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Signal reconstruction from the magnitude of
subspace components

Christine Bachoc and Martin Ehler

Abstract—We consider signal reconstruction from the norms
of subspace components generalizing standard phase retrieval
problems. In the deterministic setting, a closed reconstruction
formula is derived when the subspaces satisfy certain cubature
conditions, that require at least a quadratic number of subspaces.
Moreover, we address reconstruction under the erasure of a
subset of the norms; using the concepts of p-fusion frames and
list decoding, we propose an algorithm that outputs a finite list of
candidate signals, one of which is the correct one. In the random
setting, we show that a set of subspaces chosen at random and
of cardinality scaling linearly in the ambient dimension allows
for exact reconstruction with high probability by solving the
feasibility problem of a semidefinite program.

Index Terms—phase retrieval, Grassmannian cubature, fusion
frame.

I. INTRODUCTION

The phase retrieval problem, which refers to the task of
recovering a signal from the absolute values of linear mea-
surements, has received much attention recently: see [7], [8],
[16], [18], [21], [50] to mention only few. We are dealing with
a generalization, in which the measurements consist of norms
of projections of the signal onto k-dimensional subspaces. For
k = 1, our setting reduces to the classical phase retrieval
problem.

Here, we pose the following questions: Under which prop-
erties of the subspaces can we reconstruct the original signal
from the norms of its k-dimensional subspace components by
means of a closed formula? Also, given that requiring a closed
formula for reconstruction is too costly, can we develop strate-
gies to reduce the number of required subspace components,
under a numerical reconstruction? We shall provide positive
xanswers for a deterministic choice and a random choice of
subspaces.

Deterministic setting: Given k-dimensional linear subspaces
{Vj}nj=1 in Rd, we aim to reconstruct the signal x ∈ Rd from
{‖PVj (x)‖}nj=1, where PVj denotes the orthogonal projector
onto Vj . Clearly, x can only be recovered up to its sign.
In [15], several characterizations of subspaces such that the
mapping {±x} 7→ {‖PVj (x)‖}nj=1 is injective are given, see
also [6]. Our aim is to showcase properties of the subspaces
that moreover allow for an explicit reconstruction formula.

If there are positive weights {ωj}nj=1 such that
{(Vj , ωj)}nj=1 yields a so-called cubature of strength 4
as defined in Section II-C of the present paper, then we shall
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obtain a closed reconstruction formula for xx∗ enabling us
to extract ±x. Thus, we extend the 1-dimensional results in
[7] to k-dimensional projections. Note that the authors in
[7] require cubatures for the projective space whose weights
are ωj = 1/n, i.e., so-called projective designs. In practice,
however, the choice of subspaces may underlie restrictions
that prevent them from being a design. Therefore, our results
are a significant improvement for 1-dimensional projections
already.

To address subspace erasures, we suppose that we are only
given the values of n − p norms and we need to reconstruct
the missing p norms. Notice that our input are not the
subspace components but their norms, as opposed to signal
reconstruction under the erasures discussed in [13], [42], [43].
If there are positive weights {ωj}nj=1 such that {(Vj , ωj)}nj=1

forms a tight p-fusion frame as recently introduced in [5],
then the computation of the erased norms up to permutations
amounts to solving a system of algebraic equations. We can
then reconstruct ±x from the entire set of n magnitude
subspace components. In other words, we found conditions on
subspaces, so that we can compute a finite list of candidate
signals, one of which is the correct one. The latter is a form
of list decoding as introduced in [34].

The limit of this deterministic approach stands in the
required number of subspaces. Indeed, it is known that the
cardinality of a cubature formula of strength 4 scales at least
quadratically with the ambient dimension d. In the random
setting, it will be possible to reduce the number of subspaces
to linear size:

Random setting: We shall extend to k-dimensional subspaces
the results obtained for k = 1 in a recent series of papers [18],
[29], [17]. In [18] it was shown that semidefinite programming
yields signal recovery with high probability when the 1-
dimensional subspaces are chosen at random and that the
cardinality of the subspaces can scale linearly in the ambient
dimension up to a logarithmic factor. Numerical stability
in the presence of noise was also verified. The underlying
semidefinite program was shown in [29] to afford (with high
probability) a unique feasible solution, and the logarithmic
factor was removed in [17].

Our proof for k-dimensional subspaces (see Theorem V.1)
follows the approach in [17], [18]. We verify that randomly
selected subspaces satisfy a near isometry property and ensure
the existence of a so-called dual certificate, which implies that
the solution of the semidefinite program indeed recovers the
signal with high probability. However, the generalization to k-
dimensional projections raised additional difficulties. Indeed,
the case k = 1 relies on random vectors whose entries are
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i.i.d. Gaussian modeling the measurements. For k > 1, we
must deal with measurement matrices having orthogonal rows,
so that entries from one row are stochastically dependent on
those in any other row. Hence, the extension from k = 1 to
k > 1 is not obvious and requires special care. In particular,
we apply weak convergence results from random matrix theory
to derive the lower estimate for the near isometry property,
see our Proposition V.7. Moreover, we present numerical
experiments to illustrate the practical feasibility of the method
in small dimensions.
Complex case: Although we present our results for real
signals and subspaces exclusively, the agenda can also be
followed in the complex setting. We shall discuss the required
modifications at the end of the present paper.

We would like to mention that signal reconstruction from
phaseless measurements is a common problem in optical
physics such as X-ray crystallography and diffraction imag-
ing, where coherent light sources correspond to magnitude
measurements of Fourier frame coefficients. Crystal twinning
[30], on the other hand, involves signal reconstruction from
averaged diffraction patterns by means of incoherent addition
of k wavefields, where usually k = 1, 2, 3 [35]. Indeed,
incoherent light sources involve (weighted) sums of k squared
moduli of Fourier coefficients. The latter is essentially the
squared norm of the orthogonal projection onto the associated
k-dimensional subspace. Hence, our mathematical setting of
rank-k orthogonal projectors, where k is independent of the
ambient dimension d, relates to measurements in optical
physics. Nonetheless, we should mention that we do not focus
on Fourier type measurements and do not incorporate any add
itional information and side constraints that are commonly
available in optical physics measurements and that are used
in standard reconstruction algorithms, see [36], [38] and also
[10].
Outline: In Section II, we recall fusion frames, state the
phase retrieval problem, and introduce tight p-fusion frames
and cubature formulas. We present the closed reconstruction
formula in Section III and our reconstruction algorithm in
presence of erasures in Section IV. The random subspace
selection is addressed in Section V. Numerical experiments are
presented in Section VI, and we discuss the complex setting
in Section VII.

II. FUSION FRAMES, PHASE RETRIEVAL, AND CUBATURE
FORMULAS

A. Fusion frames and the problem of reconstruction without
phase

Let Gk,d = Gk,d(R) denote the real Grassmann space, i.e.,
the k-dimensional subspaces of Rd. Each V ∈ Gk,d can be
identified with the orthogonal projector onto V , denoted by
PV . Let {Vj}nj=1 ⊂ Gk,d and let {ωj}nj=1 be a collection of
positive weights. Then {(Vj , ωj)}nj=1 is called a fusion frame
if there are positive constants A and B such that

A‖x‖2 ≤
n∑
j=1

ωj‖PVj (x)‖2 ≤ B‖x‖2, for all x ∈ Rd, (1)

cf. [20]. The condition (1) is equivalent to

A ≤
n∑
j=1

ωj〈Px, PVj 〉 ≤ B, for all x ∈ Sd−1, (2)

where Px is short for PxR and 〈Px, PVj 〉 := trace(PxPVj ) is
the standard inner product between self-adjoint operators. If
A = B, then {(Vj , ωj)}nj=1 is called a tight fusion frame, and
any signal x ∈ Sd−1 can be reconstructed from its subspace
components by the simple formula

x =
1

A

n∑
j=1

ωjPVj (x). (3)

If, however, instead of {PVj (x)}nj=1 we only observe the
norms {‖PVj (x)‖}nj=1 and, worse, we even lose some of
these norms, can we still reconstruct x? Clearly, x can be
determined up to its sign at best. In the present paper, we find
conditions on {(Vj , ωj)}nj=1 together with a computationally
feasible algorithm that enable us to determine ±x.

Remark II.1. We want to point out that 1-bit compressed
sensing, cf. [14], [45], deals with a problem that is comple-
mentary to phase retrieval. There, the magnitudes are unknown
and signals are reconstructed from the signs of the frame
coefficients.

B. Tight p-fusion frames

Let {Vj}nj=1 ⊂ Gk,d and let {ωj}nj=1 be a collection of
positive weights and p a positive integer. Then {(Vj , ωj)}nj=1

is called a p-fusion frame in [5] if there exist positive constants
Ap and Bp such that

Ap‖x‖2p ≤
n∑
j=1

ωj‖PVj (x)‖2p ≤ Bp‖x‖2p, for all x ∈ Rd,

(4)
see also [33] for related concepts. If Ap = Bp, then
{(Vj , ωj)}nj=1 is called a tight p-fusion frame. As with (1)
and (2), the condition (4) is equivalent to

Ap ≤
n∑
j=1

ωj〈Px, PVj 〉p ≤ Bp, for all x ∈ Sd−1. (5)

If {(Vj , ωj)}nj=1 is a tight p-fusion frame, then it is also a
tight `-fusion frame for all integers 1 ≤ ` ≤ p, and the tight
`-fusion frame bounds are

A` =
(k/2)`
(d/2)`

n∑
j=1

ωj , (6)

where we used (a)` = a(a+1) · · · (a+`−1), cf. [5]. We also
refer to [5] for constructions and general existence results.

C. Cubature formulas

The real orthogonal group O(Rd) acts transitively on Gk,d,
and the Haar measure on O(Rd) induces a probability measure
σk on Gk,d. Let L2(Gk,d) denote the complex valued functions
on Gk,d, whose squared module is integrable with respect to
σk. The complex irreducible representations of O(Rd) are
associated to partitions µ = (µ1, . . . , µd), µ1 ≥ . . . ≥ µd ≥ 0,
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denoted by V µd , cf. [39]. Let l(µ) be the number of nonzero
entries in µ so that

L2(Gk,d) =
⊕
l(µ)≤k

H2µ
k,d, where H2µ

k,d ' V
2µ
d , (7)

see [39]. The space of polynomial functions on Gk,d of degree
bounded by 2p is

Pol≤2p(Gk,d) :=
⊕

l(µ)≤k, |µ|≤p

H2µ
k,d, (8)

and we additionally define the subspace

Pol1≤2p(Gk,d) :=
⊕

l(µ)≤1, |µ|≤p

H2µ
k,d. (9)

These spaces are explicitly given by

Pol≤2p(Gk,d)=span{V 7→〈Px1
, PV〉· · ·〈Pxp , PV〉 :{xi}

p
i=1⊂S

d−1},
Pol1≤2p(Gk,d)=span{V 7→〈Px, PV〉p :x ∈ Sd−1},

cf. [5, Remark 5.4, proof of Theorem 5.3]. Let {Vj}nj=1 ⊂ Gk,d
and {ωj}nj=1 be a collection of positive weights normalized
such that

∑n
j=1 ωj = 1. Then {(Vj , ωj)}nj=1 is called a

cubature of strength 2p for Gk,d if∫
Gk,d

f(V )dσk(V ) =

n∑
j=1

ωjf(Vj) for all f ∈ Pol≤2p(Gk,d).

(10)
Grassmannian designs, i.e., cubatures with constant weights,
have been studied in [1], [2], [3], [4]. For existence results on
cubatures and the relations between p and n, we refer to [27].
It was verified in [5] that {(Vj , ωj)}nj=1 is a tight p-fusion
frame if and only if∫
Gk,d

f(V )dσk(V ) =

n∑
j=1

ωjf(Vj) for all f ∈ Pol1≤2p(Gk,d).

Thus, any cubature of strength 2p is a tight p-fusion frame.
The converse implication does not hold in general except for
p or k equals 1.

Remark II.2. Note that the case k = 1 with constant weights
corresponds to projective designs. Spherical designs have been
widely studied in the literature [9], [28], [47] and any antipodal
spherical 2p-design induces a projective 2p-design by choosing
the lines along the antipodal points.

III. SIGNAL RECONSTRUCTION IN THE CASE OF A
CUBATURE OF STRENGTH 4

Let H denote the collection of symmetric matrices in
Rd×d. If {PVj}nj=1 spans H , then standard results in frame
theory imply that S : H → H given by X 7→∑n
j=1〈X,PVj 〉PVj is invertible and

xx∗ =

n∑
j=1

‖PVj (x)‖2S−1(PVj ), for all x ∈ Rd.

By imposing stronger conditions on {PVj}nj=1, the operator
S can be inverted explicitly. To that end, we establish the
following result that generalizes the case k = 1 treated in
[7]. We point out that we allow for cubatures as opposed to

projective designs in [7] that require the cubature weights to
be constant:

Proposition III.1. Let {(Vj , ωj)}nj=1 be a cubature of strength
4 for Gk,d. If x ∈ Sd−1, then

Px = a1

n∑
j=1

ωj‖PVj (x)‖2PVj − a2I, (11)

where a1 = d(d+2)(d−1)
2k(d−k) and a2 = kd+k−2

2(d−k) .

Proof. For any x, y ∈ Sd−1, the function V 7→
〈Px, PV 〉〈Py, PV 〉 belongs to Pol≤4(Gk,d). Applying the cu-
bature formula yields
n∑
j=1

ωj〈Px, PVj 〉〈Py, PVj 〉 =

∫
Gk,d
〈Px, PV 〉〈Py, PV 〉dσk(V ).

(12)
The function

G : (Rx,Ry) 7→
∫
Gk,d
〈Px, PV 〉〈Py, PV 〉dσk(V ) (13)

belongs to L2(G1,d × G1,d) and is zonal. For each vari-
able, it has the form Rx 7→ 〈Px, A(y)〉, where A(y) =∫
Gk,d〈Py, PV 〉PV dσk(V ), and Ry 7→ 〈Py, A(x)〉, respectively.

Since A(y) is self-adjoint and hence a linear combination of
projections, G(·,Ry) and G(Rx, ·) belong to Pol≤2(G1,d). The
zonal functions on the projective space are polynomials in the
variable 〈Px, Py〉 = (x, y)2, so that G must be of the form
α1(x, y)2 + α2. Thus, (12) yields

n∑
j=1

ωj〈Px, PVj 〉〈Py, PVj 〉 = α1〈Px, Py〉+ α2〈I, Py〉. (14)

Since (14) holds for every y, we derive
n∑
j=1

ωj〈Px, PVj 〉PVj = α1Px + α2I. (15)

Taking traces in (15) leads to k
∑n
j=1 ωj〈Px, PVj 〉 =

α1 + dα2, and the property of tight 1-fusion frames gives∑n
j=1 ωj〈Px, PVj 〉 = A1 = k/d, so we obtain

α1 + dα2 = k2/d. (16)

Taking x = y in (14) implies
∑n
j=1 ωj〈Px, PVj 〉2 =

α1 + α2, and the tight 2-fusion frame property leads to∑n
j=1 ωj〈Px, PVj 〉2 = A2 = k(k + 2)/(d(d + 2)), so that

we obtain

α1 + α2 = k(k + 2)/(d(d+ 2)). (17)

Solving for α1 and α2 in (16) and (17) yields the required
identity with a1 = 1/α1 and a2 = α2/α1.

Remark III.2. Since any X ∈ H can be written as a sum
of weighted orthogonal projectors, (11) can be extended to

X = a1

n∑
j=1

ωj〈X,PVj 〉PVj − a2 trace(X)I. (18)

For x ∈ Rd and X = xx∗, the tight-1 fusion frame property
yields trace(X) = ‖x‖2 = d

k

∑n
j=1 ωj‖PVj (x)‖2, so that
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the entire right-hand side of (18) can be computed from
{‖PVj (x)‖2}nj=1 and hence ±x can be recovered.

We can conclude from (18) that {ωjPVj}nj=1 and {Qj}nj=1,
where Qj = a1PVj − a2 dk I , are pairs of dual frames for H ,
i.e.,

X =

n∑
j=1

〈X,ωjPVj 〉Qj , for all X ∈H .

Moreover, if V is a random subspace, uniformly distributed
in Gk,d, i.e., distributed according to σk, then the proof of
Proposition III.1 yields that

a1E(〈X,PV 〉PV )− a2 trace(X)I = X, (19)

for all X ∈ H . Thus, if {Vj}nj=1 ⊂ Gk,d are independent
copies of V , then the law of large numbers implies

a1
n

n∑
j=1

〈X,PVj 〉PVj − a2 trace(X)I → X almost surely.

(20)
However, n must be chosen large to obtain an accurate
representation of X . In Sections V and VI, we shall see that
the random choice of subspaces can be efficient when the al-
gebraic reconstruction formula is replaced with a semidefinite
program.

IV. ALGORITHM FOR SIGNAL RECONSTRUCTION FROM
MAGNITUDES OF INCOMPLETE SUBSPACE COMPONENTS

In this section, we consider the situation where x ∈ Sd−1,
and we aim to reconstruct ±x from any n − p elements of
the set {‖PVj (x)‖2}nj=1. Indeed, for fixed p, we are aiming
at a reconstruction scheme valid for any subset of p missing
norms. Without loss of generality, we can assume that the first
p norms have been erased, so we want to recover ±x from
the knowledge of {‖PVj (x)‖}nj=p+1.

In a first step, we attempt to compute the missing values

tj := ‖PVj (x)‖2, 1 ≤ j ≤ p.

This will be made possible by the property that {(Vj , ωj)}nj=1

is a tight p-fusion frame with
∑n
j=1 ωj = 1. The second step

is dedicated to reconstructing ±x from {‖PVj (x)‖2}nj=1.

A. Step 1: reconstruction of the erased norms

The tight p-fusion frame {(Vj , ωj)}nj=1 is also a tight `-
fusion frame for 1 ≤ ` ≤ p, cf. [5, Proposition 5.1], so that
(6) yields

n∑
j=1

ωj‖PVj (x)‖2` = A` =
(k/2)`
(d/2)`

, 1 ≤ ` ≤ p.

Therefore, (t1, . . . , tp) is a solution of the algebraic system of
equations

p∑
j=1

ωjT
`
j =

(k/2)`
(d/2)`

−
n∑

j=p+1

ωj‖PVj (x)‖2`, 1 ≤ ` ≤ p,

(AE)
in the unknowns (T1, . . . , Tp). To start with, let us consider
the special case of equal weights; then, (AE) gives the values
of the symmetric powers

∑p
j=1 t

`
j , for ` = 0, . . . , p, which,

as polynomial expressions, generate the ring of symmetric
polynomials up to degree p. Vieta’s formula yields

p∏
i=1

(T − ti) =

p∑
j=0

(−1)jejT
p−j ,

where e0 = 1 and ej =
∑

1≤i1<...<ij≤p ti1 · · · tip , and
Newton’s identity leads to

ej =
1

j

j∑
`=1

(−1)`−1ej−`

p∑
j=1

t`j , for j = 1, . . . , p.

Therefore, we can compute the coefficients of
∏p
i=1(T − ti)

as a polynomial in T and solve for its roots; we see that
(t1, . . . , tp) is determined up to a permutation so that we
obtain at most p! distinct solutions to (AE).

If the weights are not equal, one can still show that (AE) has
at most p! solutions. The issue is to verify that the associated
affine variety is zero-dimensional. Results from intersection
theory and the refined Bézout theorem, cf. [37], [48] and [12],
then imply that the variety’s cardinality is at most the product
of the degrees of the p polynomials, i.e., there are at most p!
solutions:

Proposition IV.1. Let {b`}p`=1 be complex numbers and define

f`(T ) =

p∑
j=1

ωjT
`
j − b`, ` = 1, . . . , p.

If {ωj}pj=1 are positive numbers, then the affine variety V :=
{T ∈ Cp : f1(T ) = 0, . . . , fp(T ) = 0} is zero-dimensional.

Proof. We proceed by induction on p. The assertion is cer-
tainly true for p = 1. Next, we observe that the Jacobian
determinant satisfies

det
( ∂(f1, . . . , fp)

∂(T1, . . . , Tp)

)
= det

 ω1 . . . ωp
...

...
ω1pT

p−1
1 . . . ω1pT

p−1
p

 .

By applying the multilinearity of the determinant once to the
columns and another time to the rows, we obtain

det
( ∂(f1, . . . , fp)

∂(T1, . . . , Tp)

)
= ω1 · · ·ωp · p! · det

 1 . . . 1
...

...
T p−11 . . . T p−1p

 .

The well-known formula for the Vandermonde determinant
yields

det
( ∂(f1, . . . , fp)

∂(T1, . . . , Tp)

)
= ω1 · · ·ωp · p! ·

∏
1≤i<j≤p

(Tj − Ti).

For i < j, let ∆i,j := {T ∈ Cd : Ti = Tj} denote the
diagonals. The Jacobian determinant is apparently nonzero for
T 6∈

⋃
i<j ∆i,j . Therefore, every T ∈ V \

⋃
i<j ∆i,j is a

nonsingular point of V , and the dimension of V at T is p−p =
0, cf. [25, Theorem 9.9] and [12, Lemma 11.5.1]. It remains
to consider the intersection of V with ∆i,j . To fix ideas, let
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us consider the case i = 1, j = 2. The intersection V ∩∆1,2

is given by the system of equations

(ω1 + ω2)T `2 +

p∑
j=3

ωjT
`
j = b`, ` = 1, . . . , p.

Because ω1 + ω2 > 0, by induction the first p − 1 of these
equations have only finitely many solutions. Thus, V ∩ ∆1,2

is finite, too.

Remark IV.2. The above proof shows that the positivity
assumption on the weights in Proposition IV.1 can be replaced
with ωj1 + . . . + ωji 6= 0, for all 1 ≤ j1 < . . . < ji ≤ p and
i = 1 . . . , p.

We have proved that the system of algebraic equations (AE)
has at most p! complex solutions. In order to compute these
solutions, standard algorithmic methods can be applied [24],
[25]. The construction of a Gröbner basis of the ideal I
generated by the p equations allows to compute the algebraic
operations in the quotient ring R[T1, . . . , Tp]/I, which is finite
dimensional and of dimension at most p!. The computation of
the solutions then boils down to linear algebra in this space.

B. Step 2: reconstruction from the magnitude of subspace
components

In this second step, we try to compute Px from each
of the possible candidates for {‖PVj (x)‖2}nj=1 derived from
a solution (t1, . . . , tp) of (AE). For this, we assume that
{(Vj , ωj)}nj=1 is also a cubature of strength 4, and we apply
formula (11) where we replace ‖PVj (x)‖2 by tj for 1 ≤ i ≤ p.

To summarize, we have proved:

Theorem IV.3. Let {(Vj , ωj)}nj=1 be a tight p-fusion frame
that is also a cubature of strength 4 for Gk,d. If x ∈ Sd−1,
then Algorithm 1 outputs a list L of at most 2p! elements of
Sd−1 containing x.

Algorithm 1 List reconstruction
Input: {tj := ‖PVj (x)‖2}nj=p+1.
Output: L, x ∈ L.

1: Initialize L = ∅.
2: Compute the set S of solutions of the algebraic system of

equations in the unknowns T1, . . . , Tp:
p∑
j=1

ωjT
`
j =

(k/2)`
(d/2)`

−
n∑

j=p+1

ωjt
`
j , 1 ≤ ` ≤ p. (AE)

3: For every (t1, . . . , tp) ∈ S, and α, β defined in Proposition
III.1, compute

P = a1

n∑
j=1

ωjtjPVj − a2I.

4: If P is a projection of rank 1, compute a unit vector ξ
spanning its image and add ±ξ to L.

5: return L

Note that the cardinality of the list L is triggered by the
number of erasures p. The number of measurements depends

on p and on the ambient signal dimension d. The weighted
subspaces are supposed to form a cubature of strength 4
for Gk,d, therefore, we must have at least n ≥ 1

2d(d + 1)
many subspaces, see [27]. Hence, the cardinality scales at
least quadratically in the ambient dimension d already for
p = 2. In general, the minimal number of measurements is a
growing function of p and d. We refer to [5] for some explicit
constructions of tight p-fusion frames.

We also note that the actual output list L can be much
shorter than 2p! because many solutions of the algebraic
system of equations will not lead to a candidate for the
signal x. In the first place, we can exclude those solutions
of (AE) that are not real or have negative entries. More-
over, one can expect that, for most solutions of (AE), the
symmetric operator P in step 3 is not a rank-one projector.
Also, the solutions (t1, . . . , tp) of (AE) that do not satisfy
|t1/2i − t1/2j |2 ≤ ‖PVi − PVj‖2, for every 1 ≤ i < j ≤ n, can
be removed because they violate the consistency conditions

|‖PVi(x)‖−‖PVj (x)‖|2 ≤ ‖PVi(x)−PVj (x)‖2 ≤ ‖PVi−PVj‖2∞,

where ‖PVi−PVj‖∞ denotes the operator norm of PVi−PVj .

Remark IV.4. For p = 2, the assumptions in Theorem IV.3
reduce to {(Vj , ωj)}nj=1 being a cubature of strength 4 for
Gk,d. Even for k = 1, our result extends [7] since we only need
n− 2 elements of the collection {‖PVj (x)‖2}nj=1 as opposed
to all n elements in [7]. This additional flexibility is not for
free: We must assume that x ∈ Sd−1, and, instead of the two
possibilities ±x in [7], we obtain a list L of 4 elements, one
of which is x.

V. REPLACING THE ALGEBRAIC RECONSTRUCTION
FORMULA WITH SEMIDEFINITE PROGRAMMING

We assume in Proposition III.1 that the weighted subspaces
form a cubature of strength 4 for Gk,d. However, any real
cubature of strength 4 requires at least 1

2d(d + 1) subspaces,
see [27]. Hence, the cardinality scales at least quadratically
in the ambient dimension d. In this section, we replace the
algebraic reconstruction formula with a feasibility problem of
a semidefinite program similar to the approach in [18], [29],
where the case k = 1 was discussed.

Recall that H denotes the collection of symmetric matrices
in Rd×d. For {Vj}nj=1 ⊂ Gk,d, we define the operator

Fn : H → Rn, X 7→ d

k
(〈X,PVj 〉)nj=1. (21)

For x ∈ Rd, let f := d
k (‖PVj (x)‖2)nj=1 = Fn(xx∗) ∈ Rn,

and we now aim to reconstruct ±x from f . By assuming that
the union of the subspaces {Vj}nj=1 spans Rd, clearly, xx∗ is
a solution of

min
X∈H

(rank(X)), subject to Fn(X) = f, X � 0. (22)

The notation X � 0 stands for X being positive semidefinite.
Rank minimization is in general NP-hard, and in convex
optimization it is standard to replace (22) with

min
X∈H

(trace(X)), subject to Fn(X) = f, X � 0, (23)
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a semidefinite program, for which efficient algorithms based
on interior point methods are available. The NEOS Server [26]
provides online solvers for semidefinite programs. We know
that the solution of (22) has rank 1, so there is more structure
to it and, as in [29], we can consider the underlying feasibility
problem, i.e.,

find X ∈H , subject to Fn(X) = f, X � 0. (24)

For k = 1, there is a constant c > 0, such that the
random choice of at least cd subspaces yields that, with high
probability, xx∗ is the only solution to (24), i.e., the only
feasible point of (22) and (23), cf. [17], [18], [29]. Here, we
extend the result to k > 1:

Theorem V.1. There are constants c1, c2 > 0 such that, if n ≥
c1d and {Vj}nj=1 ⊂ Gk,d are chosen independently identically
distributed according to σk, then, for all x ∈ Rd, the matrix
xx∗ is the unique solution to (24) with probability at least
1− e−c2n.

Note that the probability of exact recovery in Theorem V.1
holds simultaneously over all input signals x ∈ Rd, and the
constants are independent of the ambient dimension d but may
depend on the subspace dimension k.

To verify Theorem V.1, we shall first derive deterministic
conditions serving uniqueness in (24). Later, we shall verify
that these conditions are satisfied with high probability when
the subspaces are chosen in the appropriate random fashion.
After having assembled all ingredients, the proof of Theorem
V.1 is presented in Appendix E.

A simple rescaling allows us to restrict the considerations to
x ∈ Sd−1. Let T := Tx := {xy∗ + yx∗ : y ∈ Rd} ⊂H , and,
for Z ∈ Rd×d, denote ZT its orthogonal projection onto T and
ZT⊥ its orthogonal projection onto the orthogonal complement
of T . The term ‖ · ‖1 denotes the nuclear norm and ‖ · ‖∞ the
operator norm:

Theorem V.2. Let {Vj}nj=1 ⊂ Gk,d and f = (‖PVj (x)‖2)nj=1.
Assume that 0 < A,B and γ < A/B are fixed numbers, such
that the following three points are satisfied:
(a) For all positive semidefinite matrices X ∈H ,

1

n
‖Fn(X)‖`1 ≤ B‖X‖1. (25)

(b) For all X ∈ T ,

A‖X‖∞ ≤
1

n
‖Fn(X)‖`1 . (26)

(c) There exists Y in the range of F∗n such that

‖YT ‖1 ≤ γ, YT⊥ � IT⊥ . (27)

Then xx∗ is the unique solution to (24).

The matrix Y in (27) was called a dual certificate in [18]. To
verify Theorem V.2, we can straightforwardly follow the lines
of the proof in [17], [29] while keeping track of the constants,
see also [18], [22]. The complete proof is in Appendix A.

Remark V.3. If {Vj}nj=1 is a design of strength 4, then the
conditions in Theorem V.2 can be satisfied. Indeed, we can
choose B = 1 and there is Ak > 0 satisfying (26) that is even

allowed to depend on d in this case. Since F∗n is onto, the
certificate Y = 2I − 2Px is admissible and γ can be zero.

In the subsequent sections, we shall verify that the condi-
tions of Theorem V.2 are satisfied with high probability when
the subspaces {Vj}nj=1 are selected at random.

A. Nuclear norm estimates on ‖Fn(X)‖`1 for X � 0

We shall verify that Fn is close to an isometry with high
probability:

Theorem V.4. Let {Vj}nj=1 ⊂ Gk,d be independently chosen
random subspaces with identical distribution σk. For 0 < r <
1 fixed, there are constants c(r), C(r) > 0, such that, for all
positive semidefinite matrices X and n ≥ c(r)d,

(1− r)‖X‖1 ≤
1

n
‖Fn(X)‖`1 ≤ (1 + r)‖X‖1 (28)

holds with probability at least 1− e−C(r)n.

By using the spectral decomposition of X , we see that
condition (28) is equivalent to

(1−r)nk
d
‖x‖2 ≤

n∑
j=1

‖PVj (x)‖2 ≤ (1+r)
nk

d
‖x‖2, for all x ∈ Rd.

In other words, {Vj}nj=1 is a fusion frame that is not too far
from being tight. It turns out that we can follow the lines
in [18] to prove Theorem V.4 after having established some
analogy between k = 1 and k > 1. If k = 1, the random
variable d‖PV (x)‖2, for x ∈ Sd−1, is sub-exponential. We
can verify the analogue result for k > 1:

Lemma V.5. If V is a random subspace distributed according
to σk on Gk,d, then, for any x ∈ Sd−1,

sup
p≥1

p−1
(
E(
d

k
‖PV (x)‖2)p

)1/p ≤ 1. (29)

Proof of Lemma V.5. The distribution of ‖PV (x)‖2 does not
depend on the particular choice of x ∈ Sd−1 and is beta
distributed with parameters (k2 ,

d−k
2 ). Thus, its moments are

given by

E‖PV (x)‖2p =
(k/2)p
(d/2)p

=
k(k + 2) · · · (k + 2p− 2)

d(d+ 2) · · · (d+ 2p− 2)
, (30)

which coincide with the tight p-fusion frame bounds (6) when
the weights are constant. An induction over p yields (29).

Note that Lemma V.5 says that d
k‖PV (x)‖2 is a sub-

exponential random variable with a bound in (29) that does
not depend on d. The latter is one of the main ingredients to
verify Theorem V.4 along the lines in [18], see Appendix B
for the details.

B. Operator norm estimates on ‖Fn(X)‖`1 for symmetric
rank-2 matrices

We shall verify the condition (26):

Theorem V.6. Let k be fixed. There is a constant u > 0 such
that, for 0 < r < 1 fixed, there exist constants c, C > 0,
such that, for all n ≥ cd and {Vj}nj=1 ⊂ Gk,d independently
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chosen random subspaces with identical distribution σk, the
inequality

1

n
‖Fn(X)‖`1 ≥ u(1− r)‖X‖∞,

for all symmetric rank-2 matrices X , holds with probability
at least 1− e−Cn.

Note that the probability in the estimate in Theorem V.6
is uniform in X . The proof of Theorem V.6 is based on the
following Proposition that was derived for k = 1 in [18]. Our
proof for k > 1 is original:

Proposition V.7. Let k be fixed and {Vj}nj=1 ⊂ Gk,d be inde-
pendently chosen random subspaces with identical distribution
σk. There is a constant u > 0 such that, for all −1 ≤ t ≤ 1
and z1, z2 ∈ Sd−1 with z1 ⊥ z2,

d

k
E
∣∣‖PV (z1)‖2 − t‖PV (z2)‖2

∣∣ ≥ u.
Proof. The sphere is two-point homogeneous and σk is in-
variant under orthogonal transformation so that we can restrict
the analysis to the first two canonical basis vectors e1 and e2.
Since the integral is always nonzero, we only need to take
care of the limit d→∞. We first see that
d

k
E
∣∣‖PV (e1)‖2 − t‖PV (e2)‖2

∣∣
=
d

k

∫
Gk,d

∣∣‖PV (e1)‖2 − t‖PV (e2)‖2
∣∣dσk(V )

=
d

k

∫
V2,d

∣∣ k∑
i=1

m2
i,1 − t

k∑
i=1

m2
i,2

∣∣dν2(M),

where V2,d = {M = (mi,j) ∈ Rd×2 : M∗M = I} denotes
the Stiefel-manifold endowed with the standard probability
measure ν2. If M is a random matrix, distributed according to
ν2, then, according to [31, Proposition 7.5], the upper k × 2
block of M multiplied by d converges in distribution (for
d → ∞) towards a random k × 2 matrix whose entries are
standard normal i.i.d.. Let us denote the underlying probability
measure on Rk×2 by N (0, Ik ⊗ I2). The convergence in
distribution implies that, for d→∞,

dE
∣∣‖PV (e1)‖2 − t‖PV (e2)‖2

∣∣
−→

∫
Rk×2

∣∣‖N(e1)‖2 − t‖N(e2)‖2
∣∣dN (0, Ik ⊗ I2)(N).

Since the right-hand side is bigger than 0, for all −1 ≤ t ≤ 1,
compactness and continuity arguments suffice to conclude the
proof.

For the complete proof of Theorem V.6 that is based on
Proposition V.7, we refer to Appendix C.

C. The dual certificate Y

To derive the dual certificate Y , we can follow the ideas
in [17], [18], [29] adapted to k > 1. We will use Proposition
III.1 from the deterministic setting and the Remark III.2. Let
{Vj}nj=1 ⊂ Gk,d be independently chosen random subspaces
with identical distribution σk. The choice

Y1 := 2I − 2Px

would satisfy both conditions in (27) but may not lie in the
range of

F∗n : Rn →H , (λj)
n
j=1 7→

d

k

n∑
j=1

λjPVj .

Thus, we aim to determine an appropriate sequence (λj)
n
j=1

such that d
k

∑n
j=1 λjPVj “approximates” Y1. First, let us

rewrite
Y1 = (k + 2)I − (2Px + kI).

For a := 2d(d−k)
(d+2)(d−1) and b := d(kd+k−2)

(d+2)(d−1) , we observe that
a → 2 and b → k when d tends to infinity, so that we can
approximate Y1 by

Y2 := (k + 2)I − (aPx + bI).

Since Proposition III.1 implies

aPx + bI =
d2

k
E‖PV (x)‖2PV (31)

and d
kEPV = I holds, we obtain

Y2 =
d

k
E((k + 2− d‖PV (x)‖2)PV ).

The sample mean converges towards the population mean, so

Y3 :=
d

nk

n∑
j=1

((k + 2− d‖PVj (x)‖2)PVj )

approximates Y2, and we observe that Y3 lies in the range of
F∗n. In view of tail bound estimates, it will be advantageous to
use an additional cut-off similar to the one in [18]: keeping in
mind that (30) yields d2

k E‖PVj (x)‖4 → k + 2, when d tends
to infinity, we define the dual certificate by

Y :=
d

nk

n∑
j=1

λjPVj , where λj = α− d‖PVj (x)‖21Ej ,

(32)
α = d2

k E(‖PVj (x)‖41Ej ), and Ej = {
√

d
k‖PVj (x)‖ ≤ 2βγ}

for some constant βγ > 0. Obviously, Y is in the range of F∗n
and, as outlined above, can be considered as an approximation
to Y1 = 2I − 2Px.

The above definitions will be used throughout the remaining
part of this paper.

1) Dual certificate: YT : We shall verify that the dual
certificate defined by (32) satisfies the first condition in (27).
The following theorem is the analogy to [29, Lemma 1] and
[17, Lemma 2.3]:

Theorem V.8. Let x ∈ Sd−1 be fixed. There are constants
c, C > 0 such that, for n ≥ cd,

‖YT ‖1 ≤ γ (33)

with probability at least 1− e−Cn.

Proof. First, we suppose that x = e1 and take care of the
general case later. We observe that ‖YT ‖1 ≤

√
2‖YT ‖HS ≤

2
√

2‖y‖2), where y ∈ Rd is the first column of Y and ‖ ·‖HS
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denotes the Frobenius norm. We split PVj = QjQ
∗
j , such that

Qj ∈ Rd×k with orthonormal columns. By using

Z =

√
d

k
(Q1, . . . , Qn) ∈ Rd×kn, h =

√
d

k

λ1Q
∗
1e1

...
λnQ

∗
ne1

∈ Rkn,

and hj =
√

d
kλjQ

∗
je1 ∈ Rk, for j = 1, . . . , n, we see

that ‖y‖2 = 1
n2 ‖Zh‖2. According to Lemma V.5, ‖hj‖2 =

λ2j
d
k‖PVj (e1)‖2 is sub-exponential, and [49, Corollary 5.17]

implies

P
(
‖h‖2 − E‖h‖2 ≥ n

)
≤ 2e−C1n, (34)

for some constant C1 > 0. Since α ≤ k + 2, we observe that
there is a constant C2 > 0 such that E‖h‖2 ≤ C2n. Thus, the
above estimate (34) implies that there is a constant C3 such
that

P
(
‖h‖2 ≥ n

)
≤ 2e−C3n. (35)

For n > log(2)/C3, the factor 2 can be put into a constant in
the exponential, say C > 0.

For q ∈ Rkn with ‖q‖ = 1 and q = (qj)
n
j=1, where qj ∈ Rk,

we obtain

‖Zq‖2 ≤ d

k

n∑
j=1

‖Qjqj‖2 =
d

k

n∑
j=1

‖qj‖2 = d/k, (36)

where we have used that the columns of Qj are orthonormal.
By combining (35) with (36), we obtain

‖y‖2 =
1

n2
‖Zh‖2 =

1

n2
‖h‖2‖Z h

‖h‖
‖2 ≤ d

kn

with probability at least 1− e−Cn. Thus, for sufficiently large
c > 0, the condition n ≥ cd implies (33).

To conclude the proof, we need to allow general x ∈ Sd−1.
Note that there exists an orthogonal matrix U such that x =
Ue1. We observe that Tx = UTe1U

∗ and PUVj = U∗PVjU .
Therefore, the definition Yx := UYe1U

∗, where Ye1 is the
dual certificate w.r.t. e1, is in the range of the map F̃n
that corresponds to {UVj}nj=1. The latter subspaces are also
i.i.d. according to σk. Since (Yx)Tx = UYTe1U

∗, we also
derive ‖(Yx)Tx‖1 = ‖YTe1‖1.

2) Dual certificate: YT> : Let us verify that the dual certifi-
cate Y in (32) satisfies the second condition in (27). Indeed,
we prove a slightly stronger result:

Theorem V.9. Let x ∈ Sd−1 be fixed. For all 0 < ε < 1/2,
there is δ ≥ 3/2 and constants c, C > 0 such that, for n ≥ cd,

‖YT⊥ − δIT⊥‖∞ ≤ ε (37)

with probability at least 1− e−Cn.

Note that (37) implies YT⊥ � IT⊥ . The proof follows the
analogous results in [29, Lemma 2] and [17, Lemma 2.3],
where k = 1 is addressed, see our Appendix D for the details.

D. Proof of Theorem V.1

After having generalized the intermediate results from k = 1
to the general case k ≥ 1, we can assemble these findings
as in [17], [18], [29] to prove Theorem V.1. The details are
presented in Appendix E.

Remark V.10. Note that our proof for involving semidefinite
programming in the phase retrieval problem is guided by the
ideas in [18], [17], [29]. Meanwhile the golfing scheme as
originally proposed in [40] has been used for constructing
dual certificates in rank-1 phase retrieval with semidefinite
programming enabling a partial derandomization [41], so that
σ1,d can be replaced with a probability distribution of smaller
support. However, signal recovery probability decreases as
well. Analogous results also hold for rank-k phase retrieval
[32]. It is worth mentioning that the golfing scheme was also
used to treat phase retrieval with sparse signals [44] and with
coded diffraction patterns [19].

E. Stability

In many applications of interest, we may have access to
the exact subspaces {Vj}nj=1 but the actual measurements
are noisy, so that we need to reconstruct the signal from
observations of the form

fj = ‖PVj (x)‖2 + ωj , j = 1, . . . , n, (38)

where ωj is some distortion term. If we replace the feasibility
problem of the semi-definite program with the constrained `1-
minimization

arg min
X∈H

‖Fn(X)− f‖`1 , subject to X � 0, (39)

then we obtain the same stability properties as in [17]. Indeed,
we can straightforwardly follow the lines of the proof in [17,
Theorem 1.3] for k = 1 to derive our next statement, which
covers k ≥ 1:

Theorem V.11. There are constants c0, c1, c2 > 0 such that,
if n ≥ c1d and {Vj}nj=1 ⊂ Gk,d are chosen independently
identically distributed according to σk, then, for all x ∈ Rd
and f given by (38), the solution X̂ to (39) obeys

‖X̂ − xx∗‖HS ≤ c0
‖ω‖`1
n

(40)

with probability at least 1− e−c2n.

It was also pointed out in [17] that (40) implies

min
(
‖x̂− x‖, ‖x̂+ x‖

)
≤ c0 min

(
‖x‖, ‖ω‖`1

n‖x‖
)
,

where x̂ =
√
αx0 and α is the largest eigenvalue of X̂ with

normalized eigenvector x0. Hence, we also have a bound on
the deviation to the exact signal when the measurements are
noisy and k > 1.
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VI. NUMERICAL EXPERIMENTS

We shall present some numerical experiments illustrating
Theorem V.1 and the choice of k. Let x ∈ Sd−1 and
observe that V ∈ Gk,d is uniformly distributed if and only
if PV = Z(Z∗Z)−1Z∗ for some Z ∈ Rd×k with indepen-
dent standard normal entries, cf. [23, Theorem 2.2.2]. Thus,
we can easily generate pseudo-random orthogonal projectors
{PVj}nj=1. Since ‖PVj⊥(x)‖2 + ‖PVj (x)‖2 = 1, we shall
restrict us to k ≤ d/2. We follow the numerical experiments in
[18], where the measurement vector is f = (‖PVj (x)‖2)nj=1.
As in [18], we use the software package Templates for First-
Order Conic Solvers (TFOCS) [11]. If X̂ is the solution,
then we define ±x̂ ∈ Sd−1 as the normalized eigenvector
corresponding to the largest eigenvalue of X̂ . If x is not
supposed to lie on the sphere, then we can use the largest
eigenvalue to rescale the normalized eigenvector.

A. Examples of signal reconstruction

We illustrate Theorem V.1 by following a numerical test
from [16]. As in [16] for k = 1, the computed approximation
is visually indistinguishable from the test signal when k = 10
and k = 20, where d = 128 and n = 6d, cf. Fig. 1.

(a) k = 10

(b) k = 20

Fig. 1. We choose the original signal x uniformly distributed on the sphere
Sd−1. As in [16], where k = 1 was used, the approximation is computed
for d = 128 and n = 6d. Here, also for k > 1, we see that original and
computed signal are visually indistinguishable.

B. Optimal choice of k

We investigate on the optimal choice of k. Indeed, for
d = 6, 8, 10, 12, we check on the reconstruction rate in
dependence of the number of subspaces n when k varies
between 1 and d/2. We see in Figure 2 that, for small n,
the proposed algorithm yields higher recovery rates when k is
selected bigger than 1, and the choice k = dd/4e appears to
be optimal. Here, the recovery rate is computed as the number

of reconstructions deviating less than 10−2 from the original
signal divided by the number of repeats (1000).
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(d) d = 12

Fig. 2. When the subspace number n is small but the subspace dimension k
can be selected freely, then k = 1 is clearly not the optimal choice. It appears
that k = dd/4e yields the best results.

VII. BRIEF OUTLINE OF THE COMPLEX CASE

If we deal with complex signals x ∈ Cd and com-
plex k-dimensional subspaces {Vj}nj=1, then there is again
a canonical notion of cubature, cf. [46], and the complex
analogue of Proposition III.1 holds with adjusted constants
a1 = (d−1)d(d+1)

k(d−k) and a2 = kd−1
d−k .

For random subspaces, Theorem V.1 can also be derived
in the complex setting. The underlying Theorem V.2 holds
the same way for complex signals and subspaces, so that we
need to verify the respective conditions as in the real case.
If the subspaces are chosen i.i.d. from the Haar measure on
the complex Grassmann space, then d

k‖PVj (x)‖2 is unitarily
invariant in x and sub-exponential since E‖PVj (x)‖2p =

(k)p
(d)p

,
cf. [5]. Thus, the analogue of Lemma V.5 holds. Proposition
V.7 can be extended to the complex case, because the under-
lying result from [31, Proposition 7.5] has a complex version
too. The formula (31) still holds, only the constants a and b
need adjustments, so that the dual certificate Y can be defined
the same way as in (32). Thus, we can follow the same proof
strategy to cover the complex phase retrieval problem.
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APPENDIX A
PROOF OF THEOREM V.2

Proof. For Z ∈H being positive semi-definite and satisfying
Fn(Z) = f , we choose H := Z − xx∗ and aim to verify that
H = 0. Since

0 = Fn(H) = Fn(HT ) + Fn(HT⊥),

and HT⊥ = ZT⊥ is positive semi-definite, the Conditions (26)
and (25) yield

A‖HT ‖∞ ≤
1

n
‖Fn(HT )‖`1 =

1

n
‖Fn(HT⊥)‖`1 ≤ B‖HT⊥‖1.

(41)
The range of F∗n is orthogonal to the nullspace of Fn, so that
we derive

0 = 〈H,Y 〉 = 〈HT⊥ , YT⊥〉+ 〈HT , YT 〉.

The left-hand inequality of (27) yields

0 ≥ 〈HT⊥ , YT⊥〉 − γ‖HT ‖∞,

and the right-hand inequality of (27) leads to ‖HT⊥‖1 =
〈HT⊥ , IT⊥〉 ≤ 〈HT⊥ , YT⊥〉, so that we obtain

0 ≥ ‖HT⊥‖1 − γ‖HT ‖∞ ≥ (
A

B
− γ)‖HT ‖∞,

where we have used (41). Thus, HT = 0 must hold and hence
also HT⊥ = 0, so that we have Z = xx∗.
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APPENDIX B
PROOF OF THEOREM V.4

The following result extends findings on the smallest and
largest singular values smin(P ) and smax(P ) of a random
matrix P with independent sub-exponential rows in [49, The-
orem 5.39]. Here, we consider independent blocks but there
are dependent rows within each block:

Proposition B.1. Let P :=
√

d
k

(
PV1 , . . . , PVn

)∗ ∈ Rnd×d, in
which {Vj}nj=1 are identically and independently distributed
according to σk on Gk,d. Then, for every t ≥ 0, we have with
probability at least 1− 2 exp(−ct2)

√
n− C

√
d− t ≤ smin(P ) ≤ smax(P ) ≤

√
n+ C

√
d+ t,

where c, C > 0 are absolute constant.

The proof of Proposition B.1 requires two lemmas for
preparation:

Lemma B.2 ([49, Lemma 5.36]). If B ∈ Rn×d satisfies
‖B∗B − I‖∞ ≤ max(δ, δ2), for some δ > 0, then

1− δ ≤ smin(B) ≤ smax(B) ≤ 1 + δ. (42)

Conversely, if B satisfies (42), then ‖B∗B − I‖∞ ≤
3 max(δ, δ2).

An ε-net Nε is a finite subset of Sd−1 such that to any
element x ∈ Sd−1, there is an element in Nε at distance less
than or equals ε.

Lemma B.3 ([49, Lemma 5.4]). Let A ∈ Rd×d be symmetric,
and let Nε be an ε-net of Sd−1 for some ε ∈ [0, 12 ). Then

‖A‖∞ = sup
x∈Sd−1

|〈Ax, x〉| ≤ (1− 2ε)−1 sup
x∈Nε

|〈Ax, x〉|.

Proof of Proposition B.1. To verify Proposition B.1, we want
to apply Lemma B.2 with B = 1√

n
P . We shall explicitly

derive the upper estimate on smax(P ). The lower estimate on
smin(P ) follows from similar arguments. We must check that

‖ 1

n

d

k

n∑
j=1

PVj−I‖∞ ≤ max(δ, δ2) =: ε, where δ = C

√
d

n
+

t√
n
.

(43)
Let N be a 1

4 -net, so that an application of Lemma B.3 yields

‖ 1

n
P ∗P − I‖∞ = ‖ 1

n

d

k

n∑
j=1

PVj − I‖∞

≤ 2 max
x∈N
|〈( 1

n

d

k

n∑
j=1

PVj − I)x, x〉|

= 2 max
x∈N
| 1
n
‖Px‖2 − 1|.

Thus, we must verify with the required probability that

max
x∈N
| 1
n
‖Px‖2 − 1| ≤ ε

2
.

To derive this estimate, we define random variables Zj =√
d
k‖PVj (x)‖ so that

∑n
j=1 Z

2
j = ‖P (x)‖2. Since E(Z2

j ) = 1,
we can estimate

‖Z2
j ‖ψ1

:= sup
p≥1

p−1(EZ2p
j )1/p

=
d

k
sup
p≥1

p−1(E‖PVj (x)‖2p)1/p

=
d

k
sup
p≥1

p−1(
(k/2)p
(d/2)p

)1/p ≤ 1,

where the last inequality is due to Lemma V.5. According to
[49, Remark 5.18], ‖Z2

j − 1‖ψ1
≤ 2, and we obtain from the

Bernstein type inequality [49, Corollary 5.17]

P(| 1
n

n∑
j=1

d

k
‖PVj (x)‖2 − 1| ≥ ε/2) = P(| 1

n

n∑
j=1

Z2
j − 1| ≥ ε/2)

≤ 2 exp(−cnmin(
ε2

16
,
ε

4
))

= 2 exp(−n c

16
δ2)

≤ 2 exp(− c

16
(C2d+ t2)),

where the last line follows from (43). Since the net can be
chosen such that |N | ≤ 9d, cf. [49], we obtain

P(max
x∈N
| 1
n

n∑
j=1

d

k
‖PVj (x)‖2 − 1| ≥ ε/2) ≤ 9d2 exp(− c

16
(C2d+ t2))

≤ 2 exp(− c

16
t2),

where we assume C ≥ 4
√

ln(9)/c. The latter does not cause
any trouble because c is a constant independent of ε. This
finally yields

P(smax(P ) ≥
√
n+ C

√
d+ t) ≤ 2 exp(− c

16
t2).

The estimates on smin(P ) are derived analogously.

We can now prove Theorem V.4:

Proof of Theorem V.4. Since any positive semidefinite matrix
X can be written by means of its projectors on eigenspaces,
it is sufficient to verify

1− r ≤ 1

n
‖Fn(xx∗)‖`1 ≤ 1 + r, ∀x ∈ Sd−1,

in place of (28). We observe that ‖Px‖2 = ‖Fn(xx∗)‖`1 , so
that

s2min(P ) ≤ ‖Fn(xx∗)‖`1 ≤ s2max(P )

holds. First, we take care of the upper bound. According to
Proposition B.1, we have

1

n
‖Fn(Px)‖`1 ≤

1

n
s2max(P ) ≤ (1 +

1√
n

(C
√
d+ t))2,

with probability at least 1 − 2e−ct
2

. Choose ε > 0 such that
r/4 = ε2+ε and observe that ε ≥ r

5 , so that n ≥ c1r−2d with
c1 = 25C2 implies n ≥ ε−2C2d. For t =

√
nε, we obtain that

1√
n
smax ≤ (1 + 2ε)
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holds with probability at least 1 − 2e−cnε
2

. Hence, we have
1
ns

2
max ≤ (1+r) with the same probability. Since ε2 ≥ r2/25,

we can adjust c1 such that n ≥ 25
cr2 ln(2) so that c2 > 0

exists and the required upper estimate holds with probability
1−e−c2r2n, The lower estimate can be derived in an analogous
way.

APPENDIX C
PROOF OF THEOREM V.6

Proof of Theorem V.6. It is sufficient to consider ‖X‖∞ = 1,
so that X = Pz1 − tPz2 , where z1, z2 ∈ Sd−1 and z1 ⊥ z2
and t ∈ [−1, 1]. We observe

1

n
‖Fn(X)‖1 =

1

n

n∑
j=1

d

k
|‖PVj (z1)‖2−t‖PVj (z2)‖2| = 1

n

n∑
j=1

ξj ,

where ξj = d
k |‖PVj (z1)‖2 − t‖PVj (z2)‖2|. Since |t| is

bounded, Lemma V.5 implies that ξj is sub-exponential. There-
fore, the Bernstein inequality as stated in [49] yields

P(| 1
n
‖Fn(X)‖1 − Eξ| ≥ ε) ≤ 2 exp(−cnmin(

ε2

4
,
ε

2
)),

where c > 0 is an absolute constant. Proposition V.7 yields
Eξj ≥ u, and, for ε < 2, we derive

1

n
‖Fn(X)‖1 ≥ u− ε,

with probability at least 1−2 exp(−C1nε
2), where C1 = c/4.

The choice ε = ur establishes the required estimate at least
for fixed X ∈ T with probability at least 1− 2 exp(−C2nr

2),
where C2 = C1u

2. The remaining part of the proof is the
same covering argument as in [18], so we omit this.

APPENDIX D
PROOF OF THEOREM V.9

Proof of Theorem V.9. As in the proof of Theorem V.8, we
first consider x = e1. Let us split Y = Y (0) − Y (1) into

Y (0) =
1

n

n∑
j=1

α
d

k
PVj , Y (1) =

1

n

n∑
j=1

d‖PVj (e)‖21Ej
d

k
PVj .

First, we shall estimate ‖Y (0)

T⊥
− αIT⊥‖∞, later also ‖Y (1)

T⊥
−

b0IT⊥‖∞ for some special number b0. We observe that
EY (0) = αI . By using P :=

√
d
k

(
PV1 , . . . , PVn

)∗
as in

Proposition B.1 and squaring the estimates there, we see that

(
√
n−C1

√
d−t)2 ≤ s2min(P ) ≤ s2max(P ) ≤ (

√
n+C1

√
d+t)2

with probability at least 1 − 2e−c1t
2

. Since α
nP
∗P = Y (0),

the latter implies at least for sufficiently small t/
√
n:

‖Y (0) − αI‖∞ ≤ α(C2
1d+ t2 + 2

√
nd+ 2

√
nt+ 2C1t

√
d)

with the same probability. For all ε1 > 0, there is c2
sufficiently large and ε2 > 0 sufficiently small such that
t = ε2

√
n yields

‖Y (0) − αI‖∞ ≤ αε1,

for all n ≥ c2d with probability 1 − e−c3n. In particular, we
have

‖Y (0)

T⊥
− αIT⊥‖∞ ≤ αε1 (44)

with the same probability.
Let us now take care of Y (1)

T⊥
. Due to the unitary invariance

of σk, (31) for X = Pe1 yields

E(d‖PVj (e1)‖21Ej
d

k
PVj ) = a0Pe1 + b0I,

for some constants a0, b0 > 0 that depend on βγ . Therefore,
we have EY (1)

T⊥
= b0I. The random matrix

Xj =
d2

k
‖PVj (e1)‖21Ej (PVj )T⊥ − b0IT⊥

is bounded, say by K. We find a constant C2 > 0 such
that ‖EX∗jXj‖∞ ≤ C2 implying ‖

∑n
j=1 EX∗jXj‖∞ ≤ nC1.

According to [49, Theorem 5.29], we have, for all t > 0,

P
(
‖ 1

n

n∑
j=1

Xj‖∞ ≥
t

n

)
≤ 2de

−t2/2
nC2+Kt/3 .

By choosing ε2 > 0 and t = ε3n, we derive

P
(
‖ 1

n

n∑
j=1

Xj‖∞ ≥ ε2
)
≤ 2de−c4n ≤ e−c5n,

for all n ≥ c6 ln(d). Thus, we obtain

‖Y (1)

T⊥
− b0IT⊥‖∞ ≤ ε2, (45)

with probability 1− e−c5n, for all n ≥ c6 ln(d).
Combining (44) and (45) implies

‖YT⊥ − (α− b0)IT⊥‖ ≤ αε1 + ε2

with probability at least 1 − e−Cn, for all n ≥ cd. We can
now choose ε1, ε2 sufficiently small, such that αε1 + ε2 ≤ ε.
The term α is bounded by k + 2. According to Vershynin’s
lecture note on nonasymptotic random matrix theory (Lemma
9 in Lecture 4 on dimension reduction), we have, for all
βγ ≥ 1/2 that P

(
Ecj
)
≤ 2ek/2e−kβγ . Since E( d

4

k2 ‖PVj (e1)‖8)
is bounded independently of d, see (30), the term k+2−α =
E(d

2

k ‖PVj (e1)‖41Ecj ) can be made arbitrarily small by choos-
ing βγ sufficiently large. Thus, we can derive α ≥ k + 5/3.
Similar arguments yield that b0 gets closer to b when we
increase βγ . With b ≤ k we can assume that b0 ≤ k+ 1/6, so
that δ = α− b0 ≥ 3/2.

We still need to address general vectors x ∈ Sd−1. With the
notation and arguments at the end of the proof of Theorem V.8,
we observe that ‖(Yx)T⊥x − δIT⊥x ‖∞ = ‖(Ye1)T⊥e1

− δIT⊥e1 ‖∞,
which concludes the proof.

APPENDIX E
PROOF OF THEOREM V.1

We can now assemble all of our findings to verify that the
conditions in Theorem V.2 hold with the required probability:

Proof of Theorem V.1. We first fix x ∈ Sd−1. Then we choose
r ∈ (0, 1) and γ < u 1−r

1+r , where u ∈ (0, 1) as in Proposition
V.7. Let ci and Ci, i = 1, . . . , 4, be suitable positive constants.
Theorem V.4 yields that Condition (25) holds with probability
of failure at most e−C1n, for all n ≥ c1d. Theorem V.6 implies
that Condition (26) holds with probability of failure at most
e−C2n, for all n ≥ c2d. According to Theorem V.8, the first



IEEE TRANSACTIONS ON INFORMATION THEORY 13

condition in (27) holds with probability of failure at most
e−C3n, for all n ≥ c3d. Theorem V.9 yields that the second
condition in (27) is satisfied with probability of failure at most
e−C4n, for all n ≥ c4d.

Finally, there are constants c, C > 0 such that, for all
n ≥ cd, we can estimate

∑4
i=1 e

−Cin ≤ e−Cn, so that all
conditions in Theorem V.2 are satisfied with probability at
least 1 − e−Cn. In order to turn the latter into a uniform
estimate in x, we take an ε-net Nε on the sphere of cardi-
nality less or equals (1 + 2

ε )d, cf. [49, Lemma 5.2]. Since
(1 + 2

ε )de−Cn ≤ e−C̃n, for all n ≥ c̃d when C̃ is sufficiently
small and c̃ sufficiently large, we have a uniform estimate for
the net Nε. Now, to any arbitrary x ∈ Sd−1, we find x0 ∈ Nε
with ‖x − x0‖ ≤ ε. By following the lines in [17, Proof of
Theorem 1.2], one can derive that the certificate for x0 also
works for x, so that we can conclude the proof of Theorem
V.1.
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