On the convergence of gradient descent

Charles Deledalle

November 13, 2018

This document provides two main results of convergence for gradient descent.

1 Convergence

We want to prove the following theorem.
Theorem 1. Let $F: \mathbb{R}^{N} \rightarrow R$ be differentiable with L Lipschitz gradient:

$$
\begin{equation*}
\|\nabla x-\nabla y\| \leqslant L\|x-y\|, \quad \forall x \in \mathbb{R}^{N} \quad \text { and } \quad \forall y \in \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

and be lower bounded

$$
\begin{equation*}
\inf _{x \in \mathbb{R}^{N}} F(x)=C>-\infty \tag{2}
\end{equation*}
$$

Then, provided $0<\gamma<\frac{2}{L}$, the gradient descent sequence defined as:

$$
\begin{equation*}
x^{t+1}=x^{t}-\gamma \nabla F\left(x^{t}\right) \tag{3}
\end{equation*}
$$

converges to a stationary point:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \nabla F\left(x^{t}\right)=0 \tag{4}
\end{equation*}
$$

Remark 1. F does not need to be convex. Nevertheless, to prove the theorem, we will need to prove that $G(x)=\frac{L}{2}\|x\|^{2}-F(x)$ is convex. We will need two intermediate lemmas for this.

1.1 Non-decreasing derivative \Rightarrow Convexity (1d)

Lemma 1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable with non-decreasing derivative, i.e.:

$$
\begin{equation*}
g^{\prime}(x) \geqslant g^{\prime}(y), \quad \forall x \geqslant y \in \mathbb{R} \tag{5}
\end{equation*}
$$

then g is convex

$$
\begin{equation*}
g\left(\lambda x_{1}+(1-\lambda) x_{5}\right) \leqslant \lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{5}\right), \quad \forall x_{1} \in \mathbb{R}, \forall x_{5} \in \mathbb{R} \quad \text { and } \quad \lambda \in[0,1] . \tag{6}
\end{equation*}
$$

Proof. Let $\lambda \in[0,1], x_{1} \in \mathbb{R}$ and $x_{5} \in \mathbb{R}$.

- If $x_{5}=x_{1}$ or $\lambda=0$ or $\lambda=1$ the result is trivial: (6) holds true.
- Consider $x_{5}>x_{1}$ and $0<\lambda<1$. Let $x_{3}=\lambda x_{1}+(1-\lambda) x_{5}$. We have $x_{1} \leqslant x_{3} \leqslant x_{5}$. The mean value theorem clains that there exist x_{2}, x_{4} such that $x_{1} \leqslant x_{2} \leqslant x_{3} \leqslant x_{4} \leqslant x_{5}$ and

$$
\begin{equation*}
\frac{g\left(x_{3}\right)-g\left(x_{1}\right)}{x_{3}-x_{1}}=g^{\prime}\left(x_{2}\right) \quad \text { and } \quad \frac{g\left(x_{5}\right)-g\left(x_{3}\right)}{x_{5}-x_{3}}=g^{\prime}\left(x_{4}\right) \tag{7}
\end{equation*}
$$

Since $x_{2} \leqslant x_{4}, g^{\prime}\left(x_{2}\right) \leqslant g^{\prime}\left(x_{4}\right)$ by assumption, and then

$$
\begin{array}{rr}
\frac{g\left(x_{3}\right)-g\left(x_{1}\right)}{x_{3}-x_{1}} \leqslant \frac{g\left(x_{5}\right)-g\left(x_{3}\right)}{x_{5}-x_{3}} & \\
\Rightarrow \frac{g\left(x_{3}\right)-g\left(x_{1}\right)}{(1-\lambda)\left(x_{5}-x_{1}\right)} \leqslant \frac{g\left(x_{5}\right)-g\left(x_{3}\right)}{\lambda\left(x_{5}-x_{1}\right)} & \text { (by definition of } \left.x_{3}\right) \\
\Rightarrow \frac{g\left(x_{3}\right)-g\left(x_{1}\right)}{(1-\lambda)} \leqslant \frac{g\left(x_{5}\right)-g\left(x_{3}\right)}{\lambda} & \text { (since } \left.x_{5}>x_{1}\right) \\
\Rightarrow \lambda g\left(x_{3}\right)-\lambda g\left(x_{1}\right) \leqslant(1-\lambda) g\left(x_{5}\right)-(1-\lambda) g\left(x_{3}\right) & \quad \text { since } 0<\lambda<1) \\
\Rightarrow g\left(x_{3}\right) \leqslant \lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{5}\right) & \tag{12}
\end{array}
$$

Then (6) holds true.

- If $x_{1}<x_{5}$, the exact same reasoning applies.

Then g is convex.
Remark 2. The reciprocal holds true.

1.2 Monotone gradient \Rightarrow Convexity (Nd)

Lemma 2. Let $G: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be differentiable with monotone gradient, i.e.

$$
\begin{equation*}
\langle\nabla G(x)-\nabla G(y), x-y\rangle \geqslant 0, \quad \forall x \in \mathbb{R}^{N} \quad \text { and } \quad \forall y \in \mathbb{R}^{N} \tag{13}
\end{equation*}
$$

then G is convex, i.e.:

$$
\begin{equation*}
G(\lambda x+(1-\lambda) y) \leqslant \lambda G(x)+(1-\lambda) G(y), \quad \forall x \in \mathbb{R}^{N}, \forall y \in \mathbb{R}^{N} \quad \text { and } \quad \lambda \in[0,1] \tag{14}
\end{equation*}
$$

Proof. Let $x \in \mathbb{R}^{N}$ and $d \in \mathbb{R}^{N}$. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
\begin{equation*}
h(t)=G(x+t d), \quad \text { for all } t \in \mathbb{R} \tag{15}
\end{equation*}
$$

We have

$$
\begin{equation*}
h^{\prime}(t)=\frac{\partial G(x+t d)}{\partial t}=\frac{\partial G(x+t d)}{\partial x+t d} \frac{\partial x+t d}{\partial t}=[\nabla G(x+t d)]^{T} d=\langle\nabla G(x+t d), d\rangle \tag{16}
\end{equation*}
$$

Let $t_{1}>t_{2}$. By assumption

$$
\begin{align*}
& \left\langle\nabla G\left(x+t_{1} d\right)-\nabla G\left(x+t_{2} d\right),\left(t_{1}-t_{2}\right) d\right\rangle \geqslant 0 \tag{17}\\
\Rightarrow & \left\langle\nabla G\left(x+t_{1} d\right)-\nabla G\left(x+t_{2} d\right), d\right\rangle \geqslant 0 \tag{18}\\
\Rightarrow & h^{\prime}\left(t_{1}\right) \geqslant h^{\prime}\left(t_{2}\right) \tag{19}
\end{align*} \quad\left(\text { since } t_{1} \geqslant t_{2}\right)
$$

Then, using Lemma $1, h$ is convex. Then for all $t_{1} \in \mathbb{R}, t_{2} \in \mathbb{R}$ and $\lambda \in[0,1]$

$$
\begin{align*}
& G\left(x+\left(\lambda t_{1}+(1-\lambda) t_{2}\right) d\right) \leqslant \lambda G\left(x+t_{1} d\right)+(1-\lambda) G\left(d+t_{2} d\right) \tag{20}\\
\Rightarrow \quad & G\left(\lambda\left(x+t_{1} d\right)+(1-\lambda)\left(x+t_{2} d\right)\right) \leqslant \lambda G\left(x+t_{1} d\right)+(1-\lambda) G\left(x+t_{2} d\right) \tag{21}
\end{align*}
$$

In particular it holds for $t_{1}=0, t_{2}=1$ and $d=y-x$, which concludes the proof.
Remark 3. The reciprocal holds true.

1.3 Convexity \Rightarrow Lower bounded by linear functions

Lemma 3. Let $G: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be differentiable and convex then:

$$
\begin{equation*}
G(y) \geqslant \underbrace{G(x)+\langle\nabla G(x), y-x\rangle}_{1 \text { st order Taylor expansion }}, \quad \forall x \in \mathbb{R}^{N} \quad \text { and } \quad y \in \mathbb{R}^{N} . \tag{22}
\end{equation*}
$$

Proof. Let $x \in \mathbb{R}^{N}$ and $d \in \mathbb{R}^{N}$. By definition of convexity, for all $t \in(0,1]$

$$
\begin{align*}
& G(x+t d) \leqslant(1-t) G(x)+t G(x+d) \tag{23}\\
\Rightarrow & G(x+t d)-G(x) \leqslant-t G(x)+t G(x+d) \tag{24}\\
\Rightarrow & \frac{G(x+t d)-G(x)}{t} \leqslant G(x+d)-G(x) \tag{25}
\end{align*}
$$

Since it is true for all $t \in(0,1]$, it is also true for $t \rightarrow 0$ since G is differentiable and then continuous on \mathbb{R}^{N}. Remark that by definition

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{G(x+t d)-G(x)}{t}=\nabla G(x)^{T} d \tag{26}
\end{equation*}
$$

Consider $d=y-x$ and then

$$
\begin{align*}
& \nabla G(x)^{T} d \leqslant G(x+d)-G(x) \tag{27}\\
\Rightarrow & \nabla G(x)^{T}(y-x) \leqslant G(y)-G(x) \tag{28}\\
\Rightarrow & G(x)+\nabla G(x)^{T}(y-x) \leqslant G(y) . \tag{29}
\end{align*}
$$

1.4 Lipschitz gradient \Rightarrow Upper-bounded by quadratic functions

Lemma 4. Let $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be differentiable with L Lipschitz gradient:

$$
\begin{equation*}
\|\nabla F(x)-\nabla F(y)\| \leqslant L\|x-y\|, \quad \forall x, y \tag{30}
\end{equation*}
$$

then

$$
\begin{equation*}
F(y) \leqslant \underbrace{F(x)+\langle\nabla F(x), y-x\rangle}_{1 \text { st order Taylor expansion }}+\underbrace{\frac{L}{2}\|y-x\|^{2}}_{\text {Residual bound }} \tag{31}
\end{equation*}
$$

Proof. Let $G(x)=\frac{L}{2}\|x\|^{2}-F(x)$, for all x. Remark that

$$
\begin{equation*}
\nabla G(x)=L x-\nabla F(x) \tag{32}
\end{equation*}
$$

By assumption, we have for any x, y :

$$
\begin{array}{ccc}
& \|\nabla F(x)-\nabla F(y)\| \leqslant L\|x-y\| & \\
& \Rightarrow \quad\|\nabla F(x)-\nabla F(y)\|\|x-y\| \leqslant L\|x-y\|^{2} & \text { (Multiply both sides by }\|x-y\|) \\
& \Rightarrow \quad\langle\nabla F(x)-\nabla F(y), x-y\rangle \leqslant L\|x-y\|^{2} & \text { (Cauchy-Schwartz inequality) } \\
& \Rightarrow \quad\langle\nabla F(x)-\nabla F(y), x-y\rangle \leqslant L\langle x-y, x-y\rangle & \\
\Rightarrow & \langle-[L x-\nabla F(x)]+[L y-\nabla F(y)], x-y\rangle \leqslant 0 & \\
\Rightarrow \quad\langle[L x-\nabla F(x)]-[L y-\nabla F(y)], x-y\rangle \geqslant 0 & \\
& \Rightarrow \quad\langle\nabla G(x)-\nabla G(y), x-y\rangle \geqslant 0 \tag{39}
\end{array}
$$

Since the last inequality hold for any x, y, using Lemma 2, it means that G is convex. Next, based on Lemma 3 , we get

$$
\begin{equation*}
G(y) \geqslant G(x)+\nabla G(x)^{T}(y-x) \tag{40}
\end{equation*}
$$

$$
\begin{align*}
& \Rightarrow \quad \frac{L}{2}\|y\|^{2}-F(y) \geqslant \frac{L}{2}\|x\|^{2}-F(x)+(L x-\nabla F(x))^{T}(y-x) \tag{41}\\
& \Rightarrow \quad \frac{L}{2}\|y\|^{2}-F(y) \geqslant \frac{L}{2}\|x\|^{2}-F(x)+L\langle x, y-x\rangle-\langle\nabla F(x), y-x\rangle \tag{42}\\
& \Rightarrow \quad \frac{L}{2}\|y\|^{2}+\frac{L}{2}\|x\|^{2}-L\langle x, y\rangle \geqslant F(y)-F(x)-\langle\nabla F(x), y-x\rangle \tag{43}\\
& \Rightarrow \quad \frac{L}{2}\|x-y\|^{2} \geqslant F(y)-F(x)-\langle\nabla F(x), y-x\rangle \tag{44}
\end{align*}
$$

Remark 4. If fact there is an equivalence between (30) and (31), see for instance https: //xingyuzhou. org/blog/notes/Lipschitz-gradient.

1.5 Proof of Theorem 1

Proof. Since F is differentiable with L Lipschitz gradient, based on Lemma 4, we have

$$
\begin{equation*}
F\left(x^{t+1}\right) \leqslant F\left(x^{t}\right)+\left\langle\nabla F\left(x^{t}\right), x^{t+1}-x^{t}\right\rangle+\frac{L}{2}\left\|x^{t+1}-x^{t}\right\|^{2} \tag{45}
\end{equation*}
$$

By definition of gradient descent

$$
\begin{equation*}
x^{t+1}-x^{t}=\gamma \nabla F\left(x^{t}\right) \tag{46}
\end{equation*}
$$

Then

$$
\begin{align*}
F\left(x^{t+1}\right) & \leqslant F\left(x^{t}\right)-\left\langle\nabla F\left(x^{t}\right), \gamma \nabla F\left(x^{t}\right)\right\rangle+\frac{L}{2}\left\|\gamma \nabla F\left(x^{t}\right)\right\|^{2} \tag{47}\\
& \leqslant F\left(x^{t}\right)-\gamma\left\|\nabla F\left(x^{t}\right)\right\|^{2}+\frac{L \gamma^{2}}{2}\left\|\nabla F\left(x^{t}\right)\right\|^{2} \tag{48}\\
& \leqslant F\left(x^{t}\right)-\left(\gamma-\frac{L \gamma^{2}}{2}\right)\left\|\nabla F\left(x^{t}\right)\right\|^{2} \tag{49}
\end{align*}
$$

If $\left\|\nabla F\left(x^{t}\right)\right\|=0$, we found a solution and GD has converged. Otherwise $\left\|\nabla F\left(x^{t}\right)\right\|>0$, and we have

$$
\begin{equation*}
\left(\gamma-\frac{L \gamma^{2}}{2}\right)\left\|\nabla F\left(x^{t}\right)\right\|^{2} \leqslant F\left(x^{t}\right)-F\left(x^{t+1}\right) \tag{50}
\end{equation*}
$$

We need to characterize when the left hand side is positive

$$
\begin{align*}
\gamma-\frac{L \gamma^{2}}{2}>0 & \Leftrightarrow \quad 1-\frac{L \gamma}{2}>0 \tag{51}\\
& \Leftrightarrow \quad \frac{L \gamma}{2}<1 \quad \Leftrightarrow \quad L \gamma<2 \quad \Leftrightarrow \quad \gamma<\frac{2}{L} \tag{52}
\end{align*}
$$

Then, since $0<\gamma<\frac{2}{L}$, we have

$$
\begin{equation*}
0<\left(\gamma-\frac{L \gamma^{2}}{2}\right)\left\|\nabla F\left(x^{t}\right)\right\|^{2} \leqslant F\left(x^{t}\right)-F\left(x^{t+1}\right) \tag{53}
\end{equation*}
$$

Then $F\left(x^{t}\right)$ is decresing with t. By summing over $t=0 \ldots T$, using telescopic cancellation, and using the assumption that $F(x) \geqslant C$, we get

$$
\begin{equation*}
0<\underbrace{\left(\gamma-\frac{L \gamma^{2}}{2}\right)}_{\text {constant wrt } T} \sum_{t=0}^{T}\left\|\nabla F\left(x^{t}\right)\right\|^{2} \leqslant F\left(x^{0}\right)-F\left(x^{T+1}\right) \leqslant \underbrace{F\left(x^{0}\right)-C}_{\text {constant wrt } T}, \quad \text { for all } T>0 \tag{54}
\end{equation*}
$$

Thus, $0<\sum_{t=0}^{\infty}\left\|\nabla F\left(x^{t}\right)\right\|^{2}<\infty$ which yields $\lim _{t \rightarrow \infty}\left\|\nabla F\left(x^{t}\right)\right\|=0$.

2 Speed of convergence

We want to prove the following theorem.
Theorem 2. Let $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be differentiable with L Lipschitz gradient, lower bounded and convex. Then, provided $0<\gamma<\frac{2}{L}$, the gradient descent sequence defined as:

$$
\begin{equation*}
x^{t+1}=x^{t}-\gamma \nabla F\left(x^{t}\right) \tag{55}
\end{equation*}
$$

converges to a stationary point x^{\star}

$$
\begin{equation*}
\nabla F\left(x^{\star}\right)=0 \tag{56}
\end{equation*}
$$

with the speed

$$
\begin{equation*}
F\left(x^{t}\right)-F\left(x^{\star}\right) \leqslant \frac{\left\|x^{0}-x^{\star}\right\|^{2}}{\left(\gamma-\frac{L \gamma^{2}}{2}\right) t} \tag{57}
\end{equation*}
$$

Corollary 1. Under the assumptions of Theorem 2 but with $0<\gamma<\frac{1}{L}$, the speed becomes

$$
\begin{equation*}
F\left(x^{t}\right)-F\left(x^{\star}\right) \leqslant \frac{2 L\left\|x^{0}-x^{\star}\right\|^{2}}{t} \tag{58}
\end{equation*}
$$

2.1 Convexity + Lipschitz gradient \Rightarrow Co-coercivity of gradient

Lemma 5. Let $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be differentiable with L Lipschitz gradient, and convex. Then we have cocoercivity of the gradient, i.e.:

$$
\begin{equation*}
\frac{1}{L}\|\nabla F(x)-\nabla F(y)\|^{2} \leqslant\langle\nabla F(x)-\nabla F(y), x-y\rangle \tag{59}
\end{equation*}
$$

Proof. Let $x \in \mathbb{R}^{N}, y \in \mathbb{R}^{N}$ and $z \in \mathbb{R}^{N}$. Since F has L Lipschitz gradient, we obtain by Lemma 4:

$$
\begin{align*}
& F(z) \leqslant F(x)+\langle\nabla F(x), z-x\rangle+\frac{L}{2}\|z-x\|^{2} \tag{60}\\
\Rightarrow & F(z)-F(x) \leqslant\langle\nabla F(x), z-x\rangle+\frac{L}{2}\|z-x\|^{2} \tag{61}
\end{align*}
$$

Since F is convex, we obtain by Lemma 3:

$$
\begin{align*}
& F(z) \geqslant F(y)+\langle\nabla F(y), z-y\rangle \tag{62}\\
\Rightarrow & F(y)-F(z) \leqslant-\langle\nabla F(y), z-x\rangle-\langle\nabla F(y), x-y\rangle \tag{63}\\
\Rightarrow & F(y)-F(z)+\langle\nabla F(y), x-y\rangle \leqslant-\langle\nabla F(y), z-x\rangle \tag{64}
\end{align*}
$$

Adding (61) and (64) leads to

$$
\begin{equation*}
F(y)-F(x)+\langle\nabla F(y), x-y\rangle \leqslant \underbrace{\langle\nabla F(x)-\nabla F(y), z-x\rangle+\frac{L}{2}\|z-x\|^{2}}_{=H(z)} \tag{65}
\end{equation*}
$$

Since the right hand side is true for all z, we want to find z that minimizes this quantity in order to get the tightest upper-bound. We have

$$
\begin{equation*}
\nabla H(z)=L(z-x)+\nabla F(x)-\nabla F(y) \quad \text { and } \quad \operatorname{Hessian}[H(z)]=L \cdot \operatorname{Id} \tag{66}
\end{equation*}
$$

Then H is convex and quadratic, and the minimum is reached at:

$$
\begin{equation*}
z^{\star}=x-\frac{1}{L}(\nabla F(x)-\nabla F(y)) \tag{67}
\end{equation*}
$$

Plugging z^{\star} in the previous equation leads to

$$
\begin{align*}
F(y)-F(x)+\langle\nabla F(y), x-y\rangle & \leqslant-\frac{1}{L}\langle\nabla F(x)-\nabla F(y), \nabla F(x)-\nabla F(y)\rangle+\frac{1}{2 L}\|\nabla F(x)-\nabla F(y)\|^{2} \tag{68}\\
& \leqslant-\frac{1}{2 L}\|\nabla F(x)-\nabla F(y)\|^{2} \tag{69}
\end{align*}
$$

We can swap the role of x and y, then

$$
\begin{equation*}
F(x)-F(y)+\langle\nabla F(x), y-x\rangle \leqslant-\frac{1}{2 L}\|\nabla F(x)-\nabla F(y)\|^{2} \tag{70}
\end{equation*}
$$

Summing both leads to

$$
\begin{equation*}
\langle\nabla F(x)-\nabla F(y), x-y\rangle \geqslant \frac{1}{L}\|\nabla F(x)-\nabla F(y)\|^{2} . \tag{71}
\end{equation*}
$$

Remark 5. For convex functions, the reciprocal holds true.
Remark 6. A direct consequence is that: $\left\langle\nabla F(x), x-x^{\star}\right\rangle \geqslant \frac{1}{L}\|\nabla F(x)\|^{2}$.

2.2 Proof of Theorem 2

Proof. Since F is differentatiable, convex with L Lipschitz gradient, then, by Lemma 5 and using the definition of x^{t+1}, we have

$$
\begin{align*}
\left\|x^{t+1}-x^{\star}\right\|^{2} & =\left\|x^{t}-x^{\star}-\gamma \nabla F\left(x^{t}\right)\right\|^{2} \tag{72}\\
& =\left\|x^{t}-x^{\star}\right\|^{2}+\gamma^{2}\left\|\nabla F\left(x^{t}\right)\right\|^{2}-2 \gamma\left\langle\nabla F\left(x^{t}\right), x^{t}-x^{\star}\right\rangle \tag{73}\\
& \leqslant\left\|x^{t}-x^{\star}\right\|^{2}+\left(\gamma^{2}-\frac{2 \gamma}{L}\right)\left\|\nabla F\left(x^{t}\right)\right\|^{2} \tag{74}
\end{align*}
$$

As $\gamma>0$, we have that

$$
\begin{equation*}
\gamma^{2}-\frac{2 \gamma}{L}<0 \Rightarrow \gamma-\frac{2}{L}<0 \Rightarrow \gamma<\frac{2}{L} \tag{75}
\end{equation*}
$$

Then, since $0<\gamma<2 / L$, we have $\gamma^{2}-\frac{2 \gamma}{L}<0$, and then

$$
\begin{equation*}
\left\|x^{t+1}-x^{\star}\right\|<\left\|x^{t}-x^{\star}\right\| \leqslant \ldots \leqslant\left\|x^{0}-x^{\star}\right\| \tag{76}
\end{equation*}
$$

By Lemma 3, since F is differentiable and convex we also have

$$
\begin{array}{ll}
& F\left(x^{\star}\right) \geqslant F\left(x^{t}\right)+\left\langle\nabla F\left(x^{t}\right), x^{\star}-x^{t}\right\rangle \\
\Rightarrow & F\left(x^{t}\right)-F\left(x^{\star}\right) \leqslant\left\langle\nabla F\left(x^{t}\right), x^{t}-x^{\star}\right\rangle \\
\Rightarrow & F\left(x^{t}\right)-F\left(x^{\star}\right) \leqslant\left\|\nabla F\left(x^{t}\right)\right\|\left\|^{t}-x^{\star}\right\| \\
\Rightarrow & F\left(x^{t}\right)-F\left(x^{\star}\right) \leqslant\left\|\nabla F\left(x^{t}\right)\right\|\left\|x^{0}-x^{\star}\right\| \\
\Rightarrow & \frac{\left(F\left(x^{t}\right)-F\left(x^{\star}\right)\right)^{2}}{\left\|x^{0}-x^{\star}\right\|^{2}} \leqslant\left\|\nabla F\left(x^{t}\right)\right\|^{2} \\
\Rightarrow & -\left\|\nabla F\left(x^{t}\right)\right\|^{2} \leqslant-\frac{\left(F\left(x^{t}\right)-F\left(x^{\star}\right)\right)^{2}}{\left\|x^{0}-x^{\star}\right\|^{2}} \tag{82}
\end{array} \quad \text { (Cauchy-Schwartz inequality) } \quad \text {) }
$$

Since F is differentiable with L Lipschitz gradient, based on Lemma 4, we have

$$
\begin{equation*}
F\left(x^{t+1}\right) \leqslant F\left(x^{t}\right)+\left\langle\nabla F\left(x^{t}\right), x^{t+1}-x^{t}\right\rangle+\frac{L}{2}\left\|x^{t+1}-x^{t}\right\|^{2} \tag{83}
\end{equation*}
$$

$$
\begin{align*}
& \Rightarrow \quad F\left(x^{t+1}\right) \leqslant F\left(x^{t}\right)-\left\langle\nabla F\left(x^{t}\right), \gamma \nabla F\left(x^{t}\right)\right\rangle+\frac{L}{2}\left\|\gamma \nabla F\left(x^{t}\right)\right\|^{2} \tag{84}\\
& \Rightarrow \quad F\left(x^{t+1}\right) \leqslant F\left(x^{t}\right)-\gamma\left\|\nabla F\left(x^{t}\right)\right\|^{2}+\frac{L \gamma^{2}}{2}\left\|\nabla F\left(x^{t}\right)\right\|^{2} \tag{85}\\
& \Rightarrow \quad F\left(x^{t+1}\right) \leqslant F\left(x^{t}\right)-\left(\gamma-\frac{L \gamma^{2}}{2}\right)\left\|\nabla F\left(x^{t}\right)\right\|^{2} \tag{86}
\end{align*}
$$

In particular, since $F\left(x^{\star}\right) \leqslant F(x)$, we have

$$
\begin{align*}
& 0<\gamma<\frac{2}{L} \Rightarrow \gamma<\frac{2}{L} \Rightarrow 1-\frac{L \gamma}{2}>0 \Rightarrow \gamma-\frac{L \gamma^{2}}{2}>0 \quad(\text { since } \gamma>0) \tag{87}\\
\Rightarrow & F\left(x^{t+1}\right) \leqslant F\left(x^{t}\right) \Rightarrow F\left(x^{t+1}\right)-F\left(x^{\star}\right) \leqslant F\left(x^{t}\right)-F\left(x^{\star}\right) \tag{88}\\
\Rightarrow & 1 \leqslant \frac{F\left(x^{t}\right)-F\left(x^{\star}\right)}{F\left(x^{t+1}\right)-F\left(x^{\star}\right)} \Rightarrow-\frac{F\left(x^{t}\right)-F\left(x^{\star}\right)}{F\left(x^{t+1}\right)-F\left(x^{\star}\right)} \leqslant-1 \tag{89}
\end{align*}
$$

Injecting (82) into (86) and using the last inequality leads to

$$
\begin{align*}
& F\left(x^{t+1}\right) \leqslant F\left(x^{t}\right)-\left(\gamma-\frac{L \gamma^{2}}{2}\right) \frac{\left(F\left(x^{t}\right)-F\left(x^{\star}\right)\right)^{2}}{\left\|x^{0}-x^{\star}\right\|^{2}} \tag{90}\\
\Rightarrow & F\left(x^{t+1}\right)-F\left(x^{\star}\right) \leqslant F\left(x^{t}\right)-F\left(x^{\star}\right)-\left(\gamma-\frac{L \gamma^{2}}{2}\right) \frac{\left(F\left(x^{t}\right)-F\left(x^{\star}\right)\right)^{2}}{\left\|x^{0}-x^{\star}\right\|^{2}} \tag{91}\\
\Rightarrow & \frac{F\left(x^{t+1}\right)-F\left(x^{\star}\right)}{F\left(x^{t}\right)-F\left(x^{\star}\right)} \leqslant 1-\left(\gamma-\frac{L \gamma^{2}}{2}\right) \frac{F\left(x^{t}\right)-F\left(x^{\star}\right)}{\left\|x^{0}-x^{\star}\right\|^{2}} \tag{92}\\
\Rightarrow & \frac{1}{F\left(x^{t}\right)-F\left(x^{\star}\right)} \leqslant \frac{1}{F\left(x^{t+1}\right)-F\left(x^{\star}\right)}-\frac{\left(\gamma-\frac{L \gamma^{2}}{2}\right)}{\left\|x^{0}-x^{\star}\right\|^{2}} \frac{F\left(x^{t}\right)-F\left(x^{\star}\right)}{F\left(x^{t+1}\right)-F\left(x^{\star}\right)} \tag{93}\\
\Rightarrow & \frac{1}{F\left(x^{t}\right)-F\left(x^{\star}\right)} \leqslant \frac{1}{F\left(x^{t+1}\right)-F\left(x^{\star}\right)}-\frac{\left(\gamma-\frac{L \gamma^{2}}{2}\right)}{\left\|x^{0}-x^{\star}\right\|^{2}} \tag{94}\\
\Rightarrow & \frac{\left(\gamma-\frac{L \gamma^{2}}{2}\right)}{\left\|x^{0}-x^{\star}\right\|^{2}} \leqslant \frac{1}{F\left(x^{t+1}\right)-F\left(x^{\star}\right)}-\frac{1}{F\left(x^{t}\right)-F\left(x^{\star}\right)} \tag{95}
\end{align*}
$$

Summing for $t=0 \ldots T-1$ and using telescopic cancellation leads to

$$
\begin{align*}
& T \frac{\left(\gamma-\frac{L \gamma^{2}}{2}\right)}{\left\|x^{0}-x^{\star}\right\|^{2}} \leqslant \frac{1}{F\left(x^{T}\right)-F\left(x^{\star}\right)}-\frac{1}{F\left(x^{0}\right)-F\left(x^{\star}\right)} \leqslant \frac{1}{F\left(x^{T}\right)-F\left(x^{\star}\right)} \tag{96}\\
\Rightarrow \quad & F\left(x^{T}\right)-F\left(x^{\star}\right) \leqslant \frac{\left\|x^{0}-x^{\star}\right\|^{2}}{T\left(\gamma-\frac{L \gamma^{2}}{2}\right)} \tag{97}
\end{align*}
$$

which concludes the proof

2.3 Proof of Corollary 1

Proof. By assumption, we have

$$
\begin{align*}
& \gamma<1 / L \Rightarrow 1-L \gamma / 2>1 / 2 \Rightarrow \gamma(1-L \gamma / 2)>\gamma / 2 \quad(\text { since } \gamma>0) \tag{98}\\
\Rightarrow & \frac{1}{\gamma(1-L \gamma / 2)}<\frac{2}{\gamma} \tag{99}
\end{align*}
$$

and then

$$
\begin{equation*}
F\left(x^{T}\right)-F\left(x^{\star}\right) \leqslant \frac{2\left\|x^{0}-x^{\star}\right\|^{2}}{T \gamma} \tag{100}
\end{equation*}
$$

