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AbstratWe study the deomposition of the spae L2(Sn�1) under the a-tions of the omplex and quaternioni unitary groups. We give anexpliit basis for the spae of zonal funtions, whih in the seond asetakes aount of the ation of the group of quaternions of norm 1. Wederive appliations to hermitian latties.keywords: lattie, theta series, unitary groups, zonal funtion.
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1 IntrodutionIt is a lassial fat that the funtional spae L2(Sn�1) on the unit sphereSn�1 of the Eulidean spae Rn deomposes under the ation of the orthog-onal group O(Rn) into the sum of the harmoni spaes Harmk of degree k.As shown by B. Venkov, the zonal spherial funtions assoiated to this de-omposition are a powerful tool to study Eulidean latties. A key propertyis that, if P (x) 2 Harmk, then the theta series �L;P assoiated to P and tothe lattie L is a modular form. This property, together with the expres-sion of the zonal spherial funtions by means of Gegenbauer polynomials,was used in [23℄ (see also [5, Chap.18℄) to reover Niemeier's lassi�ationof the even unimodular latties in dimension 24 and in [3℄ to prove the nonexistene of latties with ertain properties.In this paper, we follow the same line with respet to hermitian latties.The unitary groups over the omplex numbers and the quaternion numbersreplae the orthogonal group. We disuss the deomposition of the spaeL2(Sn�1) under their respetive ation and desribe a basis of the zonalspherial funtions. In the quaternioni ase, the irreduible omponentshave multipliities greater than one, hene there is no anonial hoie of abasis for the zonal spherial funtions; we onstrut a spei� basis whihtakes aount of the ation of the quaternions of norm one.Then we derive expliit results on the hermitian unimodular latties overthe Eisenstein ring Z[(1 + p�3)=2℄ and over the Hurwitz order. Some ofthem explain ertain results previously obtained by the full lassi�ation ofthe orresponding genus. We show how the onise and elegant treatment ofthe Niemeier latties of minimum 2 given by B. Venkov in [23℄ (see also [5,Chap.18℄) an be extended to these ases. We also prove the non existeneof extremal Eisenstein latties of (real) dimension 48.2 The group O(Rn).In this setion we reall some well-known fats on harmoni analysis forthe orthogonal group O(Rn). The spae Rn is onsidered with its usualEulidean struture given by x � y = Pni=1 xiyi. The unit sphere Sn�1 is ahomogeneous spae for the ation of the orthogonal group; if we �x a basepoint y, the stabilizer Oy of y in O(Rn) is isomorphi to O(Rn�1 ). Thegroup O(Rn) ats on the funtional spae L2(Sn�1) by (u:f)(x) = f(xu)3



and the deomposition into irreduible subspaes is given byL2(Sn�1) = �k�0Harmk (1)where Harmk is the kernel of the Laplae operator � =P �2�x2i in the spaeof homogeneous polynomials of degree k in the oordinates x1; : : : ; xn. (In(1) we again denote Harmk the spae of polynomial funtions on the unitsphere). Moreover, the spaes Harmk are pairwise non isomorphi O(Rn)-modules, hene the Oy-invariant elements (so-alled zonal spherial fun-tions) are spanned by a single element Zk;y whih is known to be expressedin terms of the Gegenbauer polynomials Gn=2�1k (X) ([24, Setion 9.3.2℄ ):Zk;y(x) = Gn=2�1k (x � y): (2)3 The group U(C n).3.1 Notations.We take the following notations: the groupU(C n) := fP : P 2Mn(C ) j P �P t = Idg (3)ats by right multipliation on the vetor spae C n whih is endowed withthe usual hermitian form h(z; z0) := nXi=1 zi�z0i: (4)The mapping C ! R2z = x+ yi! (x; y) (5)extends to an embedding � : C n ! R2n , whih respets the Eulideanstrutures, i.e. �(z) � �(z) = h(z; z), where \�" denotes the usual salarprodut on R2n given by x � y =P2ni=1 xiyi. Hene this mapping indues aninlusion of the groups U(C n) < O(R2n). We setU1 := f� : � 2 C j ��� = 1g: (6)4



The multipliative group U1 ats by left multipliation on C n as a sub-group of O(R2n). It is worth notiing that U(C n) is the entralizer of U1 inO(R2n).It follows from the next setion that even for every irreduible O(R2n)-module Harmk, the matries that ommute with the ation of U(C n) onHarmk are preisely the linear ombinations of elements in U1. If one wouldknow this in advane, this gives the deomposition of Harmk into irreduibleU(C n)-modules by the double ommutant theorem [10, Th. 3.3.7℄. The sameholds for the pair U(H n) and Q1 in O(R4n) treated in Setion 4.3.2 Deomposition of Harmk under U(C n).We need to deompose further the spae Harmk (relative to the 2n realvariables) under the ation of the subgroup U(C n). This deomposition isdesribed in [24, Setion 11.2℄, we reall it here. We assume for the rest ofthe paper that k is even. In view of appliations to latties, it is the onlyase of interest. We �rst onsider the ation (by left multipliation on C n)of the group U1. We setV (k)w := ff : f 2 Harmk j f(�x) = �wf(x) for all � 2 U1g: (7)Beause U1 is abelian, the following deomposition holds:Harmk := �w2ZV (k)w : (8)Moreover, beause the respetive ations of U1 and of U(C n) ommute,this deomposition is preserved by U(C n). It turns out that it is the irre-duible deomposition for U(C n). In order to prove this, we ompute thezonal funtions in V (k)w . We �x z0 2 S2n�1 and set Uz0 := Stabilizer(z0; U(C n)).The group Uz0 is isomorphi to U(C n�1). We denote by Homk the spae ofhomogeneous polynomials of degree k with omplex oeÆients in the 2nvariables x1; y1; x2; y2; : : : ; xn; yn. The zonal funtions are elements of thespae HomUz0k := ff : f 2 Homk j f(xu) = f(x) for all u 2 Uz0g: (9)With an obvious meaning, we denote z = (z1; : : : ; zn) = (x1+iy1; : : : ; xn+iyn), and see h(z; z0) = (x1 + iy1) �z10 + � � � + (xn + iyn) �zn0 as an element ofHom1.We denote [a; b; r℄ := h(z; z0)ah(z; z0)bh(z; z)rwith the onvention that [a; b; r℄ = 0 if a, b or r is negative. It is worth noti-ing that the degree of [a; b; r℄ is a+ b+ 2r and that �:[a; b; r℄ = �a�b[a; b; r℄.5



Proposition 3.1 The zonal funtions in Homk are the linear ombinationsof the elements [a; b; r℄ with a+ b+ 2r = k. Moreover,�[a; b; r℄ = 4ab[a� 1; b� 1; r℄ + 4r(a+ b+ r � 1 + n)[a; b; r � 1℄: (10)Proof. The spae Homk is generated by elements of the form (z �y)k�2r(z �z)rwhen r 2 [0 : : : k=2℄ and y varies in S2n�1. The identity z � y = (h(z; y) +h(z; y))=2 shows that the h(z; y)ah(z; y)bh(z; z)r with a+b+2r = k generateHomk. We an omplete z0 to an orthonormal basis (z0; e2; : : : ; en), write yon this basis, develop again and apply suitable elements of Uz0 = U(C e2 +� � �+ C en) (diagonal matries are enough) to see that an element of HomUz0kis a linear ombination of [a; b; r℄.The omputation of � on [a; b; r℄ is straightforward and an also be foundin [24, Setion 11.2.2(13)℄.Notation: We denote [a; b mod ℄ the set of integers u, suh that a � u � band u � a mod .Theorem 3.2 The spaes V kw are non zero if and only if w 2 [�k; k mod 2℄,and in these ases they are U(C n)-irreduible and pairwise non isomorphi.Proof. The formula (10) shows that there is up to a multipliative fa-tor a unique zonal funtion in V (k)w , whih is a linear ombination of the[a; b; r℄ with a + b + 2r = k and a � b = w. Sine w = k � 2b � 2r, wehave w 2 [�k; k mod 2℄. It proves that dim(HarmHz0k ) = k + 1. Sinethe deomposition (8) shows that at least k + 1 omponents appear in theirreduible deomposition of Harmk, Frobenius theorem proves the result.De�nition 3.3 We denote by Z(k)w the unique zonal funtion in V (k)w of theform Z(k)w (z; z0) = (k+w)=2Xr=0 �r[k + w2 � r; k � w2 � r; r℄ (11)with �0 = 1 and the oeÆients �r are omputed reursively using (10).Remarks and examples� It is worth notiing that, learly Z(k)�w = Z(k)w .6



� For all k, Z(k)k (z; z0) = h(z; z0)k:� If k = 2, Z(2)0 (z; z0) = h(z; z0)h(z; z0)� 1nh(z; z).� The zonal funtions for the symmetri spae P(C n) are omputedin [11℄. They are equal to Z(k)0 (up to a normalization) beauseZ(k)0 (�z; z0) = Z(k)0 (z; z0) for all �.4 The group U(H n).4.1 Notations.The �eld of quaternion numbers is H = R + Ri + Rj + Rk, where i2 =j2 = �1, ij = �ji = k. The onjugate of q = x1 + x2i + x3j + x4k isq = x1 � x2i � x3j � x4k. The isomorphism C ' R + Ri gives H thestruture of a left C -vetor spae. We identify R + Ri with C and denotealso q = z1 + z2j with zi 2 C . Then jz2 = z2j and q = z1 � z2j.The group U(H n) := fP : P 2Mn(H ) j P �P t = Idg (12)ats by right multipliation on the spae H n whih is endowed with the usualhermitian form H(q; q0) := nXi=1 qi�q0i: (13)The mapping (with the previous notations)H ! C 2 ! R4q ! (z1; z2) ! (x1; x2; x3; x4) (14)extends to embeddings H n ! C 2n ! R4n , whih respet the hermitianand Eulidean strutures and therefore indue the inlusions of the groupsU(H n) < U(C 2n) < O(R4n). We setQ1 := f� : � 2 H j ��� = 1g: (15)The multipliative group Q1 ats by left multipliation on H n as a sub-group ofO(R4n) beause, if � 2 Q1, Trae(H(�q; �q0)) = Trae(�H(q; q0)�) =Trae(H(q; q0)). The elements of U(H n) are exatly the elements in O(R4n)whih ommute with the ation of Q1.7



4.2 Deomposition of Harmk under U(H n).We now desribe the deomposition of Harmk (in the 4n variables) underU(H n) and the zonal funtions assoiated to this deomposition. We startwith the deomposition under the ation of Q1.The multipliative group Q1 is isomorphi to SU2(C ) by� = z1 + z2j ! � z1 z2�z2 z1� : (16)Its irreduible representations are given by the spaes Wp = CXp +CXp�1Y + � � �+C Y p of homogeneous polynomials in the two variables X;Yof degree p. If we denote I(Wp)(k) the isotypi omponent of Wp in Harmk,we have Harmk = �pI(Wp)(k): (17)Sine the weights of Wp are [�p; p mod 2℄, learly the values of p forwhih I(Wp)(k) is non zero belong to [0; k mod 2℄.The group U(H n), as a subgroup of U(C 2n), preserves the deomposition(8), and, sine it ommutes withQ1, it also preserves the deomposition (17).So we have the deomposition of U(H n) modules:Harmk = Mw2[�k;k mod 2℄p2[0;k mod 2℄p�w I(Wp)(k) \ V (k)w : (18)Theorem 4.1 Let R(k)p := I(Wp)(k) \ V (k)p . For all p 2 [0; k mod 2℄, thespaes R(k)p are irreduible and pairwise non isomorphi U(H n)-modules. Forall w 2 [�p; p mod 2℄, I(Wp)(k) \ V (k)w ' R(k)p , and we have the followingdeomposition: Harmk ' �p2[0;k mod 2℄(p+ 1)R(k)p : (19)This deomposition is also desribed in [12, Setion 1.2℄, where the Youngdiagram assoiated to R(k)p is given. Sine we need a onrete desription ofthe zonal funtions and sine suh a desription leads to the deompositionin Theorem 4.1, we give another proof.Proof. (of Theorem 4.1)We �x q0, H(q0; q0) = 1 and de�ne Uq0 := Stabilizer(q0; U(H n)). Thegroup Uq0 is isomorphi to U(H n�1); the zonal funtions are the elements of8



HomUq0k . The orbits of Uq0 ating on the unit sphere are learly haraterizedby H(q; q0), so the zonal funtions are funtions of H(q; q0). However, weannot express them as polynomials in H(q; q0), H(q; q0) like in the omplexase beause these last expressions are polynomials in the 4n oordinateswith oeÆients in H and hene do not ommute. We shall more onve-niently express them in terms of the omplex hermitian form h(q; q0) onC 2n . We take the following notation:[a; b; ; d; r℄ := h(q; q0)ah(q; jq0)bh(q; q0)h(q; jq0)dh(q; q)r: (20)Proposition 4.2 The zonal funtions for U(H n) in Homk are the linearombinations of the elements [a; b; ; d; r℄ with a+b++d+2r = k. Moreover,�[a; b; ; d; r℄ =4a[a� 1; b;  � 1; d; r℄ + 4bd[a; b� 1; ; d � 1; r℄+ 4r(k � r � 1 + 2n)[a; b; ; d; r � 1℄: (21)Proof. Same proof as for Proposition 3.1.If � 2 U1, then �:[a; b; ; d; r℄ = �a+b��d[a; b; ; d; r℄. It is worth notiingthat U1 is a maximal torus of Q1. A maximal torus of U(H n) isT := fT := 0BB� �1 �1 . . . �n �n1CCA 2 U(C 2n) j �i 2 U1g: (22)Up to a hange of basis, we an assume that q0 = (1; 0; : : : ; 0) 2 H n .Then, if q = (q1; : : : ; qn) with q1 = z1+z2j, one easily omputes [a; b; ; d; r℄ =za1zb2z1z2d(Pni=1 qiqi)r, and hene T:[a; b; ; d; r℄ = �a�b�+d1 [a; b; ; d; r℄. Sothe elements [a; b; ; d; r℄ are weight vetors for respetively Q1 and U(H n).Note that the Laplae operator preserves both values a + b �  � d anda � b �  + d (from (21), or beause it ommutes with the ations of thegroups Q1, U(H n)). We denote by E(k)w;w0 the C -vetor spaeE(k)w;w0 := spanf[a; b; ; d; r℄ j a+ b+ + d = k � 2r;a+ b� � d = w; (23)a� b� + d = w0g:The Laplae operator � maps E(k)w;w0 onto E(k�2)w;w0 (one an see that � issurjetive beause Proposition 4.2 shows that if the [a; b; ; d; r℄ are ordered9



in suh a way that r dereases and then lexiographially, the matrix of �is upper triangular with non zero oeÆients on the diagonal). This spae isnot redued to f0g if and only if w and w0 are even and belong to [�k : : : k℄(k is always assumed to be even). Clearly dim(E(k)w;w0) = 12 (k�max(jwj;jw0j)2 +1)(k�max(jwj;jw0j)2 +2). We obtain that dim(ker�\E(k)w;w0) = k�max(jwj;jw0j)2 +1.One an hek thatdim(HarmUq0k ) = Xw;w02[�k;k mod 2℄ k �max(jwj; jw0j)2 = Xp2[0;k mod 2℄(p+1)2:Now we �nish the proof of Theorem 4.1. Let R be an irreduible U(H n)-subspae of R(k)p . Then, for all q 2 Q1, qR is isomorphi to R and is on-tained in one of the V (k)w . The spae C [Q1 ℄R is a Q1-subspae of I(Wp)(k),therefore it is isomorphi to the sum of opies of Wp, and hene it inter-sets non trivially all the V (k)w for w 2 [�p; p mod 2℄. Finally, there is atleast one subspae isomorphi to R in eah V (k)w with w 2 [�p; p mod 2℄,whih proves that the multipliity mR of R is at least equal to p + 1.By Frobenius theorem, dim(HarmUq0k ) = PRm2R, and we have omputedthat dim(HarmUq0k ) = Pp2[0;k mod 2℄(p + 1)2, so we an onlude that thesubspaes R(k)p are irreduible and isomorphi to I(Wp)(k) \ V (k)w for allw 2 [�p; p mod 2℄.4.3 A speial basis of HarmUq0k .We have proved in Theorem 4.1 that I(Wp)(k) ' (p + 1)R(k)p , so the spaeof zonal funtions in I(Wp)(k) is of dimension (p+ 1)2. We desribe in thissetion an algorithmi method that omputes a basis of HarmUq0k , on whihthe ation of Q1 is expliit.We need to introdue a ertain hermitian produt on Homk. It is de�nedon the monomials in the 4n-indeterminates xi of the same degree k by:< x�; x� >:= Æ�;��k���1 (24)where �k�� = k!�1!:::�4n! is the multinomial oeÆient. It has the nie prop-erty to be U(C 4n)-invariant (see [22℄). Therefore the irreduible O(R4n)-subspae Harmk is orthogonal to (P4ni=1 x2i )Homk�2 beause the latter hasno onstituent isomorphi to the dual (Harmk)� �= Harmk of Harmk.10



Lemma 4.3 Let a; b; ; d; a0; b0; 0; d0; r0 2 Z�0 with a+ b+ + d = a0 + b0 +0 + d0 + 2r0 = k. Then< [a; b; ; d; 0℄; [a0 ; b0; 0; d0; r0℄ >= 8><>:2kh(q0;q0)k�r0( r0a�a0)( ka;b;;d) if (a� a0 = � 0 � 0b� b0 = d� d0 � 00 otherwise :Proof. We �rst assume that h(q0; q0) = 1. Then, we an replae q0 by q0uwith u 2 U(C 2n), and assume that q0 = (1; 0; : : : ; 0) 2 C 2n . If (z1; : : : ; z2n)are the omplex oordinates of q, then [a; b; ; d; r℄ = za1zb2z1z2d(P2ns=1 zszs)r.If zs = x2s�1 + x2si, [a; b; ; d; r℄ = (x1 + x2i)a(x3 + x4i)b(x1 � x2i)(x3 �x4i)d(P4ns=1 x2s)r. LetU := 0BBB� 1 1i �i 1 1i �i p2 . . . p21CCCA 2M4n(C )then UU t = 2Id4n and hene 1p2U 2 U4n(C ). If we let (y1; : : : ; y4n) =(x1; : : : ; x4n)U , one has [a; b; ; d; r℄ = ya1yb3y2yd4(y1y2 + y3y4 +Ps�5 y2s=2)r .The omputation of < [a; b; ; d; 0℄; [a0 ; b0; 0; d0; r0℄ > follows from the fatthat this hermitian produt is U(C 4n)-invariant and from the expression(24).In the general ase, q0 = �(1; 0; : : : ; 0) with � 2 C and the funtion[a; b; ; d; r℄ is multiplied by �a+d�b+. An easy omputation shows that theprevious hermitian produt is multiplied by (��)k�r0 = h(q0; q0)k�r0 .Remark 4.4 With the Lemma 4.3, we are able to ompute the hermitianprodut of any two elements of HarmUq0k : suh funtions are linear om-binations of some [a; b; ; d; r℄ from Proposition 4.2, and are orthogonal tothe elements of h(q; q)Homk�2 so, in one of them we an ignore the terms[a; b; ; d; r℄ with r 6= 0.Reall that Wp is the C -vetor spae of homogeneous polynomials ofdegree p in two variables. It is equipped with the same hermitian produt,given by < Xp�aY a;Xp�bY b >= Æa;b�pa��1, whih is invariant under theation of SU2(C ). 11



Proposition 4.5 There exists an essentially unique basisfZ(k)p;w;w0gw;w02[�p;p mod 2℄ of the zonal funtions of I(Wp)(k) suh that :� Z(k)p;w;w0 2 E(k)w;w0� fZ(k)p;w;w0gw02[�p;p mod 2℄ is a basis of I(Wp)(k) \ V (k)w� For all w0 the set fZ(k)p;w;w0gw2[�p;p mod 2℄ is a basis of a Q1-spae isomor-phi to Wp, suh that the mapping Z(k)p;w;w0 ! X p+w2 Y p�w2 is an isomorphismof Q1-modules, and an isometry for the hermitian produts <;>.The uniqueness of this basis holds up to the hange Z(k)p;w;w0 ! aw0Z(k)p;w;w0with aw0 2 U1.Proof. We assume by indution that we have proved the proposition forI(Wk)(k), : : : , I(Wp+2)(k). We have previously seen that dim(ker�\E(k)p;w0) =(k � p)=2 + 1 for w0 2 [�p; p mod 2℄. We have already onstruted inthis spae (k � p)=2 elements Z(k)t;p;w0 for t 2 [k; p + 2 mod 2℄. It shouldbe notied that Z(k)p;p;w0 must be orthogonal to them beause it belongs toa di�erent isotypi omponent. So the onditions: Z(k)p;p;w0 2 ker� \ E(k)p;w0,< Z(k)p;p;w0; Z(k)t;p;w0 >= 0 for all t 2 [k; p+2 mod 2℄, and< Z(k)p;p;w0; Z(k)p;p;w0 >= 1determine the elements Z(k)p;p;w0 up to the multipliation by a omplex num-ber of norm 1. For eah w0 �xed, Z(k)p;p;w0 is a highest weight vetor of theQ1-module spanned by Z(k)p;p;w0, whih therefore is isomorphi to Wp. Upto an element of U1, Z(k)p;p;w0 is sent to Xp, and we de�ne Z(k)p;w;w0 to be thepreimage of X p+w2 Y p�w2 by this isomorphism. The element Z(k)p;w;w0 must beof the form �:Z(k)p;p;w0 with � 2 Q1, hene it remains a zonal funtion, henea linear ombination of some [a; b; ; d; r℄. We must have a+ b�  � d = wbeause it reets the fat that X p+w2 Y p�w2 is a weight vetor for the weightw, and a� b� + d = w0 beause the ations of Q1 and U(H n) ommute.We end this subsetion with some remarks on the algorithmi omputa-tion of the basis desribed in Proposition 4.5. The next lemma makes morepreise the ation of Q1 on the [a; b; ; d; r℄.Lemma 4.6 Let � 2 Q1. For all [a; b; ; d; r℄, �:[a; b; ; d; r℄ is a C -linearombination of elements [a0; b0; 0; d0; r0℄, with r0 = r.Proof. We an write � = z1 + z2j. Then h(�q; �q) = h(q; q), h(�q; q0) =z1h(q; q0) + z2h(jq; q0) and h(jq; q0) = �h(q; jq0). We replae in the ex-12



pression (20) of [a; b; ; d; r℄ and obtain a linear ombination of elements[a0; b0; 0; d0; r0℄, with r0 = r.We assume that we have onstruted the fZ(k)t;w;w0gw;w02[�t;t mod 2℄ for allt 2 [k; p+2 mod 2℄. We now wish to ompute the fZ(k)p;w;w0gw;w02[�p;p mod 2℄.We �rst determine the Z(k)p;p;w0 (up to a multipliative fator in U1) as de-sribed in the proof of Proposition 4.5. Sine Z(k)p;w;w0 is of the form �:Z(k)p;p;w0,from Lemma 4.6 it is a linear ombination of [a; b; ; d; r℄ with r � (k�p)=2.One an then hek that the spae of funtions in ker� \E(k)w;w0, whih areorthogonal to all the Z(k)t;w;w0 for t 2 [k; p + 2 mod 2℄ and whih have theadditional property that r � (k � p)=2, is one-dimensional. Let Z be agenerator of this spae, we know that Z(k)p;w;w0 = �Z for some omplex num-ber �. In order to ompute �, we use the ation of � = (1 � j)=p2. Oneeasily omputes that < �:Xp;X p+w2 Y p�w2 >= 2�p=2. It remains to alulate< �:Z(k)p;p;w0; Z >, whih is easy with Lemma 4.3 and the rules desribed inthe proof of Lemma 4.6.Remarks and examples� Easy rules link Z(k)p;w;w0 with Z(k)p;�w;w0 and Z(k)p;w;�w0. The expression ofZ(k)p;�w;w0 is obtained from Z(k)p;w;w0 by replaing eah term [a; b; ; d; r℄ by(�1)a+[d; ; b; a; r℄, and the expression of Z(k)p;w;�w0 by (�1)a+[b; a; d; ; r℄.� If k = 2, Z(2)0;0;0(q; q0) = H(q; q0)H(q; q0)� 1nH(q; q), and:8>>>><>>>>:Z(2)2;2;2(q; q0) = 12h(q; q0)2Z(2)2;2;0(q; q0) = h(q; q0)h(q; q0)Z(2)2;0;2(q; q0) = 12h(q; q0)h(q; jq0)Z(2)2;0;0(q; q0) = �12h(q; q0)h(q; q0) + 12h(q; jq0)h(q; jq0):� The zonal funtions for the symmetri spae P(H n) are omputedin [11℄. They are equal to Z(k)0;0;0 (up to a normalization) beauseZ(k)0;0;0(�q; q0) = Z(k)0;0;0(q; q0) for all � (note that these funtions or-respond to the only irreduible omponent with multipliity equal toone). 13



� In view of appliations to latties, we are lead to onsider sums of thetype Px2S Z(x) where S is losed for the left multipliation by some�nite group U < Q1 (see Setion 5; we may onsider latties with anhermitian struture over a maximal order of a quaternion �eld de�nedover Q , S is the set of lattie vetors of given norm, and U is the groupof units of the maximal order). In that ase, we need only onsiderthe zonal funtions whih are U -invariant. Proposition 4.2 shows thatwe only need to know a basis for the polynomials of degree p whihare invariant for the ation of U < SU2(C ), and transfer this basisthrough the Q1-isomorphism expliitly given. For example, the �rstnon trivial invariant for the groupM� (29) is the degree 6 polynomialX5Y � XY 5. So we take aount of one zonal funtion in degree 2and 4 (namely Z(2)0;0;0 and Z(4)0;0;0), and of 4+1 zonal funtions in degree6 (namely Z(6)0;0;0, and the Z(6)6;4;w0 � Z(6)6;�4;w0 for w0 2 [0; 6 mod 2℄).5 Appliations to lattiesWe onsider latties with an hermitian struture over a �eld K, whih iseither a totally imaginary quadrati �eld, or a quaternion �eld over Q , ram-i�ed at 1.We take the following notations: in the quadrati ase, K = Q(p�d)where d > 0 and �d is the disriminant of K. The ring of integers of Kis denoted OK and its unit group O�K . The omplex onjugation on Kis denoted x ! x. In the quaternioni ase, we again denote OK a �xedmaximal order of K, O�K its group of units and x! x the onjugation. Thedisriminant of OK is denoted d.The leftK-vetor spaeKn is endowed with the hermitian form hK(z; z0) :=Pni=1 ziz0i. An hermitian lattie L over K is an OK -submodule of Kn of fullrank. Its hermitian dual is de�ned byL�hK := fx : x 2 Kn j hK(x;L) � OKg: (25)The lattie L is also a Eulidean lattie when onsidered as a Z-module,for the salar produt x � y := TraeK=Q(hK(x; y)) and of rank 2n in thequadrati ase and 4n in the quaternioni ase (in this last ase, TraeK=Qis the redued trae). We set LZ := (L; x � y). The dual of LZ and thehermitian dual of L are related by:L�Z= D�1K L�hK (26)14



where D�1K is the inverse di�erent of OK , i.e. the dual with respet to theredued trae. In partiular, if L is hermitian unimodular, i.e. L�hK = Land DK is a prinipal ideal, then LZ is d-modular as an Eulidean lattie,in the sense of [16℄.Suh latties have been widely studied ([1℄, [2℄, [5℄, [9℄, [21℄). We shallbe onerned with numerial appliations in the ases: K = Q(p�3), andK = Q2;1 = Q +Q i+Q j +Qk, where i2 = j2 = �1, ij = �ji = k (in thesetwo ases the order of the unit groups are the largest possible, whih allowseasier omputations as we shall see later).In the ase K = Q(p�3), d = 3. We denote w := (�1 +p�3)=2. Thehermitian unimodular latties have been lassi�ed up to the real dimension24 by W. Feit [9℄. They are speial ases of 3-modular latties, for whihthe theta series �L is a modular form for the Frike group ��(3). As shownin [16℄, this property leads to an upper bound for the minimum of suh alattie: min(L) � 2[n=6℄ + 2 (27)(here n is the rank over K = Q(w)). A lattie is said to be extremal if itsminimum attains this bound; the Coxeter-Todd lattie K12 is an example ofan hermitian unimodular lattie whih is extremal. Of ourse the dimensionswhih are multiples of 6 are the most interesting ones. Feit's lassi�ationhas shown that there is no extremal hermitian unimodular lattie for n = 12.However a 3-modular 24-dimensional extremal Z-lattie was disovered in[14℄. This lattie has the struture of a Z[w℄-module but is not hermitianunimodular.We prove in Theorem 5.6 that there are no extremal hermitian unimod-ular latties for the relative dimension n = 24 (and we also reover Feit'sresult for dimension 12).In the ase K = Q2;1 , the maximal orders are onjugate to the Hurwitzorder M: M = Z[1; i; j; w := �1 + i+ j + k2 ℄: (28)Its group of units isM� = f�1;�i;�j;�k; �1� i� j � k2 g (29)and has 24 elements. As an abstrat group, it is isomorphi to SL2(3) �=2:Alt4. The hermitian unimodular latties over the Hurwitz order are speial15



ases of 2-modular latties, and therefore satisfy the estimatemin(L) � 2[n=4℄ + 2 (30)(here n is the rank over Q2;1). They have been lassi�ed up to the relativedimension 8 (see [1℄ and [2℄). This lassi�ation has shown that none of thelatties of dimension 8 reah the bound (30).5.1 Root latties.Let L be a lattie whih is integral over OK , meaning that L � L�hK . Weset R(L) := fx : x 2 L j hK(x; x) = 2g: (31)The elements of R(L) are alled the roots of L, and are the norm 4elements in LZ (note that hK(x; x) is always in Z). To x 2 R(L) we anassoiate the reetion �x(y) := y � hK(x; y)x (32)whih preserves the lattie L. If U(L) denotes the group of unitary trans-formations preserving L, the reetions �x generate a subgroup W (L) ofU(L) whih is a �nite, omplex or quaternioni, reetion group. Just likein the ase of the Eulidean root latties, one easily proves that a lattieL spanned by its roots is the orthogonal sum of indeomposable sublattiesspanned by their roots, and that, if the sublattie spanned by the roots isindeomposable, then the group W (L) is irreduible.The omplex irreduible �nite reetion groups have been lassi�ed byShephard and Todd [20℄ and their invariant latties are studied in [15℄. Tosuh a group, one an assoiate an essentially unique redued root system(see [15, De�nition 19℄). If L is indeomposable and is spanned by R(L),then R(L) is a redued K-root system for W (L) in the sense of [15℄, withthe additional property that all the roots have the same length.The quaternioni irreduible �nite reetion groups are lassi�ed by A.M. Cohen [4℄, together with their root systems. In the quaternioni ase, ithappens that the root system is not uniquely determined by the group (see[4℄), but not in the ases we are dealing with (the groups are de�ned overQ2;1).
16



Proposition 5.1 Let R � fx : x 2 C n or H n j h(x; x) = 2g be a �nite setsuh that the reetions �x, x 2 R generate a �nite irreduible subgroup ofU(C n) (or of U(H n)) and at transitively on R. ThenXr2R h(x; r)h(y; r) = 2jRjn h(x; y): (33)Proof. Let G denote the group generated by the reetions assoiated to R.Let �(x; y) = Pr2R h(x; r)h(y; r). Clearly � is a non-degenerate hermitianform whih is G-invariant; sine G is irreduible, it must be a multiple ofh(x; y). The multipliative fator is omputed by appliation of the Laplaeoperator �.De�nition 5.2 By analogy with the Eulidean ase (see [22, Proposition5.5℄), we de�ne the Coxeter number of a K-root system R to beh(R) := 2jRjjO�K jn:Remark 5.3 Equation (33) an be read also as: Pr2R Z(2)0 (x; r) = 0 (re-spetively Pr2R Z(2)0;0;0(x; r) = 0 in the quaternioni ase).In the omplex ase, if moreover R is losed for the multipliation by thesixth roots of unity, whih is the ase if R = R(L) and L is a hermitianlattie over K = Q(p�3), then Pr2R Z(2)2 (x; r) = 0 holds trivially; hene Ris a spherial 2-design in the sense of [22℄.In the quaternioni ase, the same result holds if R is losed under multi-pliation by a group of units U , whih has no harmoni polynomial invariantsof degree 2. This is the ase for the group M� (the �rst non trivial invariantof M� ours at degree 6).In view of the previous remark, we list from [15℄, [9℄ and [4℄ the possibleirreduible root systems over Q(p�3) and over Q2;1 whih an our as theroots of an integral lattie. We shall denote by LR the lattie spanned by Rand by det(LR) its determinant as an OK-lattie.If R � Rn is an irreduible Eulidean root system with roots of equallength, namely if R is one of fAn;Dn; E6; E7; E8g, then O�KR := fur; u 2O�K ; r 2 Rg is one of them and jO�KRj = jO�K jjRj=2.The other irreduible root systems over Q(p�3) whih an our as theroots of an integral lattie are: 17



Table 1:R jRj h(R) W (R) det(LR)Z[w℄�An 3n(n+ 1) n+ 1 G1(n) ' Sn+1 n+ 1Z[w℄�Dn 6n(n� 1) 2(n� 1) G2(2; 2; n) 4Dn(1�w) 9n(n� 1) 3(n� 1) G2(3; 3; n) (1� w)2R5 270 18 G33 2R6 756 42 G34 1Z[w℄�E6 216 12 G35 3Z[w℄�E7 378 18 G36 2Z[w℄�E8 720 30 G37 1� Dn(1�w) := f(u; v; 0; : : : ; 0)� 2 C n j u; v 2 Z[w℄�; u+ v � 0 mod 1�wg:� R5 := Z[w℄�A5 [ f �11�w (1; w;w2; 1; w;w2)�g:� R6 := D6(1 � w) [ f �11�w (u1; u2; u3; u4; u5; u6); ui 2 Z[w℄� j ui � 1mod (1� w) and P6i=1 ui � 0 mod 3g:where (x1; : : : ; xn)� denotes any permutation of (x1; : : : ; xn).The lattie spanned by R6 is the Coxeter-Todd lattie K12. Table 1summarizes the properties of these root systems.The irreduible root systems over Q2;1 whih an our as the roots ofan integral lattie are, apart from the M�R where R is a Eulidean rootsystem:� Dn(1�w) := f(u; v; 0; : : : ; 0)� 2 H n j u; v 2M�; u+v � 0 mod 1�wg:� Dn(1+ i) := f(u; v; 0; : : : ; 0)� 2 H n j u; v 2M�; u+v � 0 mod 1+ ig:� The root systems S1, S3 and U5 given in Table II of [4℄.The lattie spanned by S3 is the Barnes-Wall lattie BW16, the onespanned by S1 is a sublattie of index 1 + i of the previous one, and theone spanned by U5 is a hermitian unimodular lattie of quaternioni rank5. Table 2 summarizes the properties of these root systems.Feit's lassi�ation of the Z[w℄-hermitian unimodular latties of relativedimension 12 shows in partiular that the roots of suh a lattie span the18



Table 2:R jRj h(R) det(LR)M�An 12n(n+ 1) n+ 1 n+ 1M�Dn 24n(n� 1) 2(n� 1) 4Dn(1� w) 36n(n� 1) 3(n� 1) (1� w)2Dn(1 + i) 24n(4n� 3) 2(4n� 3) (1 + i)2M�R5 1080 18 2M�R6 3024 42 1M�E6 864 12 3M�E7 1512 18 2M�E8 2880 30 1S1 864 18 (1 + i)2S3 4320 90 1U5 3960 66 1whole spae, just like for the Niemeier latties of minimum 2. B. Venkovhas shown that one ould prove a priori that an even unimodular lattie ofdimension 24 has a root system either empty or of rank 24, and that in thislast ase it should belong to a limited set of possibilities beause the Cox-eter number of its irreduible omponents have to be equal. His argumentrelies on the use of theta series with harmoni oeÆients. We prove herea ompletely analogous result for the Z[w℄-unimodular latties of relativedimension 12 and for the M-unimodular latties of relative dimension 8.Proposition 5.4 Let L be a Z[w℄-hermitian unimodular lattie (respetivelya M-hermitian unimodular lattie) of dimension n. If n � 12 (respetivelyn � 8) and R(L) 6= ;, then R(L) has rank n, and the irreduible root systemsourring in R(L) have the same Coxeter number.Proof. We briey sketh the proof, sine it is essentially the same as theone in [5, Chap 18, Prop. 2℄. The study of the theta series with spherialoeÆients for the modular latties ([3℄, Theorem 3.1 and Proposition 3.2)shows that, in this range of dimension, we haveXr2R(L)P (r) = 0 (34)for all P 2 Harm2. We then take P (x) = Z(2)0 (x; y) or P (x) = Z(2)0;0;0(x; y)and obtain (here h(x; y) stands for the omplex or quaternioni hermitian19



form on R 
Q Kn): Xr2R(L) h(y; r)h(y; r) = 2jRjn h(y; y): (35)Taking y 2 R(L)?, we see that y = 0, and taking y in an irreduibleomponent of the root system, we see from Proposition 5.1 that its Coxeternumber is independent of the hosen omponent.Remark 5.5 The previous proposition gives a strong onstraint on the pos-sible root systems for unimodular latties. Of ourse it does not say anythingon the eventuality that R(L) = Rk0 for some R0.In the ase of K = Q(w) and n = 12, and if we assume that R(L)ontains at least two di�erent types of irreduible root systems, from theinspetion of Table 1, R(L) is one of the following: Z[w℄�E7 ? R5 orZ[w℄�A8 ? D4(1 � w). It remains to study the e�etive existene of Z[w℄-hermitian unimodular latties of dimension 12 with suh roots. Feit's lassi-�ation [9℄ proves that in both ases one and exatly one suh lattie exists.In the ase of K = Q2;1 and n = 8, we are left with three possible rootsystems, D3(1 + i) ? M�U5, M�A5 ? D3(1 � w) and M�D6 ? D2(1 + i).It is proved in [2℄ that suh latties do exist and are unique.5.2 Extremal hermitian unimodular latties.The property of a lattie L to be extremal fores its theta series to beuniquely determined. It also gives a onstraint on the Jaobi theta seriesassoiated to the lattie, whih, if the dimension is not too large, determinesit uniquely. In [3℄, we make use in the Eulidean ase of a method involvingthe properties of the theta series with spherial oeÆients to ompute suhJaobi theta series. It involves the zonal funtions for the orthogonal groupating on the unit sphere, expressed in terms of the Gegenbauer polynomials.In this setion, we apply the same method but replae the polynomialsused in [3℄ by the zonal funtions for the unitary groups, the omputation ofwhih is explained in Setions 3 and 4. Sine the general method is explainedin details in [3℄, we shall not give here more information about it.Let L be a hermitian lattie over K with the notations of the beginningof Setion 5. Our goal is the omputation of the following numbers:Nm;z(y) := ardfx; x 2 L j hK(x; x) = m and hK(x; y) = zg (36)20



for ertain hoies of y (basially, y is a minimal vetor of L).We denote L2m := fx; x 2 L j hK(x; x) = mg (so that the index of Lrefers to the Eulidean norm x �x = 2hK(x; x)). The oeÆient of qm in thespherial theta series �L;P :=Px2L P (x)qx�x=2 equals the sumXx2L2m P (x): (37)Sine the set L2m is invariant under left multipliation by the elementsof the �nite group O�K , whih at as a subgroup of the orthogonal group ofthe whole spae, we an restrit our attention to the elements of HarmO�Kk .If the group O�K is redued to f�1g, it only means that we onsider thepolynomials of even degree. In the general ase, the zonal funtions whihare invariant under the ation of a given subgroup U of U1 or of Q1 are easyto ompute. In the quadrati ase, it means that we need to onsider onlythe Z(k)w with w � 0 mod jU j. In the quaternioni ase, see the remarkfollowing Proposition 4.5.5.2.1 K = Q(p�3).We onsider an extremal lattie L of dimension n = 6n0 a multiple of 6. LetS(L) denote the set of its minimal vetors, whih have norm 2m = 2n0 + 2(from (27)). The omputation of the oeÆients of the theta series of suhlatties does not show any ontradition with their existene until n0 = 63([19℄). However, Feit's lassi�ation has shown that no extremal lattieexists for n0 = 2 and none of them are onstruted for higher n0.It turns out that the numbers Nm;z(y) (36) for y 2 S(L) are independentof the hoie of y up to n = 24. It is worth notiing that only a �nitenumber of z an satisfy Nm;z(y) 6= 0, and that Pz Nm;z(y) = jS(L)j the�rst non-zero oeÆient of the theta series of L. Table 3 gives the results ofthe omputation of these numbers for the dimensions 12, 18, 24. We haveomitted the value Nm;m(y) = 6 and we have taken z modulo Z[w℄� sinelearly Nm;z(y) = Nm;uz(y) for all u 2 Z[w℄�.Theorem 5.6 Extremal Z[w℄-hermitian unimodular latties of dimension24 annot exist.Proof. The numbers found in Table 3 annot orrespond to a lattie, al-though they are integral and positive, beause they do not satisfy a ertainonvexity ondition (analogous to the one used in [3, Prop. 7.1℄) that weexplain now: 21



Table 3: Computation of Nm;z(y) for extremal unimodular Z[w℄-latties, fory 2 S(L) and for 2m = min(L).dim(L) min(L) Nm;0 Nm;1 Nm;1�w Nm;2 Nm;1+3w Nm;3+w12 6 1496 2673 19818 8 31569 67456 6528 217624 10 598644 1461075 217350 75900 2875 2875We use the hermitian produt on Homk de�ned in (24), whih has theproperty that < (x �y)k; h >= h(y) for all h 2 Harmk (see [22℄). We onsiderthe element Hk := Py2S(L)(x � y)k and its orthogonal projetion Hk;w onV (k)w . The positivity onditions: < Hk;w;Hk;w >� 0 must hold; on the otherhand, the next lemma shows that < Hk;w;Hk;w > is a linear ombination ofthe numbers from Table 3.Lemma 5.7 Let S � S2n�1 be a �nite subset of the unit sphere. Let Hk :=Py2S(x � y)k and let Hk;w be its orthogonal projetion on V (k)w . Then< Hk;w;Hk;w >= �k;w Xy;y02S Z(k)w (y; y0) (38)where �k;w 2 R and has the same sign as P(k+w)=2r=0 �r with the notations ofDe�nition 3.3.Proof. Clearly, for y0 �xed, the projetion p of (x � y0)k onto V (k)w is a zonalfuntion so it is equal to �Z(k)w (x; y0) for some � 2 C . Sine< p;Z(k)w (x; y0) >=< (x � y0)k; Z(k)w (x; y0) >= Z(k)w (y0; y0), we an alulate� = Z(k)w (y0; y0)= < Z(k)w (x; y0); Z(k)w (x; y0) >, whih is independent of y0 2S2n�1 and has the sign of Z(k)w (y0; y0) = Pr �r. Hene < Hk;w;Hk;w >=<Hk;Hk;w >=Py2S Hk;w(y) = �Py;y02S Z(k)w (y; y0).We onlude the proof of the theorem: sine Z(k)w (y; y0) is a funtion ofh(y; y0), the sum expressing < Hk;w;Hk;w > is a linear ombination of thenumbers Nm;z(y). In the ase under onsideration, we take Z(6)6 (y; y0) =h(y; y0)6 whih gives a negative result, and therefore ontradits the exis-tene of suh a lattie. 22
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