ECE 285

Image and video restoration

Chapter IV – Variational methods

Charles Deledalle June 9, 2019

Heat equation

- How can we remove noise from an image?
- What image can best explain this noisy observation?
- Takes inspiration from our physical world.

Best explanation is the one with maximal entropy.

• Heat, in an isolated system, evolves such that

the total entropy increases over time.

Heat diffusion acts as a denoiser

- Spatial fluctuations of temperatures vanish with time (maximum entropy),
- Think of pixel values as temperature,
- Can heat diffusion help us to reduce noise?

Heat equation

The heat equation, a Partial Differential Equation (PDE), given by

$$\frac{\partial x}{\partial t}(s,t) = \alpha \Delta x(s,t) \quad \text{or in short} \quad \frac{\partial x}{\partial t} = \alpha \Delta x \quad \text{and} \quad x(s,0) = y(s)$$

- + some boundary conditions and where
 - $s = (s_1, s_2) \in [0, 1]^2$: space location
 - $t \ge 0$: time location
 - $x(s,t) \in \mathbb{R}$: temperature at position s and time t
 - $\alpha > 0$: thermal conductivity constant
 - Δ : Laplacian operator

$$\Delta = \frac{\partial^2}{\partial s_1^2} + \frac{\partial^2}{\partial s_2^2}$$

The rate of change is proportional to the spatial curvature of the temperature.

How to solve the heat equation?

2 solutions:

 \bullet Heat equation \longrightarrow Discrete equation \longrightarrow Numerical scheme

How to solve the heat equation?

2 solutions:

 $\textcircled{0} \qquad \text{Heat equation} \quad \longrightarrow \quad \text{Discrete equation} \quad \longrightarrow \quad \text{Numerical scheme}$

e Heat equation —> Continuous solution —> Discretization

Heat equation – Discretization

Discretization of the working space

• Periodical boundary conditions

$$x(0, s_2, t) = x(1, s_2, t)$$
 and $x(s_1, 0, t) = x(s_1, 1, t)$.

• Map the discrete grid to the continuous coordinates (s_1, s_2, t)

$$(s_1, s_2, t) = (i\delta_{s_1}, j\delta_{s_2}, k\delta_t)$$

where $(i, j) \in [0, n_1] \times [0, n_2], k \in [0, m], \ \delta_{s_i} = \frac{1}{n_i}$ and $\delta_t = \frac{T_{\max}}{m}$.

• Then, replace function x by its discrete version:

$$x_{i,j}^k = x(i\delta_{s_1}, j\delta_{s_2}, k\delta_t)$$

- *i*: index for pixels with first coordinate $s_1 = i\delta_{s_1}$
- j: index for pixels with second coordinate $s_2 = j\delta_{s_2}$
- k: is an index for time $t = k\delta_t$

 \wedge The notation x^k is not "x to the power k" but "x at time index k".

Recall: we want to discretize

$$\frac{\partial x}{\partial t}(s,t) = \alpha \Delta x(s,t) \quad \text{and} \quad x(s,0) = y(s)$$

Finite differences

• Replace first order derivative by forward finite difference in time

$$\frac{\partial x}{\partial t}(i\delta_{s_1}, j\delta_{s_2}, k\delta_t) \approx \frac{x_{i,j}^{k+1} - x_{i,j}^k}{\delta_t}$$

Recall: we want to discretize

$$\frac{\partial x}{\partial t}(s,t) = \alpha \Delta x(s,t) \quad \text{and} \quad x(s,0) = y(s)$$

Finite differences

• Replace first order derivative by forward finite difference in time

$$\frac{\partial x}{\partial t}(i\delta_{s_1}, j\delta_{s_2}, k\delta_t) \approx \frac{x_{i,j}^{k+1} - x_{i,j}^k}{\delta_t}$$

• Replace second order derivative by central finite difference in space

$$\Delta x(i\delta_{s_1}, j\delta_{s_2}, k\delta_t) \approx \frac{x_{i-1,j}^k + x_{i+1,j}^k + x_{i,j-1}^k + x_{i,j-1}^k - 4x_{i,j}^k}{\delta_{s_1}\delta_{s_2}}$$

Recall: we want to discretize

$$\frac{\partial x}{\partial t}(s,t) = \alpha \Delta x(s,t) \quad \text{and} \quad x(s,0) = y(s)$$

Finite differences

• Rewrite everything in matrix/vector form

$$\frac{\partial x}{\partial t}(\cdot,\cdot,k\delta_t)\approx \frac{1}{\delta_t}(x^{k+1}-x^k) \quad \text{and} \quad \Delta x(\cdot,\cdot,k\delta_t)\approx \frac{1}{\delta_{s_1}\delta_{s_2}}\Delta x^k$$

where Δ in the right-hand side is the discrete Laplacian.

• We get

$$\frac{1}{\delta_t}(x^{k+1} - x^k) = \frac{\alpha}{\delta_{s_1}\delta_{s_2}}\Delta x^k \quad \text{and} \quad x^0 = y$$

because of periodical boundary conditions.

Forward discretized scheme - Explicit Euler scheme

$$\begin{array}{ll} \text{The heat equation} & \frac{\partial x}{\partial t} = \alpha \Delta x \quad \text{and} \quad x(s,0) = y(s) \\ \text{rewrites as} & \frac{1}{\delta_t}(x^{k+1}-x^k) = \frac{\alpha}{\delta_{s_1}\delta_{s_2}}\Delta x^k \quad \text{and} \quad x^0 = y \end{array}$$

which leads to the iterative scheme, that repeats for k = 0 to m

$$x^{k+1} = x^k + \gamma \Delta x^k \quad \text{and} \quad x^0 = y \quad \text{where} \quad \gamma = \frac{\alpha \delta_t}{\delta_{s_1} \delta_{s_2}}$$

Forward discretized scheme – Explicit Euler scheme

$$\begin{array}{ll} \text{The heat equation} & \frac{\partial x}{\partial t} = \alpha \Delta x \quad \text{and} \quad x(s,0) = y(s) \\ \text{rewrites as} & \frac{1}{\delta_t}(x^{k+1}-x^k) = \frac{\alpha}{\delta_{s_1}\delta_{s_2}}\Delta x^k \quad \text{and} \quad x^0 = y \end{array}$$

which leads to the iterative scheme, that repeats for k = 0 to m

$$\begin{aligned} x^{k+1} &= x^k + \gamma \Delta x^k \quad \text{and} \quad x^0 = y \quad \text{where} \quad \gamma = \frac{\alpha \delta_t}{\delta_{s_1} \delta_{s_2}} \\ \text{Convergence:} \qquad |x^k_{i,j} - x(i\delta_{s_1}, j\delta_{s_2}, k\delta_t)| \xrightarrow[\delta_{s_1} \to 0]{\delta_{s_2} \to 0} \atop[\delta_{s_2} \to 0]{\delta_{t} \to 0} \\ \end{array}$$

Forward discretized scheme - Explicit Euler scheme

$$\begin{array}{ll} \text{The heat equation} & \frac{\partial x}{\partial t} = \alpha \Delta x \quad \text{and} \quad x(s,0) = y(s) \\ \text{rewrites as} & \frac{1}{\delta_t}(x^{k+1}-x^k) = \frac{\alpha}{\delta_{s_1}\delta_{s_2}}\Delta x^k \quad \text{and} \quad x^0 = y \end{array}$$

which leads to the iterative scheme, that repeats for k = 0 to m

$$\begin{aligned} x^{k+1} &= x^k + \gamma \Delta x^k \quad \text{and} \quad x^0 = y \quad \text{where} \quad \gamma = \frac{\alpha \delta_t}{\delta_{s_1} \delta_{s_2}} \\ \text{Convergence:} \qquad |x^k_{i,j} - x(i\delta_{s_1}, j\delta_{s_2}, k\delta_t)| \xrightarrow[\delta_{s_1} \to 0]{\delta_{s_2} \to 0} \atop[\delta_{t} \to 0]{\delta_{t} \to 0} \\ \end{aligned}$$

 δ_{s_1} and δ_{s_2} are fixed (by the size of the image grid).

 δ_t influences the number of iterations k used to reach $t = k \delta_t$.

 δ_t should be small enough (for convergence), and large enough (for computation time).

Stability

• The discretization scheme is stable, if there exists ${\cal C}>0$ such that

for all
$$(i, j, k)$$
, $|x_{i,j}^k| \leq C|y_{i,j}|$.

- Stability prevents the iterates from diverging.
- If moreover numerical errors do not accumulate, x^k converges with k.

Stability

• The discretization scheme is stable, if there exists ${\cal C}>0$ such that

for all
$$(i, j, k)$$
, $|x_{i,j}^k| \leq C|y_{i,j}|$.

- Stability prevents the iterates from diverging.
- If moreover numerical errors do not accumulate, x^k converges with k.

Courant-Friedrichs-Lewy (CFL) conditions

The sequence
$$x_k$$
 is stable if: $\gamma = \frac{\alpha \delta_t}{\delta_{s_1} \delta_{s_2}} < \frac{1}{2d}$ where $d = 2$ for images

In particular we get

 $m > 2d\alpha T_{\max} n_1 n_2$

#iterations increases linearly with #pixels \Rightarrow for k to reach m, at least $O(n_1^2 n_2^2)$ operations, *i.e.*, it is really slow. \circledast

Geometric progression

The explicit Euler scheme can be rewritten as

$$x^{k+1} = x^k + \gamma \Delta x^k = (\mathrm{Id}_n + \gamma \Delta) x^k, \quad (n = n_1 n_2)$$

it is a geometric progression, hence: $x^k = (\mathrm{Id}_n + \gamma \Delta)^k y$

Geometric progression

The explicit Euler scheme can be rewritten as

$$x^{k+1} = x^k + \gamma \Delta x^k = (\mathrm{Id}_n + \gamma \Delta) x^k, \quad (n = n_1 n_2)$$

it is a geometric progression, hence: $x^k = (\mathrm{Id}_n + \gamma \Delta)^k y$

Diagonalization

• Δ performs a periodical convolution with kernel:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

• Diagonal in the discrete Fourier domain: $\Delta = F^{-1} \Lambda F$, with Λ diagonal

Geometric progression + Diagonalization

• The explicit Euler scheme becomes

$$\begin{split} x^{k} &= (\mathrm{Id}_{n} + \gamma F^{-1} \Lambda F)^{k} y \\ &= (F^{-1} F + \gamma F^{-1} \Lambda F)^{k} y \\ &= (F^{-1} (\mathrm{Id} + \gamma \Lambda) F)^{k} y \\ &= \underbrace{F^{-1} (\mathrm{Id} + \gamma \Lambda) F \times F^{-1} (\mathrm{Id} + \gamma \Lambda) F \times \ldots \times F^{-1} (\mathrm{Id} + \gamma \Lambda) F}_{k \text{ times}} y \\ &= \underbrace{F^{-1} \underbrace{(\mathrm{Id} + \gamma \Lambda) \times \ldots \times (\mathrm{Id} + \gamma \Lambda)}_{k \text{ times}} F y \\ &= F^{-1} \underbrace{(\mathrm{Id} + \gamma \Lambda)^{k}}_{\text{diagonal matrix}} F y \end{split}$$

- The explicit Euler solution is a convolution,
- Solution in $O(n \log n)$ whatever k. \odot

Heat equation – Explicit Euler scheme – Results

```
# Load image (assumed to be square)
x = plt.imread('assets/cat.png')
n1, n2 = x.shape
sig = 20/255
y = x + sig * np.random.randn(n1, n2)
```

```
# Define problem setting (T = m * dt)
T = 1e-4
alpha = 1
rho = .99
ds2 = 1 / (n1 * n2)
dt = rho * ds2 / (4 * alpha)
gamma = alpha * dt / ds2
m = np.round(T / dt)
```

```
# Compute explicit Euler solution
K_ee = (1 + gamma * L)**m
x_ee = im.convolvefft(y, K_ee)
```

$$\begin{array}{l} \mathsf{CFL \ condition:} \ \gamma = \frac{\alpha \delta_t}{\delta_s^2} < \frac{1}{4} \\ \Rightarrow \delta_t < \frac{\delta_s^2}{4\alpha} \\ \Rightarrow \delta_t = \rho \frac{\delta_s^2}{4\alpha} \quad \text{with} \quad \rho < 1 \end{array}$$

(c) $T=10^{-4}$, $\rho=0.99$ (d) $T=10^{-4}$, $\rho=1.30$

Backward discretized scheme - Implicit Euler scheme

If instead we choose a backward difference in time

$$\frac{1}{\delta_t}(x^{k+1}-x^k) = \frac{\alpha}{\delta_{s_1}\delta_{s_2}}\Delta x^{k+1} \quad \text{and} \quad x^0 = y$$

this leads to the iterative scheme

$$x^{k+1} = (\mathrm{Id}_n - \gamma \Delta)^{-1} x^k \quad \text{and} \quad x^0 = y.$$

This sequence is stable whatever γ , but requires solving a linear system. $\ensuremath{\textcircled{\sc s}}$

Geometric progression and diagonalization

- Geometric progression: $x^k = (\mathrm{Id}_n \gamma \Delta)^{-k} y$
- Again, since $\Delta = {m F}^{-1} {m \Lambda} {m F}$ is diagonal in the Fourier domain

$$x^{k} = \boldsymbol{F}^{-1} (\mathrm{Id}_{n} - \gamma \boldsymbol{\Lambda})^{-k} \boldsymbol{F} y.$$

- The implicit Euler solution is again a convolution.
- Can be computed in $O(n \log n)$ whatever k. \odot

Compute explicit Euler solution
K_ee = (1 + gamma * L)**k
x_ee = im.convolvefft(y, K_ee)

Compute implicit Euler solution
K_ie = 1 / (1 - gamma * L)**k
x_ie = im.convolvefft(y, K_ie)

Compute explicit Euler solution
K_ee = (1 + gamma * L)**k
x_ee = im.convolvefft(y, K_ee)

Compute implicit Euler solution K_ie = 1 / (1 - gamma * L)**k x_ie = im.convolvefft(y, K_ie)

(a) x (unknown) (b) y (observation)

Explicit Euler

Implicit Euler

(c) $T=10^{-4}$, $\rho=0.99$ (d) $T=10^{-4}$, $\rho=1.30$

(e) $T=10^{-4}$, $\rho=0.99$ (f) $T=10^{-4}$, $\rho=1.30$
Compute explicit Euler solution
K_ee = (1 + gamma * L)**k
x_ee = im.convolvefft(y, K_ee)

Compute implicit Euler solution K_ie = 1 / (1 - gamma * L)**k x_ie = im.convolvefft(y, K_ie)

(a) x (unknown) (b) y (observation)

(c) $T=10^{-4}$, $\rho=0.99$ (d) $T=10^{-4}$, $\rho=1.30$

Q: How both schemes compare to the continuous solution when $\rho < 1$? Implicit Euler

(e) $T=10^{-4}$, $\rho=0.99$ (f) $T=10^{-4}$, $\rho=1.30$

How to solve the heat equation?

2 solutions:

• Heat equation \longrightarrow Discrete equation \longrightarrow Numerical scheme

Theorem

• Consider the continuous heat equation defined as

$$\frac{\partial x}{\partial t}(s,t) = \alpha \Delta x(s,t)$$
 and $x(s,0) = y(s)$

where $s \in \mathbb{R}^d$ (no restrictions to $[0,1]^d$, without boundary conditions).

• The exact solution is given by the d-dimensional Gaussian convolution

$$x(s,t) = (y * \mathcal{G}_{2\alpha t})(s) = \int_{\mathbb{R}^d} y(s-u) \frac{1}{\sqrt{4\pi\alpha t^d}} e^{-\frac{\|u\|_2^2}{4\alpha t}} du$$

(d = 2 for images).

• This is called the fundamental solution of the heat equation.

Proof in the 1d case.

• In the 1d case the Heat equation reads as

$$\frac{\partial x}{\partial t} = \alpha \Delta x \stackrel{1d}{=} \alpha \frac{\partial^2 x}{\partial s^2} \quad \text{and} \quad x(s,0) = y(s)$$

• Taking the spatial Fourier transform (with respect to s) in both sides gives

$$\mathcal{F}_s\left[\frac{\partial x}{\partial t}\right] = \alpha \mathcal{F}_s\left[\frac{\partial^2 x}{\partial s^2}\right] \quad \text{and} \quad \mathcal{F}_s[x](u,0) = \mathcal{F}_s[y](u)$$

Proof in the 1d case.

• In the 1d case the Heat equation reads as

$$\frac{\partial x}{\partial t} = \alpha \Delta x \stackrel{1d}{=} \alpha \frac{\partial^2 x}{\partial s^2} \quad \text{and} \quad x(s,0) = y(s)$$

• Taking the spatial Fourier transform (with respect to s) in both sides gives

$$\mathcal{F}_{s}\left[\frac{\partial x}{\partial t}\right] = \alpha \mathcal{F}_{s}\left[\frac{\partial^{2} x}{\partial s^{2}}\right] \quad \text{and} \quad \mathcal{F}_{s}[x](u,0) = \mathcal{F}_{s}[y](u)$$

$$\Rightarrow \quad \frac{\partial \mathcal{F}_{s}[x]}{\partial t} = -4\pi^{2}u^{2}\alpha \cdot \mathcal{F}_{s}[x] \qquad \qquad \left(\frac{d^{n}f(t)}{dt^{n}} \to (2\pi i u)^{n}\hat{f}(u)\right)$$

• This is a first order differential equation, x'(t) = ax(t), whose solution is

Proof in the 1d case.

• In the 1d case the Heat equation reads as

$$\frac{\partial x}{\partial t} = \alpha \Delta x \stackrel{1d}{=} \alpha \frac{\partial^2 x}{\partial s^2} \quad \text{and} \quad x(s,0) = y(s)$$

• Taking the spatial Fourier transform (with respect to s) in both sides gives

$$\mathcal{F}_{s}\left[\frac{\partial x}{\partial t}\right] = \alpha \mathcal{F}_{s}\left[\frac{\partial^{2} x}{\partial s^{2}}\right] \quad \text{and} \quad \mathcal{F}_{s}[x](u,0) = \mathcal{F}_{s}[y](u)$$

$$\Rightarrow \quad \frac{\partial \mathcal{F}_{s}[x]}{\partial t} = -4\pi^{2}u^{2}\alpha \cdot \mathcal{F}_{s}[x] \qquad \qquad \left(\frac{d^{n}f(t)}{dt^{n}} \to (2\pi i u)^{n}\hat{f}(u)\right)$$

• This is a first order differential equation, x'(t) = ax(t), whose solution is

$$\mathcal{F}_s[x](u,t) = \mathcal{F}_s[y](u) \cdot e^{(-4\pi^2 \alpha u^2)t}$$

• Products in Fourier domain corresponds to convolutions in the spatial domain, which concludes the proof since $\mathcal{F}[\mathcal{G}_{\gamma^2}] = \sqrt{2\pi\gamma^2}^d \mathcal{G}_{1/4\pi^2\gamma^2}$

Proof in the 1d case.

In the 1d case the Heat equation reads as

$$\frac{\partial x}{\partial t} = \alpha \Delta x \stackrel{1d}{=} \alpha \frac{\partial^2 x}{\partial s^2} \quad \text{and} \quad x(s,0) = y(s)$$

• Taking the spatial Fourier transform (with respect to s) in both sides gives

$$\mathcal{F}_{s}\left[\frac{\partial x}{\partial t}\right] = \alpha \mathcal{F}_{s}\left[\frac{\partial^{2} x}{\partial s^{2}}\right] \quad \text{and} \quad \mathcal{F}_{s}[x](u,0) = \mathcal{F}_{s}[y](u)$$

$$\Rightarrow \quad \frac{\partial \mathcal{F}_{s}[x]}{\partial t} = -4\pi^{2}u^{2}\alpha \cdot \mathcal{F}_{s}[x] \qquad \qquad \left(\frac{d^{n}f(t)}{dt^{n}} \to (2\pi i u)^{n}\hat{f}(u)\right)$$

• This is a first order differential equation, x'(t) = ax(t), whose solution is

$$\mathcal{F}_s[x](u,t) = \mathcal{F}_s[y](u) \cdot e^{(-4\pi^2 \alpha u^2)t}$$

• Products in Fourier domain corresponds to convolutions in the spatial domain, which concludes the proof since $\mathcal{F}[\mathcal{G}_{\gamma^2}] = \sqrt{2\pi\gamma^2}^d \mathcal{G}_{1/4\pi^2\gamma^2}$

$$\mathcal{F}_s^{-1}\left[e^{-4\pi^2\alpha tu^2}\right] = \frac{1}{\sqrt{4\pi\alpha t}}e^{-\frac{s^2}{4\alpha t}} = \mathcal{G}_{2\alpha t}(s)$$

Heat equation – Discretization of the solution

Continuous solution for d = 2

$$x(s_1, s_2, t) = \frac{1}{4\pi\alpha t} \int_{-\infty}^{+\infty} y(s_1 - u, s_2 - v) e^{-\frac{u^2 + v^2}{4\alpha t}} \, \mathrm{d}u \, \mathrm{d}v = (y * \mathcal{G}_{2\alpha t})(s_1, s_2)$$

Discretization

$$\begin{aligned} x_{i,j}^{k} &= x(i\delta_{s}, j\delta_{s}, k\delta_{t}) = \frac{1}{4\pi\alpha k\delta_{t}} \int_{-\infty}^{+\infty} y(i\delta_{s} - u, j\delta_{s} - v)e^{-\frac{u^{2}+v^{2}}{4\alpha k\delta_{t}}} \, \mathrm{d}u \, \mathrm{d}v \\ &= \frac{\delta_{s}^{2}}{4\pi\alpha\delta_{t}k} \int_{-\infty}^{+\infty} y(i\delta_{s} - u\delta_{s}, j\delta_{s} - v\delta_{s})e^{-\frac{\delta_{s}^{2}(u^{2}+v^{2})}{4\alpha\delta_{t}k}} \, \mathrm{d}u \, \mathrm{d}v \quad \begin{pmatrix} \mathrm{Change of \ variables:} \\ u \to \delta_{s} u \text{ and } v \to \delta_{s} v \end{pmatrix} \end{aligned}$$

$$= \frac{1}{4\pi\gamma k} \iint_{-\infty}^{+\infty} y((i-u)\delta_s, (j-v)\delta_s) e^{-\frac{u^2+v^2}{4\gamma k}} \,\mathrm{d}u \,\mathrm{d}v \qquad (\text{Recall: } \gamma = \frac{\alpha\delta t}{\delta_s^2})$$

$$\approx \frac{1}{4\pi\gamma k} \sum_{u\in\mathbb{Z}} \sum_{v\in\mathbb{Z}} y_{i-u,j-v} e^{-\frac{u^2+v^2}{4\gamma k}}$$

(Midpoint Riemann sum)

discrete convolution

 $=(y*\mathcal{G}_{2\gamma k})_{i,j}$

```
# Compute explicit Euler solution
K_ee = (1 + gamma * L)**k
x_ee = im.convolvefft(y, K_ee)
```

```
# Compute implicit Euler solution
K_ie = 1 / (1 - gamma * L)**k
x_ie = im.convolvefft(y, K_ie)
```

```
# Compute continuous solution
u, v = im.fftgrid(n1, n2)
K_cs = np.exp(-(u**2 + v**2) / (4*gamma*k)) / (4*np.pi*gamma*k)
K_cs = nf.fft2(K_cs, axes=(0, 1))
x_cs = im.convolvefft(y, K_cs)
```

Heat equation – Comparing the results

(a) y (observation)

(b) Explicit Euler (c) Implicit Euler (d) Continuous

Heat equation – Comparing the results

(a) y (observation)

(b) Explicit Euler (c) Implicit Euler (d) Continuous

The three schemes provide similar solutions in $O(n \log n)$.

Heat equation – Comparing the convolution kernels

Heat equation – Comparing the convolution kernels

For the same choice of δ_t satisfying the CFL condition, the implicit and continuous solutions have less oscillations. All three converge with t to the same solution.

Heat equation – Summary

Summary

- Solutions of the heat equations reduce fluctuations/details of the image,
- The continuous solution is a Gaussian convolution (LTI filter),
- Discretizations lead to near Gaussian convolutions,
- The width of the convolution kernel increases with time t,
- For $t \to \infty$, the solution is the constant mean image.

Definition (Scale space)

- A family of images $x(s_1, s_2, t)$, where
 - t is the scale-space parameter
 - $x(s_1, s_2, 0) = y(s_1, s_2)$ is the original image
 - increasing t corresponds to coarser resolutions
- and satisfying (scale-space conditions)
 - causality: coarse details are "caused" by fine details
 - new details should not arise in coarse scale images

Gaussian blurring is a local averaging operation. It does not respect natural boundaries

Linear scale space

- Solutions of the heat equation define a linear scale space,
- Each scale is a linear transform/convolution of the previous one.
- Recall that Gaussians have a multi-scale property: $\mathcal{G}_{\gamma^2} * \mathcal{G}_{\gamma^2} = \mathcal{G}_{2\gamma^2}$.

Linear scale space

- Solutions of the heat equation define a linear scale space,
- Each scale is a linear transform/convolution of the previous one.
- Recall that Gaussians have a multi-scale property: $\mathcal{G}_{\gamma^2} * \mathcal{G}_{\gamma^2} = \mathcal{G}_{2\gamma^2}$.

- Define an edge as a local extremum of the first derivative [Witkin, 1983]
 - Edge location is not preserved across the scale space,
 - Two edges may merge with increasing size,
 - 3 An edge may not split into two with increasing size.

- Nonlinear filters (e.g., median filters) can be used to generate a scale-space,
- But, they usually violate the causality condition.

- Nonlinear filters (e.g., median filters) can be used to generate a scale-space,
- But, they usually violate the causality condition.

At all scales the image will consist of smooth regions separated by edges. How to build such a scale-space?

Anisotropic diffusion

The conductivity α controls the amount of smoothing per time unit

$$\frac{\partial x}{\partial t} = \alpha \Delta x \quad \equiv \quad x(s,t) = y \; * \; \mathcal{G}_{2\alpha t}$$

Image-dependent conductivity

$$\Delta = \frac{\partial^2}{\partial s_1^2} + \frac{\partial^2}{\partial s_2^2} = \begin{pmatrix} \frac{\partial}{\partial s_1} & \frac{\partial}{\partial s_2} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial s_1} \\ \frac{\partial}{\partial s_2} \end{pmatrix} = \nabla^T \nabla = \operatorname{div} \nabla$$

Rewrite the heat equation as

$$\frac{\partial x}{\partial t} = \operatorname{div}(\alpha \nabla x)$$

Basic ideas:

- make α evolve with space/time in order to preserve edges,
- set $\alpha=0$ around edges, and $\alpha>0$ inside regions,
- encourage intra-region smoothing,
- and discourage inter-region smoothing.

Anisotropic diffusion – Perona-Malik model

Anisotropic diffusion [Perona and Malik, 1990]

$$\frac{\partial x}{\partial t} = \operatorname{div}(\underbrace{g(\|\nabla x\|_2^2)}_{\alpha} \nabla x) \quad \text{with} \quad x(s_1, s_2, 0) = y(s_1, s_2)$$

where $g: \mathbb{R}^+ \rightarrow [0,1]$ is decreasing and satisfies

$$g(0) = 1$$
 and $\lim_{u \to \infty} g(u) = 0.$

- Inside regions with small gradient: fast isotropic diffusion,
- Around edges with large gradients: small diffusion,
- In fact isotropic, sometimes referred to as inhomogeneous diffusion.

Common choices (for $\beta > 0$):

$$g(u) = \frac{\beta}{\beta + u}$$
 or $g(u) = \exp\left(-\frac{u}{\beta}\right)$

Anisotropic diffusion – Variants

Regularized Perona-Malik model [Catté, Lions, Morel, Coll, 1992]

Classical Perona-Malik solution may be ill-posed:

The PDE may have no solution or an infinite number of solutions, \Rightarrow In practice: small perturbations in y lead to strong deviations.

Idea: smooth the conductivity field at a small cost of localization

$$\frac{\partial x}{\partial t} = \operatorname{div}(g(\|\nabla(\mathcal{G}_{\sigma} * x)\|_2^2)\nabla x)$$

where \mathcal{G}_{σ^2} is a small Gaussian kernel of width $\sigma > 0$.

(c) x_0 (d) $y = x_0 + w$

General diffusion model

$$\frac{\partial x}{\partial t} = A(x)x$$

- with $\begin{cases}
 \bullet \text{ Perona-Malik:} \quad A(x) = \operatorname{div} g(\|\nabla x\|_2^2)\nabla \\
 \bullet \text{ Reg. Perona-Malik:} \quad A(x) = \operatorname{div} g(\|\nabla (\mathcal{G}_{\sigma} * x)\|_2^2)\nabla \\
 \end{cases}$

Except for the heat equation, no explicit continuous solutions in general.

Resolution schemes: discretization in time

1 Explicit: $x^{k+1} = (\mathrm{Id} + \gamma A(x^k))x^k$ (direct) • Semi-implicit: $x^{k+1} = (\mathrm{Id} - \gamma A(x^k))^{-1}x^k$ (linear system to invert) • Fully-implicit: $x^{k+1} = (\mathrm{Id} - \gamma A(x^{k+1}))^{-1} x^k$ (nonlinear)

Because A depends on x^k , these are not geometric progressions.

- Need to be run iteratively,

- For explicit scheme: $\left\{ \begin{array}{l} \bullet \mbox{ Same CFL conditions } \gamma < \frac{1}{2d} \\ \Rightarrow \mbox{ at least } O(n^2) \mbox{ for } k \mbox{ to reach time } m. \end{array} \right.$

Anisotropic diffusion – Explicit scheme – Python example

Example (Explicit scheme for R-AD)

$$\begin{split} x^{k+1} &= x^k + \gamma \operatorname{div}(g(\|\nabla(\mathcal{G}_{\sigma} \, \ast \, x^k)\|_2^2) \nabla x^k) \\ \text{with} \quad g: \mathbb{R} \to \mathbb{R} \quad \text{and} \quad \gamma < \frac{1}{2d} \end{split}$$

```
g = lambda u: beta / (beta + u)
nu = im.kernel('gaussian', tau=sigma, s1=2, s2=2)
# Explicit scheme for regularized anisotropic diffusion
x = y
for k in range(m):
    x_conv = im.convolve(x, nu)
    alpha = g(im.norm2(im.grad(x_conv)))
    x = x + gamma * im.div(alpha * im.grad(x))
```

Anisotropic diffusion - Explicit scheme - Results

(f) $y = x_0 + w$ (g) x^5 (R-AD) (h) x^{15} (R-AD) (i) x^{30} (R-AD) (j) x^{300} (R-AD)

Anisotropic diffusion – Explicit scheme – Results

37

Example (Implicit scheme)

 $x^{k+1} = (\mathrm{Id} - \gamma A(x^k))^{-1} x^k \quad \text{and} \quad \text{converges for any } \gamma > 0$

Naive idea

- At each iteration k, build the matrix $M = \mathrm{Id} \gamma A(x^k)$
- Invert it with the function inv of Python.

Problem of the naive idea (1/2)

- *M* is a *n* × *n* matrix,
- If your image is $n=1024\times 1024$ (8Mb), this will require sizeof(double) \times $n\times n=8\cdot 2^{40}=8{\rm Tb}$

Problem of the naive idea (2/2)

• Best case scenario, you have a few Gb of RAM:

Python stops and says "Out of memory"

• Not too bad scenario, you have more than 8Tb of RAM:

computation takes forever (in general $O(n^3)$) \longrightarrow kill Python

• Worst case scenario, you have less but close to 8Tb of RAM:

OS starts swapping and is non-responsive \longrightarrow hard reboot

Anisotropic diffusion – Semi-implicit scheme

Take home message

• When we write on paper y = Mx (with x and y images), in your code:

never

Anisotropic diffusion – Semi-implicit scheme

Take home message

• When we write on paper y = Mx (with x and y images), in your code:

never, never

Anisotropic diffusion – Semi-implicit scheme

Take home message

• When we write on paper y = Mx (with x and y images), in your code:

never, never, never

Take home message

• When we write on paper y = Mx (with x and y images), in your code: never, never, never, never build the matrix M
Take home message

- When we write on paper y = Mx (with x and y images), in your code: never, never, never, never build the matrix M
- What is the alternative?
 - Use knowledge on the structure of ${old M}$ to compute $y={old M}x$ quickly
 - As for the FFT: Fx = fft2(x) (you never had to build F)

• If
$$M = \frac{1}{n} \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & & & \\ 1 & 1 & \dots & 1 \end{pmatrix}$$
, how do I compute Mx in $O(n)$?

• If M is sparse (# of non-zero entries in O(n)), use *sparse* matrices.

Design the operator $z\mapsto Mz$ rather than M

But how do I compute $x = M^{-1}y$ if I do not build M?

• Solve the system

$$Mx = y$$

with a solver that only needs to know the operator $z\mapsto Mz$.

Conjugate gradient

- If M is square symmetric definite positive, conjugate gradient solves the system by iteratively evaluating $z \mapsto Mz$ at different locations z.
- Use im.cg. Example to solve 2x = y:

x = im.cg(lambda z: 2 * z, y)

Explicit: $x^{k+1} = (\mathrm{Id} + \gamma A(x^k))x^k$ Implicit: $x^{k+1} = (\mathrm{Id} - \gamma A(x^k))^{-1}x^k$

```
# Explicit vs Implict scheme for regularized anisotropic diffusion
x_e = y
x_i = y
for k in range(m):
    # Explicit (0 < gamma < 0.25)
    x_e = rad_step(x_e, x_e, sigma, gamma, g)
    # Implicit (0 < gamma)
    x_i = im.cg(lambda z: rad_step(x_i, z, sigma, -gamma, g), x_i)</pre>
```

```
# One step r = (Id + gamma A(x)) z for the regularized AD
nu = im.kernel('gaussian', tau=sigma, s1=2, s2=2)
def rad_step(x, z, sigma, gamma, g):
    x_conv = im.convolve(x, nu)
    alpha = g(im.norm2(im.grad(x_conv)))
    r = z + gamma * im.div(alpha * im.grad(z))
```

Anisotropic diffusion - Semi-implicit scheme - Results

(d) $k = 100, \gamma = 0.24$ (3× slower) (e) $k = 1, \gamma = 0.24 \times 100$ (2× faster)

(Note: M also block tri-diagonal \Rightarrow Thomas algorithm can be used and is even faster)

Anisotropic diffusion – Limitations

(a) x_0 (original) (b) $y = x_0 + w$ (c) x (Perona-Malik) (d) y - x (method noise)

Behavior

- Inside regions with small gradient magnitude: fast isotropic smoothing.
- Diffusion stops around strong image gradients (structure-preserving).
- Noise on edges is not reduced by Perona-Malik solutions.

Can we be really anisotropic?

Anisotropic diffusion – Truly anisotropic behavior?

- Make neighborhoods truly anisotropic.
- Reminder: ellipses in 2d = encoded by a 2×2 sdp matrix

(rotation + re-scaling)

Replace the conductivity by a matrix-valued function

$$\frac{\partial x}{\partial t} = \operatorname{div}(\underbrace{T(x)\nabla x}_{\text{matrix vector produ}}).$$

- T maps each pixel position of x to a 2×2 matrix.
- T(x) is called a tensor field,
- The function T should control the direction of the flow.

Anisotropic diffusion – Truly anisotropic behavior [Weickert, 1999]

Anisotropic diffusion – Truly anisotropic behavior [Weickert, 1999]

Anisotropic diffusion – Truly anisotropic behavior [Weickert, 1999]

Anisotropic diffusion – Comparison

(a) x (P-M., 1990) (b) y - x (method noise) (c) x (Weickert, 1999) (d) y - x (method noise)

Behavior

- Inside regions with small gradient magnitude: fast smoothing,
- Around objects: diffusion aligns to anisotropic structures,
- Noise on edges reduced compared to inhomogeneous isotropic diffusion.

Anisotropic diffusion – Illustrations

Figure 1 - (left) input y. (right) truly anisotropic diffusion

Source: A. Roussos

Figure 2 – (left) input y. (middle) inhomogeneous diffusion. (right) truly anisotropic.

Source: A. Roussos

Anisotropic diffusion - Illustrations

Figure 3 – (left) input y. (middle) inhomogeneous diffusion. (right) truly anisotropic.

Source: A. Roussos

Anisotropic diffusion – Remaining issues

- When to stop the diffusion?
- How to use that for deblurring / super-resolution / linear inverse problems?
- Non-adapted for non-Gaussian noises (e.g., impulse noise).

(a) Input image

(b) Perona-Malik

(c) Conductivity

Variational methods

Definition

A variational problem is as an optimization problem of the form

$$\min_{\boldsymbol{x}} \left\{ F(\boldsymbol{x}) = \int_{\Omega} f(\boldsymbol{s},\boldsymbol{x},\nabla\boldsymbol{x}) \; \mathrm{d}\boldsymbol{s} \right\}$$

where

- Ω : image support (ex: $[0,1]^2$),
 - function that maps a position s to a value,
- $\nabla x : \Omega \mapsto \mathbb{R}^2$: gradient of x,
- $s = (s_1, s_2) \in \Omega$: space location,
- f(s, p, v):

• $x: \Omega \mapsto \mathbb{R}$:

loss chosen for a given task,

• *F*:

functional that maps a function to a value. (function of a function)

Example (Tikhonov functional)

- Consider the inverse problem y = H(x) + w, with H linear.
- The Tikhonov functional F is, for $\tau>0,$ defined as

$$F(x) = \frac{1}{2} \int_{\Omega} \left(H(x)(s) - y(s) \right)^2 + \tau \|\nabla x(s)\|_2^2 \, \mathrm{d}s$$

or, in short, we write

$$= \frac{1}{2} \int_{\Omega} \underbrace{\left(H(x) - y \right)^2}_{\text{data fit}} + \tau \underbrace{\| \nabla x \|_2^2}_{\text{smoothing}} \, \mathrm{d}s$$

- Look for x such that its degraded version H(x) is close to y.
- But, discourage x to have large spatial variations.
- *τ*: regularization parameter (trade-off).

Variational methods - Tikhonov functional

Pick the image x with smallest: Data-fit + Smoothness

$$F(x) = \frac{1}{2} \int_{\Omega} \underbrace{(H(x) - y)^2}_{\text{data fit}} + \tau \underbrace{\|\nabla x\|_2^2}_{\text{smoothing}} \, \mathrm{d}s$$

Example (Tikhonov functional)

- The image x is forced to be close to the noisy image y through H, but the amplitudes of its gradient are penalized to avoid overfitting the noise.
- The parameter $\tau > 0$ controls the regularization.
- For $\tau \to 0$, the problem becomes ill-posed/ill-conditioned, noise remains and may be amplified.
- For $\tau \to \infty$, x tends to be constant (depends on boundary conditions).

(a) Low resolution y

Tikhonov regularization for \times 16 super-resolution

(b) $\tau = 0$ (c) Small τ (d) Good τ (e) High τ (f) $\tau \to \infty$

How to solve this variational problem?

2 solutions:

How to solve this variational problem?

2 solutions:

Discretization of the functional

$$\min_{x} \left\{ F(x) = \sum_{k=1}^{n} f(k, x, \nabla x) \right\}$$

- n: number of pixels,
 k: pixel index, corresponding to location s_k , $x \in \mathbb{R}^n$: discrete image, ∇x : discrete image gradient,
- $F: \mathbb{R}^n \to \mathbb{R}$: function of a vector.
- Classical optimization problem,
- Look for a vector x that cancels the gradient of F,
- If no explicit solutions, use gradient descent.

Lipschitz gradient

• A differentiable function F has L Lipschitz gradient, if

 $\|\nabla F(x_1) - \nabla F(x_2)\|_2 \leqslant L \|x_1 - x_2\|_2$, for all x_1, x_2 .

- The mapping $x \mapsto \nabla F(x)$ is necessarily continuous.
- If F is twice differentiable

$$L = \sup_{x} \| \underbrace{\nabla^2 F(x)}_{\text{Hessian matrix of } F} \|_2.$$

where for a matrix A, its ℓ_2 -norm $||A||_2$ is its maximal singular value.

Be careful:

• $\nabla x \in \mathbb{R}^{n \times 2}$ is a 2d discrete vector field, corresponding to the discrete gradient of the image x.

• $(\nabla x)_k \in \mathbb{R}^2$ is a 2d vector: the discrete gradient of x at location s_k .

• $\nabla F(x) \in \mathbb{R}^n$ is the (continuous) gradient of F at x.

• $(\nabla F(x))_k \in \mathbb{R}$: variation of F for an infinitessimal variation of the pixel value x_k .

Gradient descent

• Let F be a real function, differentiable and lower bounded with a L Lipschitz gradient. Then, whatever the initialization x^0 , if $0<\gamma<2/L$, the sequence

$$x^{k+1} = x^k - \gamma \nabla F(x^k) ,$$

converges to a stationary point x^* (*i.e.*, it cancels the gradient)

$$\nabla F(x^{\star}) = 0$$
.

- The parameter γ is called the step size.
- A too small step size γ leads to slow convergence.
- For $0 < \gamma < 2/L$, the sequence $F(x^k)$ decays with a rate in O(1/k).

These two curves cross at x^\star such that $\nabla F(x^\star)=0$

Here γ is small: slow convergence

 γ a bit larger: faster convergence

 $\gamma\approx 1/L$ even larger: around fastest convergence

 γ a bit too large: convergence slows down

 γ too large: convergence too slow again

 $\gamma > 2/L$: divergence

Gradient descent for convex function

• If moreover F is convex

$$F(\lambda x_1 + (1-\lambda)x_2) \leqslant \lambda F(x_1) + (1-\lambda)F(x_2), \quad \forall x_1, x_2, \lambda \in (0,1) ,$$

then, the gradient descent converges towards a global minimum

$$x^* \in \operatorname*{argmin}_x F(x).$$

• Note: All stationary points are global minimum (non necessarily unique).

One-dimension

Two-dimensions

Example (Tikhonov functional (1/6))

 \bullet The functional F is

$$F(x) = \frac{1}{2} \int_{\Omega} \underbrace{(H(x) - y)^2}_{\text{data fit}} + \tau \underbrace{\|\nabla x\|_2^2}_{\text{smoothing}} \, \mathrm{d}s \ .$$

Its discretization leads to

$$F(x) = \frac{1}{2} \sum_{k} ((\mathbf{H}x)_{k} - y_{k})^{2} + \frac{\tau}{2} \sum_{k} \|(\nabla x)_{k}\|_{2}^{2}$$
$$= \frac{1}{2} \|\mathbf{H}x - y\|_{2}^{2} + \frac{\tau}{2} \|\nabla x\|_{2,2}^{2}$$

• $\ell_{2,2}$ /Frobenius norm of a matrix:

$$\|\boldsymbol{A}\|_{2,2}^2 = \sum_k \|\boldsymbol{A}_k\|_2^2 = \sum_k \sum_l \boldsymbol{A}_{kl}^2 = \operatorname{tr} \boldsymbol{A}^* \boldsymbol{A} = \langle \boldsymbol{A}, \boldsymbol{A} \rangle.$$

• Scalar product between matrices: $\operatorname{tr} A^* B = \langle A, B \rangle$.
$$F(x) = \frac{1}{2} \| \mathbf{H}x - y \|_{2}^{2} + \frac{\tau}{2} \| \nabla x \|_{2,2}^{2}$$

Example (Tikhonov functional (2/6))

- This function is differentiable and convex, since
 - If f convex, $x \mapsto f(Ax + b)$ is convex,
 - Norms are convex,
 - Quadratic functions are convex,
 - Compositions of convex non-decreasing functions (left) and convex functions (right) are convex.
 - Sums of convex functions are convex.
- We can solve this problem using gradient descent.

$$F(x) = \frac{1}{2} \| \boldsymbol{H}x - y \|_{2}^{2} + \frac{\tau}{2} \| \nabla x \|_{2,2}^{2}$$

Example (Tikhonov functional (3/6))

• Note that $\|\nabla x\|_{2,2}^2 = \langle \nabla x, \, \nabla x \rangle = \langle x, \, -\operatorname{div} \nabla x \rangle = -\langle x, \, \Delta x \rangle$, then

$$F(x) = \frac{1}{2} (\|\mathbf{H}x\|^2 + \|y\|^2 - 2 \langle \mathbf{H}x, y \rangle) - \frac{\tau}{2} \langle x, \Delta x \rangle$$
$$= \frac{1}{2} (\langle x, \mathbf{H}^* \mathbf{H}x \rangle + \|y\|^2 - 2 \langle x, \mathbf{H}^* y \rangle) - \frac{\tau}{2} \langle x, \Delta x \rangle$$

• The gradient is thus given by

$$\nabla F(x) = \frac{1}{2} ((\boldsymbol{H}^* \boldsymbol{H} + \boldsymbol{H}^* \boldsymbol{H}) x - 2\boldsymbol{H}^* y - \tau (\Delta + \Delta^*) x)$$
$$= \boldsymbol{H}^* (\boldsymbol{H} x - y) - \tau \Delta x$$

Note: $\nabla \langle x, Ay \rangle = Ay$ and $\nabla \langle x, Ax \rangle = (A + A^*)x$

Example (Tikhonov functional (4/6))

• The gradient descent reads as

$$x^{k+1} = x^k - \gamma \nabla F(x^k)$$

= $x^k - \gamma (\boldsymbol{H}^*(\boldsymbol{H}x^k - y) - \tau \Delta x^k)$

with $\gamma < \frac{2}{L}$ where $L = \|\boldsymbol{H}^*\boldsymbol{H} - \tau\Delta\|_2$.

- Triangle inequality: $L \leq \|\boldsymbol{H}\|_2^2 + \tau 4d$ since $\|\Delta\|_2 = 4d$.
- For $\tau \to \infty$ and $x^0 = y$, this converges to the explicit Euler scheme for the Heat equation. The condition $\gamma < \frac{2}{L}$ is equivalent to the CFL condition.

Solutions of the Heat equation tend to minimize the smoothing term.

This explains why at convergence the Heat equation provides constant solutions (when using periodical boundary solutions).

- The retroaction allows to remain close to the observation.
- Unlike the solution of the Heat equation, this numerical scheme converges to a solution of interest.
- Classical stopping criteria:
 - fixed number m of iterations (k = 1 to m),
 - $|F(x^{k+1}) F(x^k)| / |F(x^k)| < \varepsilon$, or
 - $||x^{k+1} x^k|| / ||x^k|| < \varepsilon.$

Where does Tikhonov regularization converge to?

Example (Tikhonov regularization (6/6))

• Explicit solution

$$\nabla F(x) = \mathbf{H}^* (\mathbf{H}x - y) - \tau \Delta x = 0$$

$$\Leftrightarrow$$
$$x^* = (\mathbf{H}^* \mathbf{H} - \tau \Delta)^{-1} \mathbf{H}^* y$$

- Can be directly solved by conjugate gradient.
- Tikhonov regularization is linear (non-adaptive).
- If *H* is a blur, this is a convolution by a sharpening kernel (LTI filter).

How to incorporate inhomogeneity à la Perona-Malik?

Variational methods - Robust regularization

Robust regularization

Use robust regularizers to pick the good candidate

Example (Robust regularization (1/2))

$$F(x) = \frac{1}{2} \int_{\Omega} \underbrace{(\mathbf{H}x - y)^2}_{\text{data fit}} + \tau \underbrace{G(\|\nabla x\|_2^2)}_{\text{regularization}} \, \mathrm{d}s$$

After discretization, its gradient is given by

$$\nabla F(x) = \boldsymbol{H}^*(\boldsymbol{H}x - y) - \tau \operatorname{div}(g(\|\nabla x\|_2^2) \nabla x)$$

where g(u) = G'(u).

• The gradient descent becomes

$$x^{k+1} = x^k - \gamma(\underbrace{\boldsymbol{H}^*(\boldsymbol{H} x^k - y)}_{\text{retroaction}} - \tau \operatorname{div}(g(\|\nabla x^k\|_2^2) \nabla x^k) \ .$$

Without the retroaction term ($\tau \rightarrow \infty$), this is exactly the explicit Euler scheme for the anisotropic diffusion.

(a) Low resolution y

Robust regularization for \times 16 super-resolution

(a) Low resolution y

Tikhonov regularization for \times 16 super-resolution

(b) Tiny au (c) Small au (d) Good au (e) High au (f) Huge au

What are the choices of *G*, leading to the choice of Perona and Malik?

Example (Robust regularization (2/2))

$$G(u) = u \quad \Rightarrow \quad g(u) = 1 \tag{Heat}$$

$$G(u) = \beta \log(\beta + u) \quad \Rightarrow \quad g(u) = \frac{\beta}{\beta + u}$$
 (AD)

$$G(u) = \beta \left(1 - \exp\left(-\frac{u}{\beta}\right)\right) \Rightarrow g(u) = \exp\left(-\frac{u}{\beta}\right)$$
 (AD)

Variational methods – Robust regularization

• Tikhonov (blue) is convex:

 \Rightarrow global minimum \bigcirc

huge penalization for large gradients: does not allow for edges,

 \Rightarrow smooth solutions. \odot

• The other two are non-convex:

 \Rightarrow stationary point depending on the initialization \odot

small penalization for large gradients: allows for edges (robust),

 \Rightarrow sharp solutions. \bigcirc

Total-Variation

Can we take the best of both worlds?

One-dimensional case

$$F(x) = \frac{1}{2} \int (\boldsymbol{H}x - y)^2 + \tau |\nabla x| \, \mathrm{d}s$$

1d Total-Variation

• Its discretization leads to

$$F(x) = \frac{1}{2} \| \mathbf{H}x - y \|_{2}^{2} + \frac{\tau}{2} \sum_{k} |(\nabla x)_{k}|$$
$$= \frac{1}{2} \| \mathbf{H}x - y \|_{2}^{2} + \frac{\tau}{2} \| \nabla x \|_{1}$$

• ℓ_p norm of a vector:

$$\|v\|_p = \left(\sum_k |v_k|^p\right)^{1/p}$$

Total-Variation – One-dimensional case

Tikhonov

Total-variation

For TV, the gradient will be zero for most of its coordinates. This is due to the corners of the ℓ_1 ball.

Total-Variation – One-dimensional case

Gradient sparsity

- Sparsity of the gradient \Leftrightarrow piece wise constant solutions
- Non-smooth (non-differentiable) \Rightarrow can't use gradient descent. \odot

Large noise reduction with edge preservation but, convex non-smooth optimization problem.

A solution: proximal splitting methods (in a few classes), kind of implicit Euler schemes.

- Too small: noise overfitting / staircasing,
- Too large: loss of contrast, loss of objects.

- Too small: noise overfitting / staircasing,
- Too large: loss of contrast, loss of objects.

- Too small: noise overfitting / staircasing,
- Too large: loss of contrast, loss of objects.

- Too small: noise overfitting / staircasing,
- Too large: loss of contrast, loss of objects.

- Too small: noise overfitting / staircasing,
- Too large: loss of contrast, loss of objects.

- Too small: noise overfitting / staircasing,
- Too large: loss of contrast, loss of objects.

- Too small: noise overfitting / staircasing,
- Too large: loss of contrast, loss of objects.

- Too small: noise overfitting / staircasing,
- Too large: loss of contrast, loss of objects.

- Large noise: staircasing + loss of contrast.
- Small noise: noise reduction + edge preservation

- Large noise: staircasing + loss of contrast.
- Small noise: noise reduction + edge preservation

- Large noise: staircasing + loss of contrast.
- Small noise: noise reduction + edge preservation

- Large noise: staircasing + loss of contrast.
- Small noise: noise reduction + edge preservation

- Large noise: staircasing + loss of contrast.
- Small noise: noise reduction + edge preservation

Set of non-zero gradients (jumps) is sparse

Two-dimensional case

$$F(x) = \frac{1}{2} \int (\mathbf{H}x - y)^2 + \tau \|\nabla x\|_2 \, \mathrm{d}s$$

2d Total-Variation

• Its discretization leads to

$$F(x) = \frac{1}{2} \| \mathbf{H}x - y \|_{2}^{2} + \frac{\tau}{2} \sum_{k} \| (\nabla x)_{k} \|_{2}$$
$$= \frac{1}{2} \| \mathbf{H}x - y \|_{2}^{2} + \frac{\tau}{2} \| \nabla x \|_{2,1}$$

• $\ell_{p,q}$ norm of a matrix:

$$\|\boldsymbol{A}\|_{p,q} = \left(\sum_{k} \left(\sum_{l} |\boldsymbol{A}_{kl}|^{p}\right)^{q/p}\right)^{1/q}$$

Total-Variation – Results

(a) Blurry image y

TV regularization for deconvolution of motion blur

(b) Tiny τ

(c) Small au (d) Medium au

(e) High τ (f) Huge τ

86

Total-Variation – Results

Total-Variation – Results

(d) Relatively small au

Noisy image

Total-Variation (\approx 50s)

TV regularization for denoising

(a) Noise $\sigma = 10$

(b) $\sigma = 20$

(c) $\sigma = 40$

(d) $\sigma = 60$

Noisy image

BNL-means (\approx 30s)

TV regularization for denoising

(a) Noise $\sigma = 10$

(b) $\sigma = 20$

(c) $\sigma = 40$

(d) $\sigma = 60$

Variant: Anisotropic TV

$$F(x) = \frac{1}{2} \int (\boldsymbol{H}x - y)^2 + \tau \|\boldsymbol{\nabla}x\|_1 \, \mathrm{d}s$$

Anisotropic Total-Variation

• Its discretization leads to

$$F(x) = \frac{1}{2} \| \mathbf{H}x - y \|_{2}^{2} + \frac{\tau}{2} \sum_{k} \| (\nabla x)_{k} \|_{1}$$
$$= \frac{1}{2} \| \mathbf{H}x - y \|_{2}^{2} + \frac{\tau}{2} \| \nabla x \|_{1,1}$$

- Anisotropic behavior:
 - Penalizes more the gardient in diagonal directions,
 - Favor horizontal and vertical structures,
 - By opposition the $\ell_{2,1}$ version is called Isotropic TV.

Total-Variation – Two-dimensional case

Anisotropic TV: components of the gradient of each pixel are independent.

Isotropic TV: the two components of the gradient are grouped together.

We can also group the colors to avoid color aberrations.

Total-Variation – Two-dimensional case

(b) Anisotropic TV

Total-Variation – Two-dimensional case

Total-Variation – Remaining issues

- What to choose for the regularization τ ?
- Loss of textures (high frequency objects)
 - \longrightarrow images are not piece-wise constant,
- Non-adapted for non-Gaussian noises (e.g., impulse noise).

(a) Gaussian noise

(b) TV result

(c) Impulse noise

(d) TV result

Variational methods – Further reading

For further reading

- Variational methods for image segmentation:
 - Mumford-Shah functional (1989),
 - Active contours / Snakes (Kass et al, 1988),
 - Chan-Vese functional (2001).
- Link with Gibbs priors and Markov Random Fields (MRF):
 - Geman & Geman model (1984),
 - Graph cuts (Boykov, Veksler, Zabih, 2001), (Ishikawa, 2003), \longrightarrow Applications in Computer-Vision.
- For more evolved regularization terms:
 - Fields of Experts (Roth & Black, 2008).
 - Total-Generalized Variation (Bredies, Kunisch, Pock, 2010).
- Link with Machine learning / Sparse regression:
 - LASSO (Tibshirani, 1996) / Fused LASSO / Group LASSO.

Questions?

Next class: Bayesian methods

Sources, images courtesy and acknowledgment

- L. Condat A. Horodniceanu I. Kokkinos
- G. Rosman

- A. Roussos J. Salmon
- Wikipedia