1yb3y
2yd4(y1y2 + y3y4 +Ps�5 y2s=2)r .The 
omputation of < [a; b; 
; d; 0℄; [a0 ; b0; 
0; d0; r0℄ > follows from the fa
tthat this hermitian produ
t is U(C 4n)-invariant and from the expression(24).In the general 
ase, q0 = �(1; 0; : : : ; 0) with � 2 C and the fun
tion[a; b; 
; d; r℄ is multiplied by �a+d�b+
. An easy 
omputation shows that theprevious hermitian produ
t is multiplied by (��)k�r0 = h(q0; q0)k�r0 .Remark 4.4 With the Lemma 4.3, we are able to 
ompute the hermitianprodu
t of any two elements of HarmUq0k : su
h fun
tions are linear 
om-binations of some [a; b; 
; d; r℄ from Proposition 4.2, and are orthogonal tothe elements of h(q; q)Homk�2 so, in one of them we 
an ignore the terms[a; b; 
; d; r℄ with r 6= 0.Re
all that Wp is the C -ve
tor spa
e of homogeneous polynomials ofdegree p in two variables. It is equipped with the same hermitian produ
t,given by < Xp�aY a;Xp�bY b >= Æa;b�pa��1, whi
h is invariant under thea
tion of SU2(C ). 11



Proposition 4.5 There exists an essentially unique basisfZ(k)p;w;w0gw;w02[�p;p mod 2℄ of the zonal fun
tions of I(Wp)(k) su
h that :� Z(k)p;w;w0 2 E(k)w;w0� fZ(k)p;w;w0gw02[�p;p mod 2℄ is a basis of I(Wp)(k) \ V (k)w� For all w0 the set fZ(k)p;w;w0gw2[�p;p mod 2℄ is a basis of a Q1-spa
e isomor-phi
 to Wp, su
h that the mapping Z(k)p;w;w0 ! X p+w2 Y p�w2 is an isomorphismof Q1-modules, and an isometry for the hermitian produ
ts <;>.The uniqueness of this basis holds up to the 
hange Z(k)p;w;w0 ! aw0Z(k)p;w;w0with aw0 2 U1.Proof. We assume by indu
tion that we have proved the proposition forI(Wk)(k), : : : , I(Wp+2)(k). We have previously seen that dim(ker�\E(k)p;w0) =(k � p)=2 + 1 for w0 2 [�p; p mod 2℄. We have already 
onstru
ted inthis spa
e (k � p)=2 elements Z(k)t;p;w0 for t 2 [k; p + 2 mod 2℄. It shouldbe noti
ed that Z(k)p;p;w0 must be orthogonal to them be
ause it belongs toa di�erent isotypi
 
omponent. So the 
onditions: Z(k)p;p;w0 2 ker� \ E(k)p;w0,< Z(k)p;p;w0; Z(k)t;p;w0 >= 0 for all t 2 [k; p+2 mod 2℄, and< Z(k)p;p;w0; Z(k)p;p;w0 >= 1determine the elements Z(k)p;p;w0 up to the multipli
ation by a 
omplex num-ber of norm 1. For ea
h w0 �xed, Z(k)p;p;w0 is a highest weight ve
tor of theQ1-module spanned by Z(k)p;p;w0, whi
h therefore is isomorphi
 to Wp. Upto an element of U1, Z(k)p;p;w0 is sent to Xp, and we de�ne Z(k)p;w;w0 to be thepreimage of X p+w2 Y p�w2 by this isomorphism. The element Z(k)p;w;w0 must beof the form �:Z(k)p;p;w0 with � 2 Q1, hen
e it remains a zonal fun
tion, hen
ea linear 
ombination of some [a; b; 
; d; r℄. We must have a+ b� 
 � d = wbe
ause it re
e
ts the fa
t that X p+w2 Y p�w2 is a weight ve
tor for the weightw, and a� b� 
+ d = w0 be
ause the a
tions of Q1 and U(H n) 
ommute.We end this subse
tion with some remarks on the algorithmi
 
omputa-tion of the basis des
ribed in Proposition 4.5. The next lemma makes morepre
ise the a
tion of Q1 on the [a; b; 
; d; r℄.Lemma 4.6 Let � 2 Q1. For all [a; b; 
; d; r℄, �:[a; b; 
; d; r℄ is a C -linear
ombination of elements [a0; b0; 
0; d0; r0℄, with r0 = r.Proof. We 
an write � = z1 + z2j. Then h(�q; �q) = h(q; q), h(�q; q0) =z1h(q; q0) + z2h(jq; q0) and h(jq; q0) = �h(q; jq0). We repla
e in the ex-12



pression (20) of [a; b; 
; d; r℄ and obtain a linear 
ombination of elements[a0; b0; 
0; d0; r0℄, with r0 = r.We assume that we have 
onstru
ted the fZ(k)t;w;w0gw;w02[�t;t mod 2℄ for allt 2 [k; p+2 mod 2℄. We now wish to 
ompute the fZ(k)p;w;w0gw;w02[�p;p mod 2℄.We �rst determine the Z(k)p;p;w0 (up to a multipli
ative fa
tor in U1) as de-s
ribed in the proof of Proposition 4.5. Sin
e Z(k)p;w;w0 is of the form �:Z(k)p;p;w0,from Lemma 4.6 it is a linear 
ombination of [a; b; 
; d; r℄ with r � (k�p)=2.One 
an then 
he
k that the spa
e of fun
tions in ker� \E(k)w;w0, whi
h areorthogonal to all the Z(k)t;w;w0 for t 2 [k; p + 2 mod 2℄ and whi
h have theadditional property that r � (k � p)=2, is one-dimensional. Let Z be agenerator of this spa
e, we know that Z(k)p;w;w0 = �Z for some 
omplex num-ber �. In order to 
ompute �, we use the a
tion of � = (1 � j)=p2. Oneeasily 
omputes that < �:Xp;X p+w2 Y p�w2 >= 2�p=2. It remains to 
al
ulate< �:Z(k)p;p;w0; Z >, whi
h is easy with Lemma 4.3 and the rules des
ribed inthe proof of Lemma 4.6.Remarks and examples� Easy rules link Z(k)p;w;w0 with Z(k)p;�w;w0 and Z(k)p;w;�w0. The expression ofZ(k)p;�w;w0 is obtained from Z(k)p;w;w0 by repla
ing ea
h term [a; b; 
; d; r℄ by(�1)a+
[d; 
; b; a; r℄, and the expression of Z(k)p;w;�w0 by (�1)a+
[b; a; d; 
; r℄.� If k = 2, Z(2)0;0;0(q; q0) = H(q; q0)H(q; q0)� 1nH(q; q), and:8>>>><>>>>:Z(2)2;2;2(q; q0) = 12h(q; q0)2Z(2)2;2;0(q; q0) = h(q; q0)h(q; q0)Z(2)2;0;2(q; q0) = 12h(q; q0)h(q; jq0)Z(2)2;0;0(q; q0) = �12h(q; q0)h(q; q0) + 12h(q; jq0)h(q; jq0):� The zonal fun
tions for the symmetri
 spa
e P(H n) are 
omputedin [11℄. They are equal to Z(k)0;0;0 (up to a normalization) be
auseZ(k)0;0;0(�q; q0) = Z(k)0;0;0(q; q0) for all � (note that these fun
tions 
or-respond to the only irredu
ible 
omponent with multipli
ity equal toone). 13



� In view of appli
ations to latti
es, we are lead to 
onsider sums of thetype Px2S Z(x) where S is 
losed for the left multipli
ation by some�nite group U < Q1 (see Se
tion 5; we may 
onsider latti
es with anhermitian stru
ture over a maximal order of a quaternion �eld de�nedover Q , S is the set of latti
e ve
tors of given norm, and U is the groupof units of the maximal order). In that 
ase, we need only 
onsiderthe zonal fun
tions whi
h are U -invariant. Proposition 4.2 shows thatwe only need to know a basis for the polynomials of degree p whi
hare invariant for the a
tion of U < SU2(C ), and transfer this basisthrough the Q1-isomorphism expli
itly given. For example, the �rstnon trivial invariant for the groupM� (29) is the degree 6 polynomialX5Y � XY 5. So we take a

ount of one zonal fun
tion in degree 2and 4 (namely Z(2)0;0;0 and Z(4)0;0;0), and of 4+1 zonal fun
tions in degree6 (namely Z(6)0;0;0, and the Z(6)6;4;w0 � Z(6)6;�4;w0 for w0 2 [0; 6 mod 2℄).5 Appli
ations to latti
esWe 
onsider latti
es with an hermitian stru
ture over a �eld K, whi
h iseither a totally imaginary quadrati
 �eld, or a quaternion �eld over Q , ram-i�ed at 1.We take the following notations: in the quadrati
 
ase, K = Q(p�d)where d > 0 and �d is the dis
riminant of K. The ring of integers of Kis denoted OK and its unit group O�K . The 
omplex 
onjugation on Kis denoted x ! x. In the quaternioni
 
ase, we again denote OK a �xedmaximal order of K, O�K its group of units and x! x the 
onjugation. Thedis
riminant of OK is denoted d.The leftK-ve
tor spa
eKn is endowed with the hermitian form hK(z; z0) :=Pni=1 ziz0i. An hermitian latti
e L over K is an OK -submodule of Kn of fullrank. Its hermitian dual is de�ned byL�hK := fx : x 2 Kn j hK(x;L) � OKg: (25)The latti
e L is also a Eu
lidean latti
e when 
onsidered as a Z-module,for the s
alar produ
t x � y := Tra
eK=Q(hK(x; y)) and of rank 2n in thequadrati
 
ase and 4n in the quaternioni
 
ase (in this last 
ase, Tra
eK=Qis the redu
ed tra
e). We set LZ := (L; x � y). The dual of LZ and thehermitian dual of L are related by:L�Z= D�1K L�hK (26)14



where D�1K is the inverse di�erent of OK , i.e. the dual with respe
t to theredu
ed tra
e. In parti
ular, if L is hermitian unimodular, i.e. L�hK = Land DK is a prin
ipal ideal, then LZ is d-modular as an Eu
lidean latti
e,in the sense of [16℄.Su
h latti
es have been widely studied ([1℄, [2℄, [5℄, [9℄, [21℄). We shallbe 
on
erned with numeri
al appli
ations in the 
ases: K = Q(p�3), andK = Q2;1 = Q +Q i+Q j +Qk, where i2 = j2 = �1, ij = �ji = k (in thesetwo 
ases the order of the unit groups are the largest possible, whi
h allowseasier 
omputations as we shall see later).In the 
ase K = Q(p�3), d = 3. We denote w := (�1 +p�3)=2. Thehermitian unimodular latti
es have been 
lassi�ed up to the real dimension24 by W. Feit [9℄. They are spe
ial 
ases of 3-modular latti
es, for whi
hthe theta series �L is a modular form for the Fri
ke group ��(3). As shownin [16℄, this property leads to an upper bound for the minimum of su
h alatti
e: min(L) � 2[n=6℄ + 2 (27)(here n is the rank over K = Q(w)). A latti
e is said to be extremal if itsminimum attains this bound; the Coxeter-Todd latti
e K12 is an example ofan hermitian unimodular latti
e whi
h is extremal. Of 
ourse the dimensionswhi
h are multiples of 6 are the most interesting ones. Feit's 
lassi�
ationhas shown that there is no extremal hermitian unimodular latti
e for n = 12.However a 3-modular 24-dimensional extremal Z-latti
e was dis
overed in[14℄. This latti
e has the stru
ture of a Z[w℄-module but is not hermitianunimodular.We prove in Theorem 5.6 that there are no extremal hermitian unimod-ular latti
es for the relative dimension n = 24 (and we also re
over Feit'sresult for dimension 12).In the 
ase K = Q2;1 , the maximal orders are 
onjugate to the Hurwitzorder M: M = Z[1; i; j; w := �1 + i+ j + k2 ℄: (28)Its group of units isM� = f�1;�i;�j;�k; �1� i� j � k2 g (29)and has 24 elements. As an abstra
t group, it is isomorphi
 to SL2(3) �=2:Alt4. The hermitian unimodular latti
es over the Hurwitz order are spe
ial15




ases of 2-modular latti
es, and therefore satisfy the estimatemin(L) � 2[n=4℄ + 2 (30)(here n is the rank over Q2;1). They have been 
lassi�ed up to the relativedimension 8 (see [1℄ and [2℄). This 
lassi�
ation has shown that none of thelatti
es of dimension 8 rea
h the bound (30).5.1 Root latti
es.Let L be a latti
e whi
h is integral over OK , meaning that L � L�hK . Weset R(L) := fx : x 2 L j hK(x; x) = 2g: (31)The elements of R(L) are 
alled the roots of L, and are the norm 4elements in LZ (note that hK(x; x) is always in Z). To x 2 R(L) we 
anasso
iate the re
e
tion �x(y) := y � hK(x; y)x (32)whi
h preserves the latti
e L. If U(L) denotes the group of unitary trans-formations preserving L, the re
e
tions �x generate a subgroup W (L) ofU(L) whi
h is a �nite, 
omplex or quaternioni
, re
e
tion group. Just likein the 
ase of the Eu
lidean root latti
es, one easily proves that a latti
eL spanned by its roots is the orthogonal sum of inde
omposable sublatti
esspanned by their roots, and that, if the sublatti
e spanned by the roots isinde
omposable, then the group W (L) is irredu
ible.The 
omplex irredu
ible �nite re
e
tion groups have been 
lassi�ed byShephard and Todd [20℄ and their invariant latti
es are studied in [15℄. Tosu
h a group, one 
an asso
iate an essentially unique redu
ed root system(see [15, De�nition 19℄). If L is inde
omposable and is spanned by R(L),then R(L) is a redu
ed K-root system for W (L) in the sense of [15℄, withthe additional property that all the roots have the same length.The quaternioni
 irredu
ible �nite re
e
tion groups are 
lassi�ed by A.M. Cohen [4℄, together with their root systems. In the quaternioni
 
ase, ithappens that the root system is not uniquely determined by the group (see[4℄), but not in the 
ases we are dealing with (the groups are de�ned overQ2;1).
16



Proposition 5.1 Let R � fx : x 2 C n or H n j h(x; x) = 2g be a �nite setsu
h that the re
e
tions �x, x 2 R generate a �nite irredu
ible subgroup ofU(C n) (or of U(H n)) and a
t transitively on R. ThenXr2R h(x; r)h(y; r) = 2jRjn h(x; y): (33)Proof. Let G denote the group generated by the re
e
tions asso
iated to R.Let �(x; y) = Pr2R h(x; r)h(y; r). Clearly � is a non-degenerate hermitianform whi
h is G-invariant; sin
e G is irredu
ible, it must be a multiple ofh(x; y). The multipli
ative fa
tor is 
omputed by appli
ation of the Lapla
eoperator �.De�nition 5.2 By analogy with the Eu
lidean 
ase (see [22, Proposition5.5℄), we de�ne the Coxeter number of a K-root system R to beh(R) := 2jRjjO�K jn:Remark 5.3 Equation (33) 
an be read also as: Pr2R Z(2)0 (x; r) = 0 (re-spe
tively Pr2R Z(2)0;0;0(x; r) = 0 in the quaternioni
 
ase).In the 
omplex 
ase, if moreover R is 
losed for the multipli
ation by thesixth roots of unity, whi
h is the 
ase if R = R(L) and L is a hermitianlatti
e over K = Q(p�3), then Pr2R Z(2)2 (x; r) = 0 holds trivially; hen
e Ris a spheri
al 2-design in the sense of [22℄.In the quaternioni
 
ase, the same result holds if R is 
losed under multi-pli
ation by a group of units U , whi
h has no harmoni
 polynomial invariantsof degree 2. This is the 
ase for the group M� (the �rst non trivial invariantof M� o

urs at degree 6).In view of the previous remark, we list from [15℄, [9℄ and [4℄ the possibleirredu
ible root systems over Q(p�3) and over Q2;1 whi
h 
an o

ur as theroots of an integral latti
e. We shall denote by LR the latti
e spanned by Rand by det(LR) its determinant as an OK-latti
e.If R � Rn is an irredu
ible Eu
lidean root system with roots of equallength, namely if R is one of fAn;Dn; E6; E7; E8g, then O�KR := fur; u 2O�K ; r 2 Rg is one of them and jO�KRj = jO�K jjRj=2.The other irredu
ible root systems over Q(p�3) whi
h 
an o

ur as theroots of an integral latti
e are: 17



Table 1:R jRj h(R) W (R) det(LR)Z[w℄�An 3n(n+ 1) n+ 1 G1(n) ' Sn+1 n+ 1Z[w℄�Dn 6n(n� 1) 2(n� 1) G2(2; 2; n) 4Dn(1�w) 9n(n� 1) 3(n� 1) G2(3; 3; n) (1� w)2R5 270 18 G33 2R6 756 42 G34 1Z[w℄�E6 216 12 G35 3Z[w℄�E7 378 18 G36 2Z[w℄�E8 720 30 G37 1� Dn(1�w) := f(u; v; 0; : : : ; 0)� 2 C n j u; v 2 Z[w℄�; u+ v � 0 mod 1�wg:� R5 := Z[w℄�A5 [ f �11�w (1; w;w2; 1; w;w2)�g:� R6 := D6(1 � w) [ f �11�w (u1; u2; u3; u4; u5; u6); ui 2 Z[w℄� j ui � 1mod (1� w) and P6i=1 ui � 0 mod 3g:where (x1; : : : ; xn)� denotes any permutation of (x1; : : : ; xn).The latti
e spanned by R6 is the Coxeter-Todd latti
e K12. Table 1summarizes the properties of these root systems.The irredu
ible root systems over Q2;1 whi
h 
an o

ur as the roots ofan integral latti
e are, apart from the M�R where R is a Eu
lidean rootsystem:� Dn(1�w) := f(u; v; 0; : : : ; 0)� 2 H n j u; v 2M�; u+v � 0 mod 1�wg:� Dn(1+ i) := f(u; v; 0; : : : ; 0)� 2 H n j u; v 2M�; u+v � 0 mod 1+ ig:� The root systems S1, S3 and U5 given in Table II of [4℄.The latti
e spanned by S3 is the Barnes-Wall latti
e BW16, the onespanned by S1 is a sublatti
e of index 1 + i of the previous one, and theone spanned by U5 is a hermitian unimodular latti
e of quaternioni
 rank5. Table 2 summarizes the properties of these root systems.Feit's 
lassi�
ation of the Z[w℄-hermitian unimodular latti
es of relativedimension 12 shows in parti
ular that the roots of su
h a latti
e span the18



Table 2:R jRj h(R) det(LR)M�An 12n(n+ 1) n+ 1 n+ 1M�Dn 24n(n� 1) 2(n� 1) 4Dn(1� w) 36n(n� 1) 3(n� 1) (1� w)2Dn(1 + i) 24n(4n� 3) 2(4n� 3) (1 + i)2M�R5 1080 18 2M�R6 3024 42 1M�E6 864 12 3M�E7 1512 18 2M�E8 2880 30 1S1 864 18 (1 + i)2S3 4320 90 1U5 3960 66 1whole spa
e, just like for the Niemeier latti
es of minimum 2. B. Venkovhas shown that one 
ould prove a priori that an even unimodular latti
e ofdimension 24 has a root system either empty or of rank 24, and that in thislast 
ase it should belong to a limited set of possibilities be
ause the Cox-eter number of its irredu
ible 
omponents have to be equal. His argumentrelies on the use of theta series with harmoni
 
oeÆ
ients. We prove herea 
ompletely analogous result for the Z[w℄-unimodular latti
es of relativedimension 12 and for the M-unimodular latti
es of relative dimension 8.Proposition 5.4 Let L be a Z[w℄-hermitian unimodular latti
e (respe
tivelya M-hermitian unimodular latti
e) of dimension n. If n � 12 (respe
tivelyn � 8) and R(L) 6= ;, then R(L) has rank n, and the irredu
ible root systemso

urring in R(L) have the same Coxeter number.Proof. We brie
y sket
h the proof, sin
e it is essentially the same as theone in [5, Chap 18, Prop. 2℄. The study of the theta series with spheri
al
oeÆ
ients for the modular latti
es ([3℄, Theorem 3.1 and Proposition 3.2)shows that, in this range of dimension, we haveXr2R(L)P (r) = 0 (34)for all P 2 Harm2. We then take P (x) = Z(2)0 (x; y) or P (x) = Z(2)0;0;0(x; y)and obtain (here h(x; y) stands for the 
omplex or quaternioni
 hermitian19



form on R 
Q Kn): Xr2R(L) h(y; r)h(y; r) = 2jRjn h(y; y): (35)Taking y 2 R(L)?, we see that y = 0, and taking y in an irredu
ible
omponent of the root system, we see from Proposition 5.1 that its Coxeternumber is independent of the 
hosen 
omponent.Remark 5.5 The previous proposition gives a strong 
onstraint on the pos-sible root systems for unimodular latti
es. Of 
ourse it does not say anythingon the eventuality that R(L) = Rk0 for some R0.In the 
ase of K = Q(w) and n = 12, and if we assume that R(L)
ontains at least two di�erent types of irredu
ible root systems, from theinspe
tion of Table 1, R(L) is one of the following: Z[w℄�E7 ? R5 orZ[w℄�A8 ? D4(1 � w). It remains to study the e�e
tive existen
e of Z[w℄-hermitian unimodular latti
es of dimension 12 with su
h roots. Feit's 
lassi-�
ation [9℄ proves that in both 
ases one and exa
tly one su
h latti
e exists.In the 
ase of K = Q2;1 and n = 8, we are left with three possible rootsystems, D3(1 + i) ? M�U5, M�A5 ? D3(1 � w) and M�D6 ? D2(1 + i).It is proved in [2℄ that su
h latti
es do exist and are unique.5.2 Extremal hermitian unimodular latti
es.The property of a latti
e L to be extremal for
es its theta series to beuniquely determined. It also gives a 
onstraint on the Ja
obi theta seriesasso
iated to the latti
e, whi
h, if the dimension is not too large, determinesit uniquely. In [3℄, we make use in the Eu
lidean 
ase of a method involvingthe properties of the theta series with spheri
al 
oeÆ
ients to 
ompute su
hJa
obi theta series. It involves the zonal fun
tions for the orthogonal groupa
ting on the unit sphere, expressed in terms of the Gegenbauer polynomials.In this se
tion, we apply the same method but repla
e the polynomialsused in [3℄ by the zonal fun
tions for the unitary groups, the 
omputation ofwhi
h is explained in Se
tions 3 and 4. Sin
e the general method is explainedin details in [3℄, we shall not give here more information about it.Let L be a hermitian latti
e over K with the notations of the beginningof Se
tion 5. Our goal is the 
omputation of the following numbers:Nm;z(y) := 
ardfx; x 2 L j hK(x; x) = m and hK(x; y) = zg (36)20



for 
ertain 
hoi
es of y (basi
ally, y is a minimal ve
tor of L).We denote L2m := fx; x 2 L j hK(x; x) = mg (so that the index of Lrefers to the Eu
lidean norm x �x = 2hK(x; x)). The 
oeÆ
ient of qm in thespheri
al theta series �L;P :=Px2L P (x)qx�x=2 equals the sumXx2L2m P (x): (37)Sin
e the set L2m is invariant under left multipli
ation by the elementsof the �nite group O�K , whi
h a
t as a subgroup of the orthogonal group ofthe whole spa
e, we 
an restri
t our attention to the elements of HarmO�Kk .If the group O�K is redu
ed to f�1g, it only means that we 
onsider thepolynomials of even degree. In the general 
ase, the zonal fun
tions whi
hare invariant under the a
tion of a given subgroup U of U1 or of Q1 are easyto 
ompute. In the quadrati
 
ase, it means that we need to 
onsider onlythe Z(k)w with w � 0 mod jU j. In the quaternioni
 
ase, see the remarkfollowing Proposition 4.5.5.2.1 K = Q(p�3).We 
onsider an extremal latti
e L of dimension n = 6n0 a multiple of 6. LetS(L) denote the set of its minimal ve
tors, whi
h have norm 2m = 2n0 + 2(from (27)). The 
omputation of the 
oeÆ
ients of the theta series of su
hlatti
es does not show any 
ontradi
tion with their existen
e until n0 = 63([19℄). However, Feit's 
lassi�
ation has shown that no extremal latti
eexists for n0 = 2 and none of them are 
onstru
ted for higher n0.It turns out that the numbers Nm;z(y) (36) for y 2 S(L) are independentof the 
hoi
e of y up to n = 24. It is worth noti
ing that only a �nitenumber of z 
an satisfy Nm;z(y) 6= 0, and that Pz Nm;z(y) = jS(L)j the�rst non-zero 
oeÆ
ient of the theta series of L. Table 3 gives the results ofthe 
omputation of these numbers for the dimensions 12, 18, 24. We haveomitted the value Nm;m(y) = 6 and we have taken z modulo Z[w℄� sin
e
learly Nm;z(y) = Nm;uz(y) for all u 2 Z[w℄�.Theorem 5.6 Extremal Z[w℄-hermitian unimodular latti
es of dimension24 
annot exist.Proof. The numbers found in Table 3 
annot 
orrespond to a latti
e, al-though they are integral and positive, be
ause they do not satisfy a 
ertain
onvexity 
ondition (analogous to the one used in [3, Prop. 7.1℄) that weexplain now: 21



Table 3: Computation of Nm;z(y) for extremal unimodular Z[w℄-latti
es, fory 2 S(L) and for 2m = min(L).dim(L) min(L) Nm;0 Nm;1 Nm;1�w Nm;2 Nm;1+3w Nm;3+w12 6 1496 2673 19818 8 31569 67456 6528 217624 10 598644 1461075 217350 75900 2875 2875We use the hermitian produ
t on Homk de�ned in (24), whi
h has theproperty that < (x �y)k; h >= h(y) for all h 2 Harmk (see [22℄). We 
onsiderthe element Hk := Py2S(L)(x � y)k and its orthogonal proje
tion Hk;w onV (k)w . The positivity 
onditions: < Hk;w;Hk;w >� 0 must hold; on the otherhand, the next lemma shows that < Hk;w;Hk;w > is a linear 
ombination ofthe numbers from Table 3.Lemma 5.7 Let S � S2n�1 be a �nite subset of the unit sphere. Let Hk :=Py2S(x � y)k and let Hk;w be its orthogonal proje
tion on V (k)w . Then< Hk;w;Hk;w >= �k;w Xy;y02S Z(k)w (y; y0) (38)where �k;w 2 R and has the same sign as P(k+w)=2r=0 �r with the notations ofDe�nition 3.3.Proof. Clearly, for y0 �xed, the proje
tion p of (x � y0)k onto V (k)w is a zonalfun
tion so it is equal to �Z(k)w (x; y0) for some � 2 C . Sin
e< p;Z(k)w (x; y0) >=< (x � y0)k; Z(k)w (x; y0) >= Z(k)w (y0; y0), we 
an 
al
ulate� = Z(k)w (y0; y0)= < Z(k)w (x; y0); Z(k)w (x; y0) >, whi
h is independent of y0 2S2n�1 and has the sign of Z(k)w (y0; y0) = Pr �r. Hen
e < Hk;w;Hk;w >=<Hk;Hk;w >=Py2S Hk;w(y) = �Py;y02S Z(k)w (y; y0).We 
on
lude the proof of the theorem: sin
e Z(k)w (y; y0) is a fun
tion ofh(y; y0), the sum expressing < Hk;w;Hk;w > is a linear 
ombination of thenumbers Nm;z(y). In the 
ase under 
onsideration, we take Z(6)6 (y; y0) =h(y; y0)6 whi
h gives a negative result, and therefore 
ontradi
ts the exis-ten
e of su
h a latti
e. 22



Remark 5.8 The same argument yields the non existen
e of an extremallatti
e in dimension 12. It does not say anything for the dimension 18, andthe question of the existen
e of an extremal Z[w℄-unimodular latti
e remainsopen in this 
ase (su
h a latti
e would have a better density that any otherknown Eu
lidean latti
e of dimension 36).For the M-latti
es, the method does not lead to signi�
ant results; forn = 8, the numbers Nm;z(y) are uniquely determined but not for n = 12; 16,and we 
annot dedu
e anything for the existen
e of extremal latti
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