Image and video restoration

Chapter III - Basics of filtering II

Charles Deledalle
May 30, 2019

Basics of filtering

Standard filters

Two main approaches:

- Spatial domain:
- Spectral domain:
use the pixel grid / spatial neighborhoods
use Fourier transform, cosine transform, ...

Spectral filtering

Spectral filtering - Periodical functions

A sine wave (or sinusoidal) $f(t)=a \cos (2 \pi u t+\varphi)$ is periodical

$$
f(t+T)=f(t) \quad \text { for } \quad T=1 / u, \quad \text { for all } \quad t \in \mathbb{R}
$$

and characterized by

- u : frequency $(u=1 / T)$
- a : amplitude
- φ : phase $(\varphi=-2 \pi u s)$
where
- T : period
- s : shift

Spectral filtering - Periodical functions

Figure 1 - Simple periodical signals

Spectral filtering - Periodical functions

$$
u_{1}=1, a_{1}=1, \varphi_{1}=3 \pi / 2 \quad u_{2}=3, a_{2}=1 / 3, \varphi_{2}=3 \pi / 2
$$

Figure 2 - A complex periodical signal as the sum of simple ones

$$
f(t)=a_{1} \cos \left(2 \pi u_{1} t+\varphi_{1}\right)+a_{2} \cos \left(2 \pi u_{2} t+\varphi_{2}\right)
$$

Spectral filtering - Periodical functions

$$
\begin{array}{cc}
u_{1}=1, a_{1}=1, \varphi_{1}=3 \pi / 2 & u_{2}=3, a_{2}=1 / 3, \varphi_{2}=3 \pi / 2 \\
u_{3}=5, a=1 / 5, \varphi_{1}=3 \pi / 2 & u_{4}=7, a_{2}=1 / 7, \varphi_{2}=3 \pi / 2 \\
u_{5}=9, a_{2}=1 / 9, \varphi_{2}=3 \pi / 2
\end{array}
$$

Figure 2 - A complex periodical signal as the sum of simple ones

$$
f(t)=\sum_{k=1}^{5} a_{k} \cos \left(2 \pi u_{k} t+\varphi_{k}\right)
$$

Spectral filtering - Periodical functions

1	$\mapsto(1,3 \pi / 2)$	2	$\mapsto(0,0)$
3	$\mapsto(1 / 3,3 \pi / 2)$	4	$\mapsto(0,0)$
5	$\mapsto(1 / 5,3 \pi / 2)$	6	$\mapsto(0,0)$
7	$\mapsto(1 / 7,3 \pi / 2)$	8	$\mapsto(0,0)$
9	$\mapsto(1 / 9,3 \pi / 2)$		$10 \mapsto(0,0)$

The function $u \mapsto\left(a_{u}, \varphi_{u}\right)$ characterizes f

Spectral filtering - Periodical functions

How to change representation?

Spectral filtering - Fourier transform

Jean Baptiste Joseph Fourier

Figure 3 - (left) Sketch of Fourier by Julien Léopold Boilly. (right) Bust of Fourier at Musée de l'Ancien Évêché in Grenoble, France.

Spectral filtering - Fourier transform - Periodical functions

Fourier series

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a T-periodical function, i.e.,

$$
f(t+T)=f(t), \quad \text { for all } \quad t \in \mathbb{R}
$$

with $T>0$ as small as possible.

- Denote by $u=1 / T$ the fundamental frequency.
- Then, under only mild assumptions on f, we have

$$
f(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(2 \pi u_{k} t+\varphi_{k}\right) \quad \text { with } \quad u_{k}=u \cdot k
$$

- The frequencies $u_{k}=u \cdot k$ are called harmonics.
- The coefficients $\left(a_{k}, \varphi_{k}\right)$ associated to the harmonic u_{k} characterize f.

Spectral filtering - Fourier transform - Periodical functions

Spectral filtering - Fourier transform - Periodical functions

$$
f(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(2 \pi u k t+\varphi_{k}\right)
$$

Complex formulation

- Using Euler's formula: $\cos (x)=\frac{e^{i x}+e^{-i x}}{2} \quad\left(i\right.$ imaginary number: $\left.i^{2}=-1\right)$

$$
\begin{aligned}
f(t) & =\frac{a_{0}}{2}+\sum_{k=1}^{\infty} \frac{a_{k}}{2}\left(e^{i\left(2 \pi u k t+\varphi_{k}\right)}+e^{-i\left(2 \pi u k t+\varphi_{k}\right)}\right) \\
& =\sum_{k=-\infty}^{-1} \underbrace{\frac{a_{|k|} e^{-i \varphi|k|}}{2}}_{c_{k}} e^{i 2 \pi u k t}+\underbrace{\frac{a_{0}}{2} e^{i 2 \pi u 0 t}}_{c_{0}}+\sum_{k=1}^{\infty} \underbrace{\frac{a_{|k|} e^{i \varphi|k|}}{2}}_{c_{k}} e^{i 2 \pi u k t} \\
& =\sum_{k=-\infty}^{+\infty} c_{k} e^{i 2 \pi u k t} \quad \text { with } \varphi_{0}=0
\end{aligned}
$$

- Coefficients $c_{k}=\frac{1}{2} a_{|k|} e^{\operatorname{sign}(k) i \varphi} \varphi_{|k|} \in \mathbb{C}$ encode a_{k} and φ_{k} \Rightarrow They characterize f.
- They are called Fourier coefficients.

Spectral filtering - Fourier transform - Periodical functions

$$
f(t)=\sum_{k=-\infty}^{+\infty} c_{k} e^{i 2 \pi u k t}
$$

Negative frequencies

- Introduction of negative frequencies

- As $c_{k}=\frac{1}{2} a_{|k|} e^{\operatorname{sign}(k) i \varphi}|k|$
- We have $c_{k}=c_{-k}^{*}$
- Amplitude spectrum: symmetrical
- Phase spectrum: anti-symmetrical

- Complex spectrum: Hermitian
- f as complex values: $f(t) \in \mathbb{C} \backslash \mathbb{R} \Leftrightarrow$ non-Hermitian complex spectrum.

Spectral filtering - Fourier transform - Periodical functions

$$
f(t)=\sum_{k=-\infty}^{+\infty} c_{k} e^{i 2 \pi u k t}
$$

Why the complex formulation?

$$
\begin{aligned}
f(t) & =\left(\alpha f_{1}+\beta f_{2}\right)(t) \\
& =\alpha f_{1}(t)+\beta f_{2}(t) \\
& =\alpha \sum_{k=-\infty}^{+\infty}\left(c_{1}\right)_{k} e^{i 2 \pi u k t}+\beta \sum_{k=-\infty}^{+\infty}\left(c_{2}\right)_{k} e^{i 2 \pi u k t} \\
& =\sum_{k=-\infty}^{+\infty}\left(\alpha c_{1}+\beta c_{2}\right)_{k} e^{i 2 \pi u k t}
\end{aligned}
$$

As the coefficients c characterized f, by identification:

$$
c=\alpha c_{1}+\beta c_{2}
$$

Spectral filtering - Fourier transform - Periodical functions

$$
f(t)=\sum_{k=-\infty}^{+\infty} c_{k} e^{i 2 \pi u k t}=\sum_{k=-\infty}^{+\infty} c_{k} a_{k}(t)
$$

Fourier atoms

- Functions: $a_{k}(t)=e^{i 2 \pi u k t}$, for $k \in \mathbb{Z}$.
- They are orthogonal to each other, for $k \neq l$:

$$
\underbrace{\left\langle a_{k}, a_{l}\right\rangle}_{\begin{array}{c}
\text { sealar rpoouct for } \\
\text { periodical functions }
\end{array}}=\int_{-T / 2}^{T / 2} a_{k}(t) a_{l}^{*}(t) \mathrm{d} t=0
$$

- They have the same finite norm:

$$
\left\|a_{k}\right\|_{2}^{2}=\int_{-T / 2}^{T / 2} a_{k}(t) a_{k}^{*}(t) \mathrm{d} t=T
$$

- In particular: $a_{k} \neq 0$

Spectral filtering - Fourier transform - Periodical functions

Proof.

- Remark that, for $k \neq l, a_{k}$ and a_{l} satisfy

$$
\begin{align*}
\underbrace{\left\langle a_{k}, a_{l}\right\rangle}_{\begin{array}{c}
\text { scalar product for } \\
\text { periodical function }
\end{array}} & =\int_{-T / 2}^{T / 2} a_{k}(t) a_{l}^{*}(t) \mathrm{d} t \\
& =\int_{-T / 2}^{T / 2} e^{i 2 \pi u k t} e^{-i 2 \pi u l t} \mathrm{~d} t \\
& =\int_{-T / 2}^{T / 2} e^{i 2 \pi u(k-l) t} \mathrm{~d} t \\
& =\left[\frac{e^{i 2 \pi u(k-l) t}}{i 2 \pi u(k-l)}\right]_{-T / 2}^{T / 2} \\
& =\frac{e^{i \pi(k-l)}-e^{-i \pi(k-l)}}{i 2 \pi u(k-l)} \\
& =\frac{\sin (\pi(k-l))}{\pi u(k-l)}=0 \tag{T=1/u}
\end{align*}
$$

(Since $k-l \in \mathbb{Z}$)

Spectral filtering - Fourier transform - Periodical functions

Proof.

- Moreover for all k

$$
\begin{aligned}
\left\langle a_{k}, a_{k}\right\rangle & =\int_{-T / 2}^{T / 2} a_{k}(t) a_{k}^{*}(t) \mathrm{d} t \\
& =\int_{-T / 2}^{T / 2} e^{i 2 \pi u k t} e^{-i 2 \pi u k t} \mathrm{~d} t \\
& =\int_{-T / 2}^{T / 2} \mathrm{~d} t \\
& =T
\end{aligned}
$$

Spectral filtering - Fourier transform - Periodical functions

$$
f(t)=\sum_{k=-\infty}^{+\infty} c_{k} e^{i 2 \pi u k t}=\sum_{k=-\infty}^{+\infty} c_{k} a_{k}(t)
$$

Fourier basis

(1) Complex Fourier series:
all T-periodical functions are linear combinations of Fourier atoms a_{k}.
(2) Fourier atoms satisfy:

$$
a_{k} \neq 0 \text { and }\left\langle a_{k}, a_{l}\right\rangle=0 \text { for } k \neq l
$$

$(1)+(2) \Rightarrow$
Fourier atoms form an orthogonal basis for T-periodical functions called Fourier basis.

What are the consequences?

Spectral filtering - Fourier transform - Periodical functions

We can compute the coefficient c_{k}

- Since $\left(a_{k}\right)$ form an orthogonal basis for T-periodical functions:

$$
f(t)=\sum_{k=-\infty}^{+\infty} \frac{\left\langle f, a_{k}\right\rangle}{\left\|a_{k}\right\|_{2}^{2}} a_{k}(t)=\sum_{k=-\infty}^{+\infty}\left(\frac{1}{T} \int_{-T / 2}^{+T / 2} f\left(t^{\prime}\right) e^{-i 2 \pi u k t^{\prime}} \mathrm{d} t^{\prime}\right) e^{i 2 \pi u k t}
$$

- By identification

$$
c_{k}=\underbrace{\frac{1}{T} \int_{-T / 2}^{+T / 2} f(t) e^{-i 2 \pi u k t} \mathrm{~d} t}_{\mathcal{F}[f]_{k}}
$$

- and the operation is invertible and corresponds to the Fourier series

$$
f(t)=\underbrace{\sum_{k=-\infty}^{+\infty} c_{k} e^{i 2 \pi u k t}}_{\mathcal{F}^{-1}\left[c_{k}\right](t)}
$$

(inverse Fourier transform)

Spectral filtering - Fourier transform - Generalization

Non-periodical functions

- If f is non-periodical: no more fundamental frequency
- Cannot be characterized only by the harmonics: $\ldots,-2 u,-u, 0, u, 2 u, \ldots$
- Require a continuum of frequencies: all possible $u \in \mathbb{R}$
- Under mild assumptions on f, we get similar transforms

$$
\text { and } \underbrace{f(t)=\mathcal{F}^{-1}[\hat{f}](t)=\int_{-\infty}^{+\infty} f(t) e^{-i 2 \pi u t} \mathrm{~d} t}_{\text {Fourier transform }} \hat{\int_{-\infty}^{+\infty} \hat{f}(u) e^{i 2 \pi u t} \mathrm{~d} u}
$$

Why does it matter?
It helps at simplifying calculus, e.g., eases to find solutions of differential equations.

Spectral filtering - Discrete Fourier Transform (DFT)

Discrete signals

- Let $f \in \mathbb{R}^{n}$ be a discrete signal
- Consider it to be periodical: $f_{k+n}=f_{k}$
- It can be characterized only by its n harmonics of the form:

$$
\frac{-\lceil n / 2\rceil+1}{n}, \ldots,-\frac{2}{n},-\frac{1}{n}, 0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{\lfloor n / 2\rfloor}{n}
$$

- The discrete Fourier transforms (DFT) is thus given by

$$
\begin{gathered}
\underbrace{\hat{f}_{u}=\mathcal{F}[f]_{u}=\sum_{k=0}^{n-1} f_{k} e^{-i 2 \pi \frac{u k}{n}}}_{\text {Discrete Fourier transform }}, \quad u=0 \ldots n-1 \\
\text { and } \underbrace{f_{k}=\mathcal{F}^{-1}[\hat{f}]_{k}=\frac{1}{n} \sum_{u=0}^{n-1} \hat{f}_{u} e^{i 2 \pi \frac{u k}{n}}}_{\text {inverse DFT }}, \quad k=0 \ldots n-1
\end{gathered}
$$

Why does it matter? It allows us to do signal processing.

Spectral filtering - 2d DFT

Discrete images

- Let $f \in \mathbb{R}^{n_{1} \times n_{2}}$ be a discrete image
- Consider it to be periodical: $f_{k+n_{1}, l+n_{2}}=f_{k, l}$
- The 2d discrete Fourier transforms (DFT) is thus given by

$$
\begin{gathered}
\underbrace{\hat{f}_{u, v}=\mathcal{F}[f]_{u, v}=\sum_{k=0}^{n_{1}-1} \sum_{l=0}^{n_{2}-1} f_{k, l} e^{-i 2 \pi\left(\frac{u k}{n_{1}}+\frac{v l}{n_{2}}\right)}}_{\text {2D DFT }} \\
\text { and } \underbrace{f_{k, l}=\mathcal{F}^{-1}[\hat{f}]_{k, l}=\frac{1}{n_{1} n_{2}} \sum_{u=0}^{n_{1}-1} \sum_{v=0}^{n_{2}-1} \hat{f}_{u, v} e^{i 2 \pi\left(\frac{u k}{n_{1}}+\frac{v l}{n_{2}}\right)}}_{\text {inverse 2D DFT }}
\end{gathered}
$$

- The pair (u, v) represents a two-dimensional frequency.

What does it look like?

Spectral filtering - 2d DFT

- Each point (u, v) in the Fourier domain corresponds to a sine "wave" of frequency $\sqrt{u^{2}+v^{2}}$ along the axis Δ directed by the vector (u, v)

Figure $4-2 \mathrm{D}$ signals with spectrum limited only to frequencies (u, v) and $(-u,-v)$

Spectral filtering - 2d DFT

$$
\hat{f}_{u_{1}, v_{1}} \cdot e^{i 2 \pi\left(\frac{u_{1} k}{n_{1}}+\frac{v_{1} l}{n_{2}}\right)}
$$

$$
+
$$

$$
=\frac{1}{n} \quad \hat{f}_{u_{1}, v_{2}} \cdot e^{i 2 \pi\left(\frac{u_{1} k}{n_{1}}+\frac{v_{2} l}{n_{2}}\right)}
$$

$$
+
$$

$$
\hat{f}_{u_{i}, v_{j}} \cdot e^{i 2 \pi\left(\frac{u_{i} k}{n_{1}}+\frac{v_{j} k}{n_{l}}\right)}
$$

Image $=$ weighted sum of sine waves

Spectral filtering - 2d DFT

- In practice: all frequencies are more or less used in different regions

Which kinds of frequencies are used in the white squares?

Spectral filtering - 2d DFT

- Spatial frequency: measures how fast the image varies in a given direction

How do we represent the Fourier coefficients?

Spectral filtering - 2d DFT

- Represent each Fourier coefficients on a 2d grid

- $\left|\hat{f}_{u, v}\right|$: contribution of frequency $\sqrt{u^{2}+v^{2}}$ in the direction (u, v).
- $\arg \hat{f}_{u, v}$: phase shift of frequency $\sqrt{u^{2}+v^{2}}$ in the direction (u, v).
- Center \equiv low frequencies
- Periphery \equiv high frequencies

Spectral filtering - 2d DFT

Example

How to interpret it?

Spectral filtering - 2d DFT

- Amplitude spectrum highlights the "directions" of a pattern
- Edge is represented by all harmonics in its orthogonal direction
- i.e., a line in the orthogonal direction (passing through the origin)

Spectral filtering - 2d DFT

Spectral filtering - 2d DFT

- In general, we only represent the modulus
- Nevertheless, the phase encodes a large amount of information

Spectral filtering - 2d DFT

Why do the vertical and horizontal directions appear so strong?

Spectral filtering - 2d DFT

Periodization

- It is assumed that the image is periodical
- Image borders may create strong edges
- Strong vertical and horizontal directions

Spectral filtering - 2d DFT

Periodization

- The spectrum is also periodical
- Different ways to represent it

Spectral filtering - 2d DFT

Recenter / Shift

- Option 1: place the zero-frequency in the middle
- Good way to visualize it
- Option 2: place the zero-frequency at top left location
- Good way to manipulate it
- Representation used by Python, Matlab, fftw3, ...

Spectral filtering - 2d DFT

Visualization of the amplitude spectrum

- Recall that $\hat{f}_{u, v}=\sum_{k=0}^{n_{1}-1} \sum_{l=0}^{n_{2}-1} f_{k, l} e^{-i 2 \pi\left(\frac{u k}{n_{1}}+\frac{v l}{n_{2}}\right)}$
- Then $\hat{f}_{0,0}=\sum_{k=0}^{n_{1}-1} \sum_{l=0}^{n_{2}-1} f_{k, l}=\sum$ of all intensities Can be very large!
- Consequence: the dynamic is too large to be displayed correctly
- Solution:
- Classical one:
perform a punctual non-linear transform
use $\log \left(\left|\hat{f}_{u, v}\right|+\varepsilon\right), \varepsilon>0$

Spectral filtering - 2d DFT

A

1

B

2

C

3

$\overline{+\sigma_{n}^{3}}$

yeuter P_{1} d a Fownmbie Co(D

D

4

Which one is which?

Spectral filtering - Principle

Principle of spectral filtering

(1) Apply the Fourier transform: $\hat{f}=\mathcal{F}[f]$
(2) Extract the amplitude and phase

$$
\begin{aligned}
a_{u, v} & =\left|\hat{f}_{u, v}\right|=\sqrt{\operatorname{Re}\left[\hat{f}_{u, v}\right]^{2}+\operatorname{Im}\left[\hat{f}_{u, v}\right]^{2}} \\
\text { and } \quad \varphi_{u, v} & =\arg \hat{f}_{u, v}=\operatorname{atan2} 2\left(\operatorname{lm}\left[\hat{f}_{u, v}\right], \operatorname{Re}\left[\hat{f}_{u, v}\right]\right)
\end{aligned}
$$

(3) Modify the amplitude spectrum (and eventually the phase spectrum)

$$
a_{u, v} \leftarrow a_{u, v}^{\prime} \quad \text { and } \quad \varphi_{u, v} \leftarrow \varphi_{u, v}^{\prime}
$$

(4) Reconstruct a complex spectrum

$$
\hat{f}_{u, v}^{\prime}=a_{u, v}^{\prime} e^{i \varphi_{u, v}^{\prime}}
$$

(5) Apply the inverse Fourier transform: $f^{\prime}=\mathcal{F}^{-1}\left[\hat{f}^{\prime}\right]$

Spectral filtering - Fast Fourier Transform

Discrete Fourier Transform (DFT)

$$
\begin{aligned}
\hat{f}_{u}=\sum_{k=0}^{n-1} f_{k} e^{-i 2 \pi \frac{u k}{n}} & \rightarrow \quad \text { Perform one loop for } u=0 \text { to } n-1 \\
& \rightarrow \quad \text { Direct computation in } O\left(n^{2}\right)
\end{aligned}
$$

2d Discrete Fourier Transform (DFT2)

- The discrete Fourier transform is directionally separable

- Complexity in:

$$
O\left(n_{1} n_{2}^{2}+n_{2} n_{1}^{2}\right)=O\left(n\left(n_{1}+n_{2}\right)\right)
$$

- Best scenario $n_{1}=n_{2}=\sqrt{n}$:

$$
O\left(n^{3 / 2}\right)
$$

Spectral filtering - Fast Fourier Transform

Fast Fourier Transform (FFT)
[Cooley \& Tukey, 1965]

- ~1805: first described by Gauss (Fourier's paper: 1807)
- Exploits symmetry of DFT for faster computation
- Computation of the discrete Fourier transform can be done in

$$
O(n \log n)
$$

- Same for images thanks to directional separability

$$
O\left(n_{1} n_{2} \log n_{2}+n_{2} n_{1} \log n_{1}\right)=O\left(n\left(\log n_{2}+\log n_{1}\right)\right)=O(n \log n)
$$

An Algorithm for the Machine Calculation of Complex Fourier Series
By James w. Cooley and John w. Tukey
An efficient method for the calculation of the intersetions of a $2^{\prime \prime}$ factorinl experiment was introduced by Yates and is widely known by his name. The generaliza tion to 3^{-}was given by Box ct al. [1]. Good [2] generalized these metbods and gave
elegunt algorithma for which one clase of applications is the calculation of Fourier series. In their full generality, Good's metbods are applicable to certain problems in which ons must multiply an N-vector by an $N \times N$ matrix which can be fnotored into m sparse matrioss, wbere m is proportjonal to $30 \mathrm{~g} N$. This results in a procedure requiring a number of operations proportional to $N \log N$ rather than N^{2}. Thees methods are applied here to the calculstion of complex Fourier series. They se
useful in situations where the number of data points is or can be chosen to be highly composite number. The algorithm is here derived and presented in a rather different form. Attention is given to the choice of N. It is also shown how spscial advantage can be obtained in the use of a binary computer with $N-2^{-\prime}$ and how the entire calculation cen be performed within the array of N data storage locations
wedd for the given Fourier coefficints.
J. W. Cooley and J. W. Tukey, Mathematics of Computation, Vol. 19, pp. 297-301, 1965.

(Source: lasonas Kokkinos)

Spectral filtering - Fast Fourier Transform

FFT: Top 10 Algorithms of 20th Century!

Society for Industrial and Applied Mathematics (SIAM)
 The Best of the 20th Century: Editors NameTop 10 Algorithms
 May 16, 2000 Barry A Cipra

- 1946: The Metropolis Algorithm for Monte Carlo. Through the use of random processes, this algorithm offers an efficient way to stumble toward answers to problems that are too complicated to solve exactly.
- 1947: Simplex Method for Linear Programming. An elegant solution to a common problem in planning and decision-making.
- 1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear equations that abound in scientific computation.
- 1951: The Decompositional Approach to Matrix Computations. A suite of techniques for numerical linear algebra.
- 1957: The Fortran Optimizing Compiler. Turns high-level code into efficient computer-readable code.
- 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix operation made swift and practical.
- 1962: Quicksort Algorithms for Sorting. For the efficient handling of large databases.
- 1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use today, it breaks down waveforms (like sound) into periodic components.
- 1977: Integer Relation Detection. A fast method for spotting simple equations satisfied by collections of seemingly unrelated numbers.
- 1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-body calculations, applied in problems ranging from celestial mechanics to protein folding.

Spectral filtering - Low-pass filter

```
Python demo - Low-pass filter
    import numpy.fft as nf
    import imagetools as im
    - f = plt.imread('butterfly.png')
    n1, n2 = f.shape
    tf = nf.fft2(f, axes=(0, 1))
    a = np.abs(tf)
    phi = np.angle(tf)
    u, v = im.fftgrid(n1, n2)
    dist2 = u**2 + v**2
    mask = dist2 <= r**2
    ap = mask * a
    tfp = ap * np.exp(1j * phi)
    fp = np.real(nf.ifft2(tfp, axes=(0, 1)))
```


Spectral filtering - Low-pass filter

```
Python demo - Low-pass filter
    import numpy.fft as nf
    import imagetools as im
    f = plt.imread('butterfly.png')
    n1, n2 = f.shape
    tf = nf.fft2(f, axes=(0, 1))
a = np.abs(tf)
    phi = np.angle(tf)
    u, v = im.fftgrid(n1, n2)
    dist2 = u**2 + v**2
    mask = dist2 <= r**2
    ap = mask * a
    tfp = ap * np.exp(1j * phi)
    fp = np.real(nf.ifft2(tfp, axes=(0, 1)))
```


f

a

Spectral filtering - Low-pass filter

Python demo - Low-pass filter

import numpy.fft as nf
import imagetools as im
f $\quad=$ plt.imread('butterfly.png')
n1, n2 $=$ f.shape
$\mathrm{tf}=\mathrm{nf} . \mathrm{fft2}(\mathrm{f}$, axes=$=(0,1))$
a $\quad=n p . a b s(t f)$
phi $=n p$.angle(tf)

- u, v = im.fftgrid(n1, n2)
dist2 $=\mathrm{u} * * 2+\mathrm{v} * * 2$
mask $=$ dist2 <= r**2
ap $\quad=$ mask $*$ a
$\mathrm{tfp}=\mathrm{ap} * \mathrm{np} \cdot \exp (1 \mathrm{j} * \mathrm{phi})$
fp $\quad=n p . r e a l(n f . i f f t 2(t f p, \operatorname{axes}=(0,1)))$

f

a

V

Spectral filtering - Low-pass filter

Python demo - Low-pass filter

import numpy.fft as $n f$
import imagetools as im
f $\quad=$ plt.imread('butterfly.png')
n1, n2 = f.shape
$\mathrm{tf}=\mathrm{nf} . \mathrm{fft2}(\mathrm{f}$, axes=$=(0,1))$
a $\quad=n p . a b s(t f)$
phi $=n p$.angle(tf)
$u, v=i m . f f t g r i d(n 1, ~ n 2)$
\rightarrow dist2 $=\mathrm{u} * * 2+\mathrm{v} * * 2$
mask $=$ dist2 <= r**2
ap $\quad=$ mask $*$ a
$\mathrm{tfp}=\mathrm{ap} * \mathrm{np} \cdot \exp (1 \mathrm{j} * \mathrm{phi})$
$f p=$ np.real(nf.ifft2(tfp, axes=(0, 1)))

f

a

dist2

Spectral filtering - Low-pass filter

```
Python demo - Low-pass filter
    import numpy.fft as nf
    import imagetools as im
    f = plt.imread('butterfly.png')
    n1, n2 = f.shape
    tf = nf.fft2(f, axes=(0, 1))
    a = np.abs(tf)
    phi = np.angle(tf)
    u, v = im.fftgrid(n1, n2)
    dist2 = u**2 + v**2
- mask = dist2 <= r**2
    ap = mask * a
    tfp = ap * np.exp(1j * phi)
    fp = np.real(nf.ifft2(tfp, axes=(0, 1)))
```


f

a

mask

Spectral filtering - Low-pass filter

Python demo - Low-pass filter

import numpy.fft as $n f$
import imagetools as im
$\mathrm{f} \quad=$ plt.imread('butterfly.png')
n1, n2 $=\mathrm{f}$.shape
$\mathrm{tf}=\mathrm{nf} . \mathrm{fft2}(\mathrm{f}$, axes=$(0,1))$
a $\quad=n p . a b s(t f)$
phi = np.angle(tf)
u, v = im.fftgrid(n1, n2)
dist2 $=u * * 2+\mathrm{v} * * 2$
mask = dist2 <= r**2

- ap = mask * a
$\operatorname{tfp}=\mathrm{ap} * \mathrm{np} \cdot \exp (1 \mathrm{j} * \mathrm{phi})$
fp = np.real(nf.ifft2(tfp, axes=(0, 1)))

f

a

u

v

Spectral filtering - Low-pass filter

Python demo - Low-pass filter

import numpy.fft as $n f$
import imagetools as im
f $\quad=$ plt.imread('butterfly.png')
n1, n2 $=$ f.shape
$\mathrm{tf}=\mathrm{nf} . \mathrm{fft2}(\mathrm{f}, \operatorname{axes}=(0,1))$
a $\quad=n p . a b s(t f)$
phi $=n p . a n g l e(t f)$
u, v = im.fftgrid(n1, n2)
dist2 $=\mathrm{u} * * 2+\mathrm{v} * * 2$
mask $=$ dist2 $<=r * * 2$
ap $\quad=$ mask * a
$\mathrm{tfp}=\mathrm{ap} * \mathrm{np} \cdot \exp (1 \mathrm{j} * \mathrm{phi})$
$\rightarrow f p=n p . r e a l(n f . i f f t 2(t f p, \operatorname{axes}=(0,1)))$

f

a

u

v

ap

fp

Spectral filtering - Low-pass filter

Python demo - Low-pass filter

```
import numpy.fft as nf
import imagetools as im
f = plt.imread('butterfly.png')
n1, n2 = f.shape
tf = nf.fft2(f, axes=(0, 1))
a = np.abs(tf)
phi = np.angle(tf)
u, v = im.fftgrid(n1, n2)
dist2 = u**2 + v**2
mask = dist2 <= r**2
ap = mask * a
tfp = ap * np.exp(1j * phi)
fp = np.real(nf.ifft2(tfp, axes=(0, 1)))
```


f

a

fp

Spectral filtering - Low-pass filter

Shorter version

f $\quad=$ plt.imread('butterfly.png')
n1, n2 = f.shape
u, v = im.fftgrid(n1, n2)
tfp = nf.fft2 (f, axes=(0, 1)) \# Transform
$\mathrm{tfp}[\mathrm{u} * * 2+\mathrm{v} * * 2>\mathrm{r} * * 2]=0 \quad$ \# Modify
fp = np.real(mpf.ifft2(tfp, axes=(0, 1))) \# Transform back

Spectral filtering - Low-pass filter

Shorter version

```
f \(\quad=\) plt.imread('butterfly.png')
n1, n2 = f.shape
u, v = im.fftgrid(n1, n2)
tfp = nf.fft2 (f, axes=(0, 1)) \# Transform
\(\mathrm{tfp}[\mathrm{u} * * 2+\mathrm{v} * * 2>\mathrm{r} * * 2]=0 \quad\) \# Modify
fp = np.real(mpf.ifft2(tfp, axes=(0, 1))) \# Transform back
```

What is the influence of the radius r ?

Acts similarly as a blur

Spectral filtering - High-pass filter

What if we do the opposite? (high-pass filter)

$$
\mathrm{u} * * 2+\mathrm{v} * * 2>\mathrm{r} * * 2 \rightarrow \mathrm{u} * * 2+\mathrm{v} * * 2<=\mathrm{r} * * 2
$$

Acts similarly as an edge detector

Spectral filtering - High + Low -pass filters

What if we sum the two components?

$+$

$=$

$\mathrm{M} \odot \hat{f}+(\mathrm{Id}-\mathrm{M}) \odot \hat{f}=\hat{f}$

$+$

$=$

$$
\mathcal{F}^{-1}[\mathrm{M} \odot \hat{f}]+\mathcal{F}^{-1}[(\mathrm{Id}-\mathrm{M}) \odot \hat{f}]=f
$$

$$
\begin{gathered}
\text { Image }=\text { Low frequencies }+ \text { High frequencies } \\
=\text { Local averages }+ \text { Edges } / \text { Textures }
\end{gathered}
$$

Spectral filtering - Low/High \equiv Smooth/Edges

Standard spectral filters

- Accept or reject some frequencies
- Low-pass filter: smooth the image
- High-pass filter: preserve edges
(accept low frequencies)
(accept high frequencies)

Is there a connection with moving averages and derivative filters?

Spectral filtering - Spectral modulation

Spectral modulation

- Apply the Fourier transform
- Modulate each frequency individually

$$
\begin{array}{r}
\hat{x}=\mathcal{F}[x] \\
\hat{y}_{u, v}=\lambda_{u, v} \cdot \hat{x}_{u, v} \\
y=\mathcal{F}^{-1}[\hat{y}]
\end{array}
$$

(a) x

(b) \hat{x}

(c) λ

(d) \hat{y}

(e) y

Spectral filtering - DFT in matrix form

$$
\hat{x}=\mathcal{F}[x] \quad \hat{y}_{u}=\lambda_{u} \cdot \hat{x}_{u} \quad y=\mathcal{F}^{-1}[\hat{y}]
$$

Matrix form in 1d

- The Fourier transform can be written as

$$
\hat{x}_{u}=\underbrace{\sum_{k=0}^{n-1} x_{k} e^{-i 2 \pi \frac{u k}{n}}}_{=\mathcal{F}[x] u} \equiv \hat{x}=\underbrace{\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & e^{-i 2 \pi \frac{1}{n}} & \cdots & e^{-i 2 \pi \frac{n-1}{n}} \\
1 & e^{-i 2 \pi \frac{2}{n}} & \cdots & e^{-i 2 \pi \frac{2(n-1)}{n}} \\
\vdots & & & \\
1 & e^{-i 2 \pi \frac{(n-1)}{n}} & \ldots & e^{-i 2 \pi \frac{(n-1)^{2}}{n}}
\end{array}\right)}_{=\boldsymbol{F}} x
$$

- The modulation as: $\hat{y}=\underbrace{\left(\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right)}_{\Lambda} \hat{x}$
- The inverse transform as $y=\boldsymbol{F}^{-1} \hat{y}$ with $\boldsymbol{F}^{-1}=\frac{1}{n} \boldsymbol{F}^{*}$.
- It follows that:

$$
y=\frac{1}{n} \boldsymbol{F}^{*} \boldsymbol{\Lambda} \boldsymbol{F} x
$$

Spectral filtering - DFT in matrix form

Link with circulant matrices

- Let $\boldsymbol{E}=\frac{1}{\sqrt{n}} \boldsymbol{F}^{*}$ and $\boldsymbol{E}^{-1}=\frac{1}{\sqrt{n}} \boldsymbol{F}$, and write

$$
y=\frac{1}{n} \boldsymbol{F}^{*} \boldsymbol{\Lambda} \boldsymbol{F} x=\boldsymbol{E} \boldsymbol{\Lambda} \boldsymbol{E}^{-1} x
$$

- The columns of \boldsymbol{E} are of the form

$$
e_{k}=\frac{1}{\sqrt{n}}\left(1, \exp \left(\frac{2 \pi i k}{n}\right), \exp \left(\frac{4 \pi i k}{n}\right), \ldots, \exp \left(\frac{2(n-1) \pi i k}{n}\right)\right)^{T}
$$

and are eigenvectors with unit norms of circulant matrices

- Then $\boldsymbol{E} \boldsymbol{\Lambda} \boldsymbol{E}^{-1}$ is the eigendecomposition of a circulant matrix \boldsymbol{H}
- And $y=\boldsymbol{H} x$ is nothing else as the convolution of x by some kernel ν.

Convolutions are diagonal in the Fourier domain

Spectral filtering - DFT in matrix form

Link with circulant matrices

- Let $\boldsymbol{E}=\frac{1}{\sqrt{n}} \boldsymbol{F}^{*}$ and $\boldsymbol{E}^{-1}=\frac{1}{\sqrt{n}} \boldsymbol{F}$, and write

$$
y=\frac{1}{n} \boldsymbol{F}^{*} \boldsymbol{\Lambda} \boldsymbol{F} x=\boldsymbol{E} \boldsymbol{\Lambda} \boldsymbol{E}^{-1} x
$$

- The columns of \boldsymbol{E} are of the form

$$
e_{k}=\frac{1}{\sqrt{n}}\left(1, \exp \left(\frac{2 \pi i k}{n}\right), \exp \left(\frac{4 \pi i k}{n}\right), \ldots, \exp \left(\frac{2(n-1) \pi i k}{n}\right)\right)^{T}
$$

and are eigenvectors with unit norms of circulant matrices

- Then $\boldsymbol{E} \boldsymbol{\Lambda} \boldsymbol{E}^{-1}$ is the eigendecomposition of a circulant matrix \boldsymbol{H}
- And $y=\boldsymbol{H} x$ is nothing else as the convolution of x by some kernel ν.

Convolutions are diagonal in the Fourier domain

Why is that important?

Spectral filtering - Fast convolutions with FFT

FFT \Rightarrow Fast Convolutions

- Complexity of convolutions in spatial domain
- Limited support $s \times s$
- Non separable: $O\left(s^{2} n\right)$
- Separable: $O(s n)$
- Unlimited support
- Non separable: $O\left(n^{2}\right)$
- Separable: $O\left(n^{3 / 2}\right)$
- Complexity of convolutions through Fourier domain

$$
\underbrace{\hat{x}=\mathcal{F}[x]}_{O(n \log n)} \quad \underbrace{\hat{y}_{u}=\lambda_{u} \cdot \hat{x}_{u}}_{O(n)} \quad \underbrace{y=\mathcal{F}^{-1}[\hat{y}]}_{O(n \log n)} \Rightarrow O(n \log n)
$$

- Allows kernel functions to have a much larger support $s \times s$,
- Note: Spatial implementation can still be faster for small s.

Spectral filtering - Fast convolutions with FFT

FFT \Rightarrow Fast Convolutions

- Complexity of convolutions in spatial domain
- Limited support $s \times s$
- Non separable: $O\left(s^{2} n\right)$
- Separable: $O(s n)$
- Unlimited support
- Non separable: $O\left(n^{2}\right)$
- Separable: $O\left(n^{3 / 2}\right)$
- Complexity of convolutions through Fourier domain

$$
\underbrace{\hat{x}=\mathcal{F}[x]}_{O(n \log n)} \quad \underbrace{\hat{y}_{u}=\lambda_{u} \cdot \hat{x}_{u}}_{O(n)} \quad \underbrace{y=\mathcal{F}^{-1}[\hat{y}]}_{O(n \log n)} \quad \Rightarrow O(n \log n)
$$

- Allows kernel functions to have a much larger support $s \times s$,
- Note: Spatial implementation can still be faster for small s.

What is the link between the modulation λ and the convolution kernel ν ?

Spectral filtering - Spectrum and convolution kernels

Link between λ and ν

- The eigenvalues of a circulant matrix

$$
\boldsymbol{H}=\left(\begin{array}{cccccc}
\nu_{0} & \nu_{n-1} & \nu_{n-2} & \ldots & \nu_{2} & \nu_{1} \\
\nu_{1} & \nu_{0} & \nu_{n-1} & \nu_{n-2} & \cdots & \nu_{2} \\
& & \ddots & & & \\
& & & \ddots & & \\
& & & & \ddots & \\
\nu_{n-1} & \nu_{n-2} & \ldots & \nu_{2} & \nu_{1} & \nu_{0}
\end{array}\right)
$$

are

$$
\lambda_{u}=\sum_{k=0}^{n-1} \nu_{k} \exp \left(-\frac{2 \pi i u k}{n}\right)
$$

Spectral filtering - Spectrum and convolution kernels

Link between λ and ν

- The eigenvalues of a circulant matrix

$$
\boldsymbol{H}=\left(\begin{array}{cccccc}
\nu_{0} & \nu_{n-1} & \nu_{n-2} & \ldots & \nu_{2} & \nu_{1} \\
\nu_{1} & \nu_{0} & \nu_{n-1} & \nu_{n-2} & \cdots & \nu_{2} \\
& & \ddots & & & \\
& & & \ddots & & \\
& & & & \ddots & \\
\nu_{n-1} & \nu_{n-2} & \ldots & \nu_{2} & \nu_{1} & \nu_{0}
\end{array}\right)
$$

are

$$
\lambda_{u}=\sum_{k=0}^{n-1} \nu_{k} \exp \left(-\frac{2 \pi i u k}{n}\right)=\mathcal{F}[\nu]_{u}
$$

- Which means: $\boldsymbol{H}=\boldsymbol{F}^{-1} \boldsymbol{\Lambda} \boldsymbol{F}$ with $\boldsymbol{\Lambda}=\operatorname{diag}(\boldsymbol{F} \nu)$, and thus

$$
\nu * x=\boldsymbol{F}^{-1} \operatorname{diag}(\boldsymbol{F} \nu) \boldsymbol{F} x
$$

This is the Convolution theorem

Spectral filtering - Spectrum and convolution kernels

Theorem (Convolution theorem)

Vector form

$$
h=f * g \quad \Leftrightarrow \quad \hat{h}_{u}=\hat{f}_{u} \cdot \hat{g}_{u}
$$

Function form

$$
(f * g)(t)=\mathcal{F}^{-1}(\mathcal{F}(f) \cdot \mathcal{F}(g))(t)
$$

Matrix-vector form

$$
f * g=\underbrace{\boldsymbol{F}^{-1} \operatorname{diag}(\boldsymbol{F} f) \boldsymbol{F}}_{\text {circulant matrix }} g
$$

Take home message

Convolution in spatial domain $=$ Product in Fourier domain

Provides a new interpretation for LTI filters

- The convolution kernel ν characterizes the filter, (impulse response)
- Its Fourier transform $\lambda=\boldsymbol{F} \nu$ as well. (frequential response)

Spectral filtering - Properties of the Fourier transform

Main properties

	Time	Continuous	Discrete (periodic)						
Linearity	$a f+b g$		$a \hat{f}+b \hat{g}$						
Real/Hermitian	real		Hermitian						
Reverse/Conjugation	$f(-t)$	\hat{f}^{*}							
Convolution	$f * g$	$\hat{f} \cdot \hat{g}$							
Auto-correlation	$f \star g$		$\hat{f}^{*} \cdot \hat{g}$						
Zero frequency	\int / \sum		$\hat{f}(0)$						
Shift	$f(t-\delta)$	$e^{-i 2 \pi \delta u} \hat{f}(u)$	$e^{-i 2 \pi \delta u / n} \hat{f}_{u}$						
Parseval	$\langle f, g\rangle$	$\langle\hat{f}, \hat{g}\rangle$	$\frac{1}{n}\langle\hat{f}, \hat{g}\rangle$						
Plancherel	$\\|f\\|_{2}$	$\\|\hat{f}\\|_{2}$	$\frac{1}{n}\\|\hat{f}\\|_{2}$						
Scaling	$f(a t)$	$\frac{1}{\|a\|} \hat{f}\left(\frac{u}{a}\right)$	-						
Differentiation	$\frac{d^{n} f(t)}{d t^{n}}$	$(2 \pi i u)^{n} \hat{f}(u)$	-						

Similar properties for multi-dimensional signals

Spectral filtering - Moving averages $=$ Low pass filters

Properties of moving average filters

- Low frequencies are preserved
- High frequencies are attenuated
- Zero-frequency is always one
- Preserves the mean of pixel values

Spectral filtering - Moving averages $=$ Low pass filters

Boxcar filter

- Bandwidth proportional to $1 / \tau$
- Keep some high horizontal and vertical frequencies (side lobes)
- Explains horizontal and vertical artifacts of boxcar filters

Spectral filtering - Moving averages $=$ Low pass filters

Diamond filter

Similar to the box but rotated of 45°

- Bandwidth proportional to $1 / \tau$
- Keep some high frequencies in diagonal directions (side lobes)
- Explains diagonal artifacts of diamond filters

Spectral filtering - Moving averages $=$ Low pass filters

Diskcar filter

Cardinal sine in all directions

- Bandwidth proportional to $1 / \tau$
- Keep some high frequencies (side lobes)
- No preferred direction (isotropic)

Spectral filtering - Moving averages $=$ Low pass filters

Gaussian filter

$$
\mathcal{F}\left[\frac{1}{2 \pi \tau^{2}} e^{-\frac{\left(s_{1}^{2}+s_{2}^{2}\right)}{2 \tau^{2}}}\right]=e^{-4 \pi^{2} \tau^{2}\left(u^{2}+v^{2}\right)} \equiv \mathcal{F}\left[\mathcal{G}_{\tau^{2}}\right]={\sqrt{2 \pi \tau^{2}}}^{d} \mathcal{G}_{1 / 4 \pi^{2} \tau^{2}}
$$

- Bandwidth proportional to $1 / \tau$
- High frequencies are smoothly and monotonically removed
- No preferred direction (isotropic)

Spectral filtering - Derivative filters $=$ High pass filters

Derivative filters $=$ High pass filters

Image sharpening

Spectral filtering - Image sharpening

Image resizing

Spectral filtering - Image resizing / sub-sampling

(a) $\times 1$

(b) $\times 2$

(c) $\times 4$

Spatial image resizing (sub-sampling by a factor a)

- Continuous image:

$$
f^{\text {rescaled }}(t)=f(a t)
$$

- Discrete image, ex: $f_{k}^{\text {rescaled }}=(1-a k+\lfloor a k\rfloor) f_{\lfloor a k\rfloor}+(a k-\lfloor a k\rfloor) f_{\lceil a k\rceil}$ (linear interpolation)
- Aliasing: High frequencies lost, new frequencies created. Why?

Spectral filtering - Image resizing / sub-sampling

superposition on top of 3 high-freq. subbands

$$
=\text { new lower frequencies }
$$

$=$ aliasing

Spectrum before spatial subsampling

(a) $\times 1$

after spatial subsampling

(b) $\times 4 / 3$

Nyquist

Shannon

Aliasing

- Superposition of high frequency sub-bands in the new resized image
- Linked with Nyquist-Shannon's theorem:
sampling frequency should be at least double the maximum frequency

Spectral filtering - Image resizing / sub-sampling

Aliasing: how diagonal stripes become vertical...

How to avoid aliasing when resizing?

Spectral filtering - Image resizing / sub-sampling

Image size increase

Spectral image resizing with zero-padding

- Reduction: set high frequencies to zero and reduce spectrum size
- Increase: increase spectrum size and fill new high frequencies by zeros

Spectral filtering - Image resizing / sub-sampling

Zero-padding: No more aliasing but unpleasant oscillations

How to avoid side lobes of the cardinal sine? (ringing/Gibbs artifacts)

Spectral filtering - Image resizing / sub-sampling

Spectrum before zero-padding
\equiv Avoid side lobes

Spectrum after zero-padding $=$ Keep the non-zero coefficients

Zero-padding + windowing

- Not only set the high frequencies to zeros
- But modulate low frequencies by a weighting window, i.e., a blur
- Choice of the window: trade-off between ringing vs blur

Spectral filtering - Image resizing / sub-sampling

Typical windows

- Hann window:
to reduce all side lobes

$$
w(u)=0.5-0.5 \cos \left(\frac{2 \pi(u+\lceil n / 2\rceil-1)}{n-1}\right)
$$

- Hamming window:

$$
w(u)=0.54-0.46 \cos \left(\frac{2 \pi(u+\lceil n / 2\rceil-1)}{n-1}\right)
$$

- Kaiser window: to choose a trade-off between blur and side lobes.

$$
w(u)=\frac{I_{0}\left(\pi \alpha \sqrt{1-\left(\frac{2(u+\lceil n / 2\rceil-1)}{n-1}-1\right)^{2}}\right.}{I_{0}(\pi \alpha)}, \quad \alpha>0
$$

for frequencies $u=-\lceil n / 2\rceil+1$ to $\lfloor n / 2\rfloor$.
I_{0} : zero-order modified Bessel function.

Spectral filtering - Image resizing / sub-sampling

Hann window

Hann window: No more aliasing, no more ringing, but blur

Spectral filtering - Image resizing / sub-sampling

Kaiser window

Kaiser window: No more aliasing and trade-off between ringing and blur

Spectral filtering - Image resizing / sub-sampling

Spectral filtering - Image resizing / sub-sampling

Streaking

Spectral filtering - Streaking

What about streaking?

Spectral filtering - Streaking in CT / Radon transform

Computed tomography (CT)

Fourier slice theorem:
One projection $=$ one line in the Fourier domain
Radon transform:

- K projections $=K$ lines
- Capture frequencies along these lines

- Other frequencies are seen as being zero

θ_{k}

Spectral filtering - Streaking in CT / Radon transform

Fusion:

What is that?

Spectral filtering - Streaking in CT / Radon transform

Use more projection angles

- As for sampling in spatial domain, there is a Nyquist barrier
- i.e., a threshold in the minimum number of lines to acquire
- below that threshold, image processing techniques must be used to fill the missing frequencies (a sort of inpainting problem in the Fourier domain)

Spectral filtering - Streaking in CT / Radon transform

Use more projection angles, ... or even more

- As for sampling in spatial domain, there is a Nyquist barrier
- i.e., a threshold in the minimum number of lines to acquire
- below that threshold, image processing techniques must be used to fill the missing frequencies (a sort of inpainting problem in the Fourier domain)

Spectral filtering - Streaking in MRI

Magnetic Resonance Imaging (MRI)

- Design/Setting of the MRI machine defines a path in the Fourier domain (called k-space)
- It captures frequencies along this path
- Other frequencies are seen as being zero

Spectral filtering - Streaking in MRI

Feasible k-space trajectories

Ideal one

- Compressed sensing
- Select frequencies at random
- Incoherent measurements
- Not feasible yet

Spectral filtering - Streaking in MRI

Cartesian path:

(a) 15%

(b) 25%

(c) 50%

(d) 75%

(e) 100%

Spectral filtering - Streaking in MRI

Spiral path:

Spectral filtering - Streaking in MRI

Random path:

(a) 10%

(b) 20%

(c) 30%

(d) 40%

(e) 60%

Questions?

Next class: heat equation / anisotropic diffusion

Sources, images courtesy and acknowledgment

L. Condat
G. Peyré
B. Denis de Senneville
R. Otazo
A. Horodniceanu
I. Kokkinos
V.-T. Ta
Wikipedia

