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Basics of filtering

Definition (Collins dictionary)

filter, noun: any electronic, optical, or acoustic device that blocks signals or

radiations of certain frequencies while allowing others to pass.

Refers to the direct model (observation/sensing filter)

y = Hx

{ • y: observed image

• x: image of interest

H is a linear filter, may act only on frequencies (e.g., blurs) or may not, but

can only remove information (e.g., inpainting).

(a) Unknown image x

H−→

(b) Observation y
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Basics of filtering

Definition (Oxford dictionary)

filter, noun: a function used to alter the overall appearance of an image in a

specific manner: ‘many other apps also offer filters for enhancing photos’

Refers to the inversion model (restoration filter)

x̂ = ψ(y)

{ • y: observed image

• x̂: estimate of x

ψ is a filter, linear or non-linear, that may act only on frequencies or may not,

and usually attempts to add information.

(a) Observation y

ψ−→

(b) Estimate x̂

3



Basics of filtering

Definition (Oxford dictionary)

filter, noun: a function used to alter the overall appearance of an image in a

specific manner: ‘many other apps also offer filters for enhancing photos’

Refers to the inversion model (restoration filter)

x̂ = ψ(y)

{ • y: observed image

• x̂: estimate of x

ψ is a filter, linear or non-linear, that may act only on frequencies or may not,

and usually attempts to add information.

(a) Observation y

ψ−→

(b) Estimate x̂

3



Basics of filtering

Action of filters

Perform punctual, local and/or global transformations of pixel values

Punctual:

New pixel value depends only

on the input one

e.g., change of contrast

Local:

New pixel value depends on

the surrounding input pixels

e.g., averaging/convolutions

Global:

New pixel value depends on

the whole input image

e.g., sigma filter
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Basics of filtering

Filters

• Often one of the first steps in a processing pipeline,

• Goal: improve, simplify, denoise, deblur, detect objects...

C
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Source: Mike Thompson
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Basics of filtering

Improve/denoise/detect
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Basics of filtering

Improve/denoise/detect

Fibroblast cells and microbreads (fluorescence microscopy)

Source: F. Luisier & C. Vonesch
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Basics of filtering

Improve/denoise/detect

Foreground/Background separation

Source: H. Jiang, et al.
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Basics of filtering

Standard filters

Two main approaches:

• Spatial domain: use the pixel grid / spatial neighborhoods

• Spectral domain: use Fourier transform, cosine transform, . . .

Spatial Spectral
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Spatial filtering



Spatial filtering – Local filters

Local / Neighboring filters

• Combine/select values of y in the neighborhood Ni,j of pixel (i, j)

• Following examples: moving average filters, derivative filters, median filters
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Spatial filtering – Moving average

Moving average

x̂i,j =
1

Card(N )

∑
(k,l)∈Ni,j

yk,l

or x̂i,j =
1

Card(N )

∑
(k,l)∈N

yi+k,j+l

N = N0,0

Examples:

• Boxcar filter: Ni,j = {(k, l) ; |i− k| 6 τ and |j − l| 6 τ}
• Diskcar filter: Ni,j =

{
(k, l) ; |i− k|2 + |j − l|2 6 τ2

}
3× 3 boxcar filter

x̂i,j =
1

9

i+1∑
k=i−1

j+1∑
l=j−1

yk,l

or

x̂i,j =
1

9

+1∑
k=−1

+1∑
l=−1

yi+k,j+l

Parameters:

• Size: 3× 3, 5× 5, . . .

• Shape: square, disk

• Centered or not
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Spatial filtering – Moving average

Moving weighted average

x̂i,j =

∑
(k,l)∈Z2

wk,lyi+k,j+l∑
(k,l)∈Z2

wk,l

• Neighboring filter: wi,j =

{
1 if (i, j) ∈ N
0 otherwise

• Gaussian kernel: wi,j = exp
(
− i

2+j2

2τ2

)
• Exponential kernel: wi,j = exp

(
−
√
i2+j2

τ

)

12



Spatial filtering – Moving average

• Rewrite x̂ as a function of s = (i, j), and let δ = (k, l) and t = s+ δ

x̂(s) =

∑
δ∈Z2

w(δ)y(s+ δ)∑
δ∈Z2

w(δ)
=

∑
t∈Z2

w(t− s)y(t)∑
t∈Z2

w(t− s︸ ︷︷ ︸
δ

)

Local average filter

• Weights are functions of the distance between t and s (length of δ) as

w(t− s) = ϕ(length(t− s))

• ϕ : R+ → R: kernel function (B 6= convolution kernel)

• Often, ϕ satisfies


• ϕ(0) = 1,

• lim
α→∞

ϕ(α) = 0,

• ϕ non-increasing: α > β ⇒ ϕ(α) 6 ϕ(β).
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Spatial filtering – Moving average

Example

• Box filter

ϕ(α) =

{
1 if α 6 τ

0 otherwise
and length(δ) = ||δ||∞

• Disk filter

ϕ(α) =

{
1 if α 6 τ

0 otherwise
and length(δ) = ||δ||2

• Gaussian filter

ϕ(α) = exp

(
− α2

2τ2

)
and length(δ) = ||δ||2

• Exponential filter

ϕ(α) = exp
(
−α
τ

)
and length(δ) = ||δ||2

Reminder:

||v||p =

(
d∑
k=1

vpk

)1/p
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Spatial filtering – Moving average

• ϕ often depends on (at least) one parameter τ

• τ controls the amount of filtering
• τ → 0: no filtering (output = input)
• τ →∞: average everything in the same proportion

(output = constant signal)

What would provide ϕ(α) =

{
1 if α 6 τ

0 otherwise
and length(δ) = ||δ||1?

d: dimension (d = 2 for pictures, d = 3 for videos, . . . )
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Spatial filtering – Moving average

B
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(a) τ = 1 (b) τ = 20 (c) τ = 40 (d) τ = 103

D
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m
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(e) τ = 1 (f) τ = 20 (g) τ = 40 (h) τ = 103

D
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k
fi

lt
er

(i) τ = 1 (j) τ = 20 (k) τ = 40 (l) τ = 103
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Spatial filtering

How to express anisotropy?

• ||e1||2 = 1

• ||e2||2 = 1

• 〈e1, e2〉 = 0

length(δ) =

√
δTΣ−1δ where Σ =

(
e1 e2

)(λ2
1 0

0 λ2
2

)(
eT1
eT2

)
︸ ︷︷ ︸

eigen-decomposition

= ||SRδ||2 where SR =

(
λ−1
1 0

0 λ−1
2

)
︸ ︷︷ ︸

S: scaling

(
eT1
eT2

)
︸ ︷︷ ︸
R: rotation

indeed, e1 =

(
cos(θ)

sin(θ)

)
, e2 =

(
− sin(θ)

cos(θ)

)
i.e. R =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
︸ ︷︷ ︸

rotation of −θ
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Spatial filtering – Moving average

(a) y (b) x̂, θ = 0° (c) θ = 26° (d) θ = 51°

(e) θ = 77° (f) θ = 103° (g) θ = 129° (h) θ = 154°
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Spatial filtering – Moving average for denoising

Moving average for denoising?

Figure 1 – (left) Gaussian noise σ = 10. (right) Gaussian filter τ = 3.
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Spatial filtering – Moving average for denoising

Moving average for denoising?

Figure 1 – (left) Gaussian noise σ = 30. (right) Gaussian filter τ = 5.
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Spatial filtering – Moving average for denoising

Input image Boxcar filter Gaussian filter

• Boxcar: oscillations/artifacts in vertical and horizontal directions

• Gaussian: no artifacts

• Moving average: reduces noise ,,

but loss of resolution, blurry aspect, removes edges /

20



Spatial filtering – Moving average for denoising

Image blur ⇒ No more edges ⇒ Structure destruction

⇒ Reduction of image quality

What is an edge?
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Spatial filtering – Edges

Edges?

• Separation between objects, important parts of the image

• Necessary for vision in order to reconstruct objects
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Spatial filtering – Edges

Edge: More or less brutal change of intensity
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Spatial filtering – Edges

• no edges ≡ no objects in the image

• abrupt change ⇒ gap between intensities ⇒ large derivative
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Spatial filtering – Derivative filters

How to detect edges?

• Look at the derivative

• How? Use derivative filters

• What? Filters that behave somehow as the derivative of real functions

How to design such filters?
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Spatial filtering – Derivative filters

Derivative of 1d signals

• Derivative of a function x : R→ R, if exists, is:

x′(t) = lim
h→0

x(t+ h)− x(t)

h
or lim

h→0

x(t)− x(t− h)

h
or lim

h→0

x(t+ h)− x(t− h)

2h︸ ︷︷ ︸
equivalent definitions

• For a 1d discrete signal, finite differences are

x′k = xk+1 − xk

Forward

x′k = xk − xk−1

Backward

x′k =
xk+1 − xk−1

2

Centered
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Spatial filtering – Derivative filters

Derivative of 1d signals

• Can be written as a filter

x′i =

+1∑
k=−1

κkyi+k, with

κ = (0,−1, 1)

Forward

κ = (−1, 1, 0)

Backward

κ = (− 1
2
, 0, 1

2
)

Centered
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Spatial filtering – Derivative filters

Derivative of 2d signals

• Gradient of a function x : R2 → R, if exists, is:

∇x =

 ∂x

∂s1
∂x

∂s2


with

∂x

∂s1
(s1, s2) = lim

h→0

x(s1 + h, s2)− x(s1, s2)

h

∂x

∂s2
(s1, s2) = lim

h→0

x(s1, s2 + h)− x(s1, s2)

h

28



Spatial filtering – Derivative filters

Derivative of 2d signals

• Gradient for a 2d discrete signal: finite differences in each direction

(∇1x)i,j =

+1∑
k=−1

+1∑
l=−1

(κ1)k,lyi+k,j+l

(∇2x)i,j =

+1∑
k=−1

+1∑
l=−1

(κ2)k,lyi+k,j+l

κ1 =

0 0 0

0 −1 0

0 1 0


κ2 =

0 0 0

0 −1 1

0 0 0


Forward

κ1 =

0 −1 0

0 1 0

0 0 0


κ2 =

 0 0 0

−1 1 0

0 0 0


Backward

κ1 =

0 − 1
2

0

0 0 0

0 1
2

0


κ2 =

 0 0 0

− 1
2

0 1
2

0 0 0


Centered
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Spatial filtering – Derivative filters

Second order derivative of 1d signals

• Second order derivative of a function x : R→ R, if exists, is:

x′′(t) = lim
h→0

x(t− h)− 2x(t) + x(t+ h)

h2

• For a 1d discrete signal: x′′k = xk−1 − 2xk + xx+1

• Corresponding filter: h = (1,−2, 1)

Laplacian of 2d signals

• Laplacian of a function x : R2 → R, if exists, is:

∆x =
∂2x

∂s21
+
∂2x

∂s22

• For a 2d discrete signal: x′′i,j = xi−1,j + xi,j−1 − 4xi,j + xi+1,j + xi,j+1

• Corresponding filter: h =

0 1 0

1 −4 1

0 1 0

 =

 1

−2

1

+
(

1 −2 1
)
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Spatial filtering – Derivative filters

(a) x (b) ∇1x (c) ∇2x (d) ∆x

(e) x (f) ∇1x (g) ∇2x (h) ∆x

Derivative filters detect edges , but are sensitive to noise /
31



Spatial filtering – Derivative filters

Other derivative filters

• Roberts cross operator (1963)

κ↘ =

(
+1 0

0 −1

)
and κ↙ =

(
0 +1

−1 0

)

• Sobel operator (1968)

κ1 =

−1 −2 −1

0 0 0

1 2 1

 =

−1

0

1

(1 2 1
)

and κ2 =

−1 0 1

−2 0 2

−1 0 1

 =

1

2

1

(−1 0 1
)

• Prewitt operator (1970)

κ1 =

−1 −1 −1

0 0 0

1 1 1

 =

−1

0

1

(1 1 1
)

and κ2 =

−1 0 1

−1 0 1

−1 0 1

 =

1

1

1

(−1 0 1
)
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Spatial filtering – Derivative filters

Edge detection

Based on the norm (and angle) of the discrete approximation of the gradient

||(∇x)k|| =
√

(∇1x)2k + (∇2x)2k and ∠(∇x)k = atan2((∇2x)k, (∇1x)k)
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Spatial filtering – Derivative filters

(a) x (b) ∇1x (c) ∇2x (d) ||∇x||

(e) x (f) ∇1x (Prewitt) (g) ∇2x (Prewitt) (h) ||∇x|| (Sobel)

Sobel & Prewitt: average in one direction, and differentiate in the other one

⇒ More robust to noise
34



Spatial filtering – Averaging and derivative filters

Comparison between averaging and derivative filters

• Moving average

x̂i,j =

∑
(k,l)∈Z2

wk,lyi+k,j+l∑
(k,l)∈Z2

wk,l
=

∑
(k,l)∈Z2

wk,l∑
(p,q)∈Z2

wp,q︸ ︷︷ ︸
κk,l

yi+k,j+l

=
∑

(k,l)∈Z2

κk,lyi+k,j+l with
∑

(k,l)∈Z2

κk,l = 1 (preserve mean)

• Derivative filter

x̂i,j =
∑

(k,l)∈Z2

κk,lyi+k,j+l with
∑

(k,l)∈Z2

κk,l = 0 (remove mean)

• They share the same expression

Do all filters have such an expression?
35



Spatial filtering – Linear translation-invariant filters

No, only linear translation-invariant (LTI) filters

Let ψ satisfying

1 Linearity ψ(ax+ by) = aψ(x) + bψ(y)

2 Translation-invariance ψ(yτ ) = ψ(y)τ where xτ (s) = x(s+ τ)

Then, there exist coefficients κk,l such that

ψ(y)i,j =
∑

(k,l)∈Z2

κk,lyi+k,j+l

The reciprocal holds true

Note: Translation-invariant = Shift-invariant = Stationary

= Same weighting applied everywhere

= Identical behavior on identical structures, whatever their location

ψ uniquely specified by the coefficients κ
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Spatial filtering – Linear translation-invariant filters

Linear translation-invariant filters

x̂i,j = ψ(y)i,j =
∑

(k,l)∈Z2

κk,lyi+k,j+l

• Weighted average filters:∑
κk,l = 1

Ex.: Box, Gaussian, Exponential, . . .

• Derivative filters:∑
κk,l = 0

Ex.: Laplacian, Sobel, Roberts, . . .
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Spatial filtering – Linear translation-invariant filters

LTI filter ≡ Moving weighted sum ≡ Cross-correlation ≡ Convolution

x̂i,j =
∑

(k,l)∈Z2

κ∗k,lyi+k,j+l = κ ? y (for κ complex)

=
∑

(k,l)∈Z2

νk,lyi−k,j−l = ν ∗ y where νk,l = κ∗−k,−l

ν called convolution kernel (impulse response of the filter)
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Spatial filtering – LTI filters and convolution

Properties of the convolution product

• Linear f ∗ (αg + βh) = α(f ∗ g) + β(f ∗ h)

• Commutative f ∗ g = g ∗ f

• Associative f ∗ (g ∗ h) = (f ∗ g) ∗ h

• Separable
h = h1 ∗ h2 ∗ . . . ∗ hp

⇒ f ∗ h = (((f ∗ h1) ∗ h2) . . . ∗ hp)
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Spatial filtering – LTI filters and convolution

• Directional separability of (isotrope) Gaussians:

G2d
τ = G1d horizontal

τ ∗ G1d vertical
τ
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Spatial filtering – LTI filters and convolution

Directional separability of Gaussians.

(y ∗ G2d
τ )i,j =

1

Z

∞∑
k=−∞

∞∑
l=−∞

exp

(
−k

2 + l2

2τ2

)
yi−k,j−l

≈ 1

Z

q∑
k=−q

q∑
l=−q

exp

(
−k

2 + l2

2τ2

)
yi−k,j−l︸ ︷︷ ︸

Restriction to a s× s window, s = 2q + 1

(Complexity O(s2n1n2)

≈ 1

Z

q∑
k=−q

exp

(
− k2

2τ2

) q∑
l=−q

exp

(
− l2

2τ2

)
yi−k,j−l︸ ︷︷ ︸

∝(y∗G1d horizontal)i−k,j︸ ︷︷ ︸
∝(y∗G1d horizontal)∗G1d vertical

(Complexity O(

sn1n2

))
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Spatial filtering – LTI filters and convolution

Directional separability of Gaussians.

(y ∗ G2d
τ )i,j =
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Z
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Spatial filtering – LTI filters and convolution

• Multi-scale separability of Gaussians: (Continuous case)

Gτ21 ∗ Gτ22 = Gτ21+τ22
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Spatial filtering – LTI filters and convolution

• Separability of Derivatives of Gaussian (DoG): (Continuous case)

G′τ ∗ f =
∂Gτ
∂s
∗ f = Gτ ∗

∂f

∂s
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Spatial filtering – LTI filters and convolution

Separability of other LTI filters

Directional sep. Multi-scale sep.

Gaussian filter
√

(↓ ∗ →)
√

Exponential filter

x x

Box filter

√
(↓ ∗ →) x

Disk filter

x x

Diamond filter

x x

Laplacian

√
(↓ +→)

-

Sobel

√
(↓ ∗ →)

-

Prewitt

√
(↓ ∗ →)

-
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Spatial filtering – LTI filters and convolution
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Spatial filtering – LTI and linear algebra

LTI filters can be written as a matrix vector product

Functional representation

x̂(si) =
∑
sj∈Z2

ν(si − sj)y(sj)

Vector representation

x̂ = Hy with hi,j = ν(si − sj)

• Vectors represent objects (here: images)

• Matrices represent linear processings (here: convolution)
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Spatial filtering – LTI and linear algebra

Proof in the periodical case.

• Assuming periodical boundary conditions, we get

x̂(si) =

n−1∑
j=0

ν(si − sj)y(sj)

• Let hi,j = ν(si − sj), x̂i = x̂(si) and yj = y(sj):

x̂i =

n−1∑
j=0

hi,jyj

• Define the matrix H = (hi,j), then x̂ = Hy.
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Spatial filtering – LTI and linear algebra

What does H look like?

1d periodical case

• In 1d, LTI filter stands for linear time invariant filters and reads

x̂(ti) =

n−1∑
j=0

ν(ti − tj)y(tj)

• Consider ti − tj = i− j, and let hi,j = ν(ti − tj) = νi−j[n].

• H is a circulant matrix given by

H =



ν0 νn−1 νn−2 . . . ν2 ν1

ν1 ν0 νn−1 νn−2 . . . ν2
. . .

. . .

. . .

νn−1 νn−2 . . . ν2 ν1 ν0
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Spatial filtering – LTI and linear algebra

What does H look like?

2d periodical case

• In 2d, H is a doubly block circulant matrix given by

Hx =



First line︷ ︸︸ ︷ Second line︷ ︸︸ ︷ . . .
Last line︷ ︸︸ ︷

ν0,0 ν0,−1 ν0,1 ν−1,0 ν−1,−1 ν−1,1 ν1,0 ν1,−1 ν1,1

ν0,1 ν0,0 ν0,−1 ν−1,1 ν−1,0 ν−1,−1 ν1,1 ν1,0 ν1,−1

. . .
. . .

. . .
. . .

. . .
. . . . . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

ν0,−1 ν0,1 ν0,0 ν−1,−1 ν−1,1 ν−1,0 ν1,−1 ν1,1 ν1,0

ν1,0 ν1,−1 ν1,1 ν0,0 ν0,−1 ν0,1 ν2,0 ν2,−1 ν2,1

ν1,1 ν1,0 ν1,−1 ν0,1 ν0,0 ν0,−1 ν2,1 ν2,0 ν2,−1

. . .
. . .

. . .
. . .

. . .
. . . . . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

ν1,−1 ν1,1 ν1,0 ν0,−1 ν0,1 ν0,0 ν2,−1 ν2,1 ν2,0

...
...

. . .
...

ν−1,0 ν−1,−1 ν−1,1 ν−2,0 ν−2,−1 ν−2,1 ν0,0 ν0,−1 ν0,1

ν−1,1 ν−1,0 ν−1,−1 ν−2,1 ν−2,0 ν−2,−1 ν0,1 ν0,0 ν0,−1

. . .
. . .

. . .
. . .

. . .
. . . . . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

ν−1,−1 ν−1,1 ν−1,0 ν−2,−1 ν−2,1 ν−2,0 ν0,−1 ν0,1 ν0,0





x0,0

x0,1
...
...

x0,n2−1

x1,0

x1,1
...
...

x1,n2−1

...

xn1−1,0

xn1−1,1
...
...

xn1−1,n2−1



48



Spatial filtering – Properties of circulant matrices

Properties of circulant matrices

• Recall that the convolution is commutative: f ∗ g = g ∗ f
⇒ Idem for (doubly block) circulant matrices: H1H2 = H2H1

• Two matrices commute if they have the same eigenvectors

⇒ All circulant matrices share the same eigenvectors

⇒ LTI filters acts in the same eigenspace

What eigenspace is that?
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Spatial filtering – Properties of circulant matrices

Theorem

• The n eigenvectors, with unit norm, of any circulant matrix H reads as

ek =
1√
n

(
1, exp

(
2πik

n

)
, exp

(
4πik

n

)
, . . . , exp

(
2(n− 1)πik

n

))
for k = 0 to n− 1. (Note: here i is the imaginary number)

• Recall that the eigenvectors (ek) with unit norm must satisfy:

Hek = λkek, e∗kel = 0 if k 6= l and ||ek||2 = 1

Challenge: try to prove it yourself.

The (ek) form a basis in which LTI filters modulates each element

pointwise. This will be at the heart of Chapter 3.
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Spatial filtering – LTI filters – Limitations

Limitations of LTI filters

• Derivative filters:

• Detect edges, but
• Sensitive to noise

• Moving average:

• Decrease noise, but
• Do not preserve edges

Difficult object/background separation

LTI filters cannot achieve a good trade-off

in terms of noise vs edge separation
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Spatial filtering – LTI filters – Limitations

Weak robustness against outliers

Figure 2 – (left) Impulse noise. (center) Gaussian filter τ = 5. (right) τ = 11.

• Even less efficient for impulse noise

• For the best trade-off: structures are lost, noise remains

• Do not adapt to the signal.

Can we achieve better performance by designing an adaptive filter?
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Adaptive filtering



Spatial filtering – Adaptive filtering

Linear filter ⇒ Non-adaptive filter

• Linear filters are non-adaptive

• The operation does not depend on the signal

, Simple, fast implementation

/ Introduce blur, do not preserve edges

Adaptive filter ⇒ Non-linear filter

• Adapt the filtering to the content of the image

• Operations/decisions depend on the values of y

• Adaptive ⇒ non-linear:

ψ(αx+ βy) 6= αψ(x) + βψ(y)

Since adapting to x or to y is not the same as adapting to αx+ βy.
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Spatial filtering – Adaptive filtering
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ψ(αx+ βy) 6= αψ(x) + βψ(y)

Since adapting to x or to y is not the same as adapting to αx+ βy.
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Spatial filtering – Median filter

Median filters

• Try to denoise while respecting main structures

x̂i,j = median(yi+k,j+l | (k, l) ∈ N ), N : neighborhood
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Spatial filtering – Median filter

Behavior of median filters

• Remove isolated points and thin structures

• Preserve (staircase) edges and smooth corners
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Spatial filtering – Median filter

Figure 3 – (left) Impulse noise. (center) 3× 3 median filter. (right) 9× 9.
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Spatial filtering – Median vs Gaussian

Figure 4 – (left) Impulse noise. (center) 9× 9 median filter. (right) Gaussian τ = 4.
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Spatial filtering – Median vs Gaussian

Figure 5 – (left) Gaussian noise. (center) 5× 5 median filter. (right) Gaussian τ = 3.
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Spatial filtering – Other standard non-linear filters

Morphological operators

• Erosion

x̂i,j = min(yi+k,j+l | (k, l) ∈ N )

• Dilation

x̂i,j = max(yi+k,j+l | (k, l) ∈ N )

• N called structural element

Figure 6 – (left) Salt-and-pepper noise, (center) Erosion, (right) Dilation
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Spatial filtering – Morphological operators

Figure 7 – (top) Opening, (bottom) Closing. (Source: J.Y. Gil & R. Kimmel)

• Opening: erosion and next dilation (remove small bright elements)

• Closing: dilation and next erosion (remove small dark elements)
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Spatial filtering – Global filtering

Local filter

• The operation depends only on the local neighborhood

• ex: Gaussian filter, median filter

, Simple, fast implementation

/ Do not preserve textures (global context)

Global filter

• Adapt the filtering to the global content of the image

• Result at each pixel may depend on all other pixel values

• Idea: Use non-linearity and global information
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Spatial filtering – Global average filters

Local average filter

x̂i =

n∑
j=1

wi,jyj

n∑
j=1

wi,j

with wi,j = ϕ(||si − sj ||22)

weights depend on the distance between pixel positions (linear)
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Spatial filtering – Global average filters

Sigma filter [Lee, 1981] / Yaroslavsky filter [Yaroslavsky, 1985]

x̂i =

n∑
j=1

wi,jyj

n∑
j=1

wi,j

with wi,j = ϕ(||yi − yj ||22)

weights depend on the distance between pixel values (non-linear)

Sigma filter: ϕ(α) =

{
1 if α 6 τ2

0 otherwise

Note: is called sigma filter because the threshold τ2

was called σ in the original paper.
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Spatial filtering – Sigma filter
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Figure 8 – Selection of pixel candidates in the sigma filter
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Spatial filtering – Sigma filter

(a) Noisy image σ = 10 (b) Sigma filter τ = 50 (c) τ = 100

(d) τ = 150 (e) τ = 200 (f) τ = 250
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Spatial filtering – Sigma filter

Limitations of Sigma filter

, Respects edges

/ Produces a loss of contrast: dull effect

/ Does not reduce noise as much

/ Equivalent to a change of histogram:

• each value is mapped to another one
• the mapping depends on the image

(adaptive/non-linear filtering)
0 100 200

0

50

100

150

200

250

=0

 = 50

 = 100

 = 150

 = 200

 = 250

/ Naive implementation: O(n2)

, Back to O(n) by using histograms

Idea: apply the sigma filter on moving windows

≡ Mix moving average with sigma filter
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Spatial filtering – Bilateral filter

Bilateral filter [Tomasi & Manduchi, 1998]

x̂i =

n∑
j=1

wi,jyj

n∑
j=1

wi,j

with wi,j = ϕspace(||si − sj ||22)× ϕcolor(||yi − yj ||22)

Weights depend on both the distance

• between pixel positions, and

• between pixel values.

• Consider the influence of space and color,

• Closer positions affect more the average,

• Closer intensities affect more the average.
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Spatial filtering – Bilateral filter

Properties

• Generalization of moving averages and sigma filters.

• ϕspace(·) = 1: sigma filter
• ϕcolor(·) = 1: moving average

• Spatial constraint: avoid dull effects

• Color constraint: avoid blur effects
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Spatial filtering – Bilateral filter
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Figure 9 – Selection of pixel candidates in the bilateral filter
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Spatial filtering – Bilateral filter

(a) Noisy image σ = 10 (b) Bilateral filter τcolor = 5 (c) τcolor = 20

(d) τcolor = 40 (e) τcolor = 100 (f) τcolor = 200

ϕcolor(α) = exp

(
− α

2τ2color

)
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Spatial filtering – Bilateral filter

(a) Noisy image σ = 10 (b) Bilateral filter τspace = 5 (c) τspace = 10

(d) τspace = 20 (e) τspace = 50 (f) τspace = ∞

ϕspace(α) =

{
1 if α 6 τspace2

0 otherwise
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Spatial filtering – Bilateral vs moving average

Figure 10 – (left) Gaussian noise. (center) Moving average. (right) Bilateral filter.

Bilateral filter

, suppresses more noise while respecting the textures

/ still remaining noises and dull effects
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Spatial filtering – Bilateral vs moving average

50 100 150 200 250
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100

150

200

250

Why are there remaining noises?

• Below average pixels are mixed with other below average pixels

• Above average pixels are mixed with other above average pixels

Why are there dull effects?

• To counteract the remaining noise effect, τcolor should be large

⇒ different things get mixed up together

What is missing? A more robust way to measure similarity,

but similarity of what exactly?
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Patches and non-local filters



Spatial filtering – Looking for other views

︸ ︷︷ ︸
T noisy observations y(t)

︸ ︷︷ ︸
Estimation x̂ of the unknown signal x

• Sample averaging of T noisy values:

E[x̂i] = E
[

1

T

T∑
t=1

y
(t)
i

]
=

1

T

T∑
t=1

E[y
(t)
i ] =

1

T

T∑
t=1

xi = xi (unbiased)

and Var[x̂i] = Var

[
1

T

T∑
t=1

y
(t)
i

]
=

1

T 2

T∑
t=1

Var[y
(t)
i ] =

1

T 2

T∑
t=1

σ
2

=
σ2

T

(reduce noise)

• . . . only if the selected values are iid.

similar = close to being iid

→ How can we select them on a single image?
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Spatial filtering – Selection-based filtering

General idea

• Goal: estimate the image x from the noisy image y

• Choose a pixel i to denoise

• Inspect the pixels j around the pixel of interest i
• Select the suitable candidates j
• Average their values and update the value of i

• Repeat for all pixels i

How to choose suitable pixels j to combine?
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Spatial filtering – Selection-based filtering

Selection rules

x̂i =

∑
j wi,jyj∑
j wi,j

where

wi,j =

{
1 if ||si − sj || 6 τ ← Moving average

0 otherwise

wi,j =

{
1 if ||yi − yj || 6 τ ← Sigma filter

0 otherwise

wi,j =

{
1 if xi = xj ← Oracle

0 otherwise

How to choose suitable pixels j to combine?
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Spatial filtering – Patches

Definition [Oxford dictionary]

patch (noun): A small area or amount of something.

Image patches: sub-regions of the image

• shape: typically rectangular

• size: much smaller than image size

→ most common use:

square regions between

5× 5 and 21× 21 pixels

→ trade-off:

size ↗ ⇒ more distinctive/informative

size ↘ ⇒ easier to model/learn/match

non-rectangular / deforming shapes:

computational complexity ↗

patches capture local context: geometry and texture
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Spatial filtering – Patches for texture synthesis

Copying/pasting similar patches yields impressive texture synthesis:

Texture synthesis method by Efros and Leung (1999)

To generate a new pixel value:

• extract the surrounding patch (yellow)

• find similar patches in the reference image

• randomly pick one of them

• use the value of the central pixel of that patch
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Spatial filtering – Patches for texture synthesis

Copying/pasting similar patches yields impressive texture synthesis:

Texture synthesis method by Efros and Leung (1999)

5x5 window 11x11 window 15x15 window 23x23 window
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Spatial filtering – Non-local means

Bilateral filter [Tomasi & Manduchi, 1998]

x̂i =

∑
j∈Ni

wi,jyj∑
j∈Ni

wi,j
with wi,j = ϕspace(||si − sj ||22)× ϕcolor(||yi − yj ||22)

weights depend on the distance between pixel positions and pixel values

Non-local means [Buades at al, 2005, Awate et al, 2005]

x̂i =

∑
j∈Ni

wi,jyj

n∑
j∈Ni

wi,j

with wi,j = ϕ(||Piy − Pjy||22)

• Ni: large neighborhood of i, called search window (typically 21× 21)

• Pi: operator extracting a small window, patch, at i (typically 7× 7)

weights in a large search window depend on the distance between patches
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Spatial filtering – Non-local means

Remarks

The term non-local refers to that disconnected pixels are mixed together.

The Sigma, Yaroslavsky and Bilateral filters are then also non-local.

But Non-Local means︸ ︷︷ ︸
(or NL-means)

always refers to the one using patches.

A similar algorithm was concurrently proposed under the name UINTA.

NL-means [Buades et al, CVPR 2005] UINTA [Awate et al, CVPR 2005]
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Spatial filtering – Non-local means

Non-local approach [Buades at al, 2005, Awate et al, 2005]

• Local filters: average neighborhood pixels

• Non-local filters: average pixels being in a similar context
x̂i =

∑
j wi,jyj∑
j wi,j

Similarity of noise−free values
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Patches are redundant in most types of images (large noise reduction)

and similar ones tend to share the same underlying noise-free values (unbiasedness)

wi,j = e
−
||si−sj ||

2
2

2τ2

wi,j =

e
−
||Piy−Pjy||

2
2

2τ2
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Spatial filtering – Non-local means

Non-local approach [Buades at al, 2005, Awate et al, 2005]

• Local filters: average neighborhood pixels

• Non-local filters: average pixels being in a similar context
x̂i =

∑
j wi,jyj∑
j wi,j

wi,j = e
−
||si−sj ||

2
2

2τ2

Weighted

average

Search window

Weights map

Noisy image Local approach

wi,j =

e
−
||Piy−Pjy||

2
2

2τ2
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Spatial filtering – Non-local means

Non-local approach [Buades at al, 2005, Awate et al, 2005]

• Local filters: average neighborhood pixels

• Non-local filters: average pixels being in a similar context
x̂i =

∑
j wi,jyj∑
j wi,j

wi,j = e
−
||si−sj ||

2
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2τ2
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Spatial filtering – Non-local means

Non-local approach [Buades at al, 2005, Awate et al, 2005]

• Local filters: average neighborhood pixels

• Non-local filters: average pixels being in a similar context
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Spatial filtering – Non-local means

Example (Map of non-local weights)

Figure 11 – Image extracted from [Buades et al., 2005]
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Spatial filtering – Non-local means
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(d) Search window size (e) Patch size (f) Bandwidth τ

Figure 12 – Influence of the three main parameters of the NL means on the solution.
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Spatial filtering – Non-local means

Limitations of NL-means

, Respects edges / Remaining noise around rare patches

, Good for texture / Loses/blurs details with low SNR

(a) Noisy image (b) NL-means (c) BM3D

/ Naive implementation: O(n|N ||P|) (∼ 1 minute for 256× 256 image)

, Using integral tables: O(n|N |) (few seconds for 256× 256 image)

, Or FFT: O(n|N | log |N |)
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Spatial filtering – Extensions of non-local means

More elaborate schemes mostly rely on patches

and use more sophisticated estimators than the average

But we will need to study some more of the basics first...
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Questions?

Next class: basics of filtering II

Sources, images courtesy and acknowledgment

• L. Condat

• L. Denis

• J.Y. Gil

• A. Horodniceanu

• H. Jiang

• I. Kokkinos

• R. Kimmel

• F. Luisier

• S. Seitz

• M. Thompson

• V.-T. Ta

• C. Vonesh

• Wikipedia
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