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Multiview restoration – Motivation

• Given m corrupted images y1, . . . , ym of a same clean image x

• What is the best approach to retrieve x?
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Multiview restoration – Sample mean

Average, a.k.a., sample mean estimator

x̂ =
1

m

m∑
k=1

yk

Why does it perform denoising?
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Multiview restoration – Sample mean

Average, a.k.a., sample mean estimator

• Assume yk are iid (independent and identically distributed), then

E[x̂] = E

[
1

m

m∑
k=1

yk
]

=
1

m

m∑
k=1

E
[
yk
]

= E
[
yk
]

⇒ If E
[
yk
]

= x, the sample-mean is unbiased.

• and Var[x̂] = Var

[
1

m

m∑
k=1

yk
]

=
1

m2

m∑
k=1

Var
[
yk
]

=
1

m2

m∑
k=1

σ2 =
σ2

m

⇒ Sample-mean reduces the fluctuations by
√
m.
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Multiview restoration – Sample mean

x̂ =
1

m

m∑
k=1

yk

(Weak) Law of large numbers

plim
m→∞

x̂ = x ⇔ ∀ε > 0, lim
m→∞

P[||x̂− x||2 > ε] = 0

The sample mean x̂ is said to be a consistent estimator of x.

As the number of views increase,

the restoration improves with high probability.
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Multiview restoration – Sample mean

(a) yk (Gaussian noise) (b) m=9 (SNR ×3) (c) m=81 (SNR ×9)

≈

(d) x

SNR =
E[x̂]√
Var[x̂]

=

√
mx

σ
−−−−−−−→
m→∞

∞

But what if the assumptions are violated?
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Multiview restoration – Sample mean

(a) yk (Impulse noise) (b) m = 9 (c) m = 81

6≈

(e) x̂

For impulse noise E[yk] 6= x

If the assumptions are violated

1 May not converge towards x (biased estimation).

2 May not even converge.

Even though: the convergence can be too slow.
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Multiview restoration – Sample mean

(a) yk (Cauchy noise) (b) m = 9 (c) m = 81

6≈

(e) x̂

For Cauchy noise E[yk] and Var[yk] do not exist!

If the assumptions are violated

1 May not converge towards x (biased estimation).

2 May not even converge.

Even though: the convergence can be too slow.
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Multiview restoration – Sample mean

(a) yk (Cauchy noise) (b) m = 9 (c) m = 81

6≈

(e) x̂

For Cauchy noise E[yk] and Var[yk] do not exist!

If the assumptions are violated

1 May not converge towards x (biased estimation).

2 May not even converge.

Even though: the convergence can be too slow.
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Multiview restoration – Alternatives

Possible alternatives:

Samples yk = 4, 10, 3, 6, 2, 3, 2, 2, 4

• Sample mean (average)

4+10+3+6+2+3+2+2+4
9

= {4}

• Sample median (middle one)

2, 2, 2, 3,3, 4, 4, 6, 10

• Sample mode (most frequent ones)

3×2, 2×3, 2×4, 1×6, 1×10

Estimator

Random variable Y

• Mean (expectation):

E[Y ] =

∫ +∞

−∞
yp(y;x) dy

• Median:∫ m

−∞
p(y;x) dy =

∫ ∞
m

p(y;x) dy =
1

2

• Mode (distribution peaks):

argmax
y

p(y;x)

Quantity being estimated

Which one should I pick?
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Multiview restoration – Alternatives

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

(a) Gaussian law

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Laplace law

0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c) Cauchy law
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(d) Poisson law
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(f) Impulse law

• Mean/mode/median do not necessarily correspond to the unknown x,

• Often, function of x through a link function, ex: x = g(E[y]),

• Should take into account such a link between the images yk and x.
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Multiview restoration – Method of moments

Method of moments (Karl Pearson, 1894)

Assume


• yk are iid,

• x = g(E[yk]), and

• Var[yk] is finite.

1. Consistently estimate µ = E[yk] by sample mean

µ̂ = ȳ =
1

m

m∑
k=1

yk

2. Next estimate x as

x̂ = g(µ̂)
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Multiview restoration – Method of moments

Properties of method of moments

• Easy to compute if we know g.

• Unbiased if g is linear.

• When g is sufficiently regular, asymptotically unbiased:

lim
m→∞

E[x̂] = x

. . . and consistent:

plim
m→∞

x̂ = x .

• But:

{
• Biased for small m, since: E[g(µ̂)] 6= g(E[µ̂]),

• Often inefficient: slow convergence.
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Multiview restoration – Method of moments

Example (Impulse noise (1/3))

• Consider y and x defined in [0, L− 1] such as

p(y ; x) =

{
1− P + P/L if y = x

P/L otherwise

0 5 10 15
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1
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Multiview restoration – Method of moments

Example (Impulse noise (2/3))

• We have

E[y] =

L−1∑
y=0

yp(y; x)

= x(1− P + P/L) + P/L
∑
y 6=x

y

= x(1− P + P/L) + P/L
( L−1∑

y=0

y︸ ︷︷ ︸
= 1

2
(L−1)L

−x
)

= x(1− P ) +
1

2
P (L− 1)

• Hence E[y] = h(x) with

h(x) = x(1− P ) +
1

2
P (L− 1)
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Multiview restoration – Method of moments

Example (Impulse noise (3/3))

• As E[y] = h(x) with

h(x) = x(1− P ) +
1

2
P (L− 1)

• If P 6= 1, h is invertible, and for g = h−1, we have

x = g(E[y]) with g(µ) =
µ− 1

2
P (L− 1)

1− P

• The moment estimator is thus

x̂ = g(ȳ) =
1
m

∑m
k=1 y

k − 1
2
P (L− 1)

1− P

i.e., an affine correction of the sample mean.
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Multiview restoration – Method of moments – Results

(a) yk (Impulse noise)
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(b) m = 9 (c) m = 81 (d) m = 243

• Much better than the sample mean ,

• Clearly not as efficient as the sample mode / Why?
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Multiview restoration – Method of moments – Results

(a) yk (Impulse noise)

S
am

p
le

m
ea

n
M

.
o

f
m

o
m

.
S

am
p

le
m

o
d

e

(b) m = 9 (c) m = 81 (d) m = 243

• Much better than the sample mean ,
• Clearly not as efficient as the sample mode / Why?
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Mean square error



Mean square error - Risk

Define optimality

• Choose a loss-function: `(x, x̂) such that

• `(x, x) = 0
• `(x, x̂) > 0: measure the proximity

• Write: x̂ = x̂(y1, . . . , ym) with x̂ : Rn × . . .× Rn︸ ︷︷ ︸
m times

→ Rn

• Define the risk or expected loss as

R(x, x̂) =

∫
. . .

∫
`(x, x̂(y1, . . . , ym)) p(y1, . . . , ym;x) dy1 . . .dym︸ ︷︷ ︸

or in short E[`(x, x̂)]
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Mean square error – Definition

Mean square error

• The choice of the loss depends on the application context.

• Most common choice for linear regression problems:

square error (or `2-loss)

`(x, x̂) = ||x− x̂||22 =

n∑
i=1

(xi − x̂i)2

• The expected risk is thus called Mean Square Error (MSE)

R(x, x̂) = MSE(x, x̂) = E||x− x̂||22
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Mean square error - Bias and Variance

Bias-variance decomposition

MSE(x, x̂) =
n∑
i=1

(xi − E[x̂i])
2 +

n∑
i=1

Var[x̂i]

= ||x− E[x̂]||2︸ ︷︷ ︸
Bias2

+ tr Var[x̂]︸ ︷︷ ︸
Variance

Minimizing the MSE ≡ Minimizing bias2 and variance
19



Mean square error – Bias and Variance

Local decomposition: bias and variance are often structure dependent

• Local map of bias: bi = |xi − E[x̂]i| Bias2 =
∑
b2i

• Local map of variance: vi = Var[x̂i] Variance =
∑
vi

R
A

d
iff

.

Avg. 5.14 Avg. 11.27 Avg. 12.38

T
A

d
iff

.

(a) Result x̂ (b) Bias

Avg. 7.47

(c) Standard deviation

Avg. 6.62

(d) Root MSE

Avg. 9.98

{ • residual noise ≡ high estimation variance

• over-smoothing/blur ≡ bias
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Mean square error – Bias and Variance

MSE(x, x̂) = ||x− E[x̂]||2︸ ︷︷ ︸
Bias2

+ tr Var[x̂]︸ ︷︷ ︸
Variance

In general, the minimum MSE estimator has

non-zero bias and non-zero variance

Figure 1 – Smoothing more ⇒ increasing bias while reducing variance

Minimizing the MSE ≡ Finding a trade-off in terms of bias and variance
21



Mean square error – Optimal estimation

Optimize for a class of estimators

• Choose the optimal estimator as the one minimizing the expected loss

x̂? = argmin
x̂∈C

{R(x, x̂) = E[`(x, x̂)]}

for C a class of estimators.

• Without this restriction, solutions can be unrealizable,

ex: trivial solution x̂(y1, . . . , ym) = x

i.e., the solution would depend on the unknown.
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Mean square error – Optimal estimation

Example (Amplified sample mean (1/3))

• Assume yk iid with E[yk] = x and Var[yk] = σ2Idn.

• Consider the optimal estimator with respect to the MSE

x̂? = argmin
x̂∈C

{
MSE(x, x̂) = E||x− x̂||22

}
• And the class of functions that amplify the sample mean

C =

x̂ : Rn × . . .× Rn︸ ︷︷ ︸
m times

→ Rn ; ∃α ∈ R, x̂(y1, . . . , ym) =
α

m

m∑
k=1

yk


• Finding x̂? leads to find α? that minimizes the MSE.
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Mean square error – Optimal estimation

x̂(y1, . . . , ym) =
α

m

m∑
k=1

yk

Example (Amplified sample mean (2/3))

• Study the first order derivative

∂MSE(x, x̂)

∂α
=
∂||x− E[x̂(y)]||22

∂α
+
∂ tr Var [x̂(y)]

∂α

=
∂||x− αx||22

∂α
+
∂α2 tr Var [y] /m

∂α

= ||x||2 ∂(1− α)2

∂α
+
nσ2

m

∂α2

∂α

= −2||x||2(1− α) +
2n

m
σ2α

• Moreover, the second order derivative is constant and positive

∂2MSE

∂α2
= 2||x||2 +

2n

m
σ2
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Mean square error – Optimal estimation

Example (Amplified sample mean (3/3))

• Then the MSE is a quadratic function and its minimum is given for

∂MSE

∂α
= 0 ⇔ −2||x||2(1− α) +

2n

m
σ2α = 0

⇔ α? =
||x||2

||x||2 + nσ2

m

Define: SNR2 =
||x||22
nσ2

α? = SNR2

SNR2+1/m
:

{
• large SNR, yk has good quality, average: x̂ = ȳ,

• low SNR, x drawn in the noise: x̂ = 0 is safer.

This is not realizable since it depends on the unknown x.

We need an alternative to direct MSE minimization.
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Unbiased estimators – Minimum Variance Unbiased Estimator

• In the previous example

∂MSE(x, x̂)

∂α
=
∂Bias2

∂α
+
∂Variance

∂α

where
∂Bias2

∂α
= −2||x||2(1− α) and

∂Variance

∂α
=

2n

m
σ2α

• The dependency on ||x||2 arises from the bias term,

• This occurs in many situations.

Constrain the estimator to be unbiased.

Find the estimator that produces the minimum variance.

This will provide the minimum MSE among all unbiased estimators.
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Unbiased estimators – Minimum Variance Unbiased Estimator

Minimum Variance Unbiased Estimator (MVUE)

An estimator x̂? ∈ C is the MVUE for the class of estimators C if

(∀x, Ex̂? = x)︸ ︷︷ ︸
unbiasedness

and ∀x̃ ∈ C, (∀x, Ex̃ = x)⇒ (∀x, tr Var[x̂?] 6 tr Var[x̃])︸ ︷︷ ︸
minimum variance

Example (Back to the amplified sample mean)

• An unbiased estimator that amplifies the sample mean should satisfy

Bias2 = ||x− E
[
α

m

m∑
k=1

yk
]
||2 = (1− α)2||x||2 = 0 ⇒ α? = 1

• Then the sample mean is the only unbiased estimator of this class.

• It is the MVUE of this class.
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Unbiased estimators – Minimum Variance Unbiased Estimator

Variance of 3 unbiased estimators E[x̂1]=E[x̂2]=E[x̂3]=x as a function of x.

Quiz: which one is the MVUE on the left? on the right?

The MVUE does not always exist.

If it does exist, how to find it?

28



Unbiased estimators – Cramér-Rao bound

Cramér-Rao lower bound (≈ 1945)

• Provided the bound exists, any realizable unbiased estimator satisfies

Var[x̂] > I−1 where Ii,j = E
[
∂2 − log p(y1, . . . , ym;x)

∂xi∂xj

∣∣∣∣
x

]

• Var[x̂] > I−1 means Var[x̂]− I−1 is symmetric positive definite,

• y1, . . . , ym 7→ p(y1, . . . , ym;x) is the law of the observations,

• x 7→ p(y1, . . . , ym;x) is the likelihood of the unknown,

• I the Fisher information matrix: expected Hessian of the log-likelihood,

• I measures the organization/entropy/simplicity of the problem,

• Ex: small noise → likelihood peaky → large Hessian → small bound.
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Unbiased estimators – Cramér-Rao bound

Consequence: Var[x̂] = I−1 ⇒ x̂ is the MVUE

If you find an unbiased estimator that reaches the Cramér-Rao bound,

then it is the MVUE.

B The MVUE may not reach the Cramér-Rao bound,

in this case, no estimator reaches the bound.
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Unbiased estimators – Efficiency

Efficiency

• The ratio 0 6
tr I−1

tr Var[x̂]
6 1 is called efficiency of the estimator,

• Measures by how much the estimator is close to the Cramér-Rao bound,

• An unbiased estimator with efficiency 100% is said to be efficient,

• If an efficient estimator exists, it is the MVUE,

• The MVUE is not necessarily efficient.

If we cannot build an efficient estimator, we may build one whose

efficiency converges to 100% with the number of observations m.
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Unbiased estimators – Maximum Likelihood Estimator

Maximum likelihood estimators (MLE) [Fisher, 1913 and others]

• Define the MLE, for yk iid, as one of the global maxima of the likelihood

x̂ ∈ argmax
x

p(y1, . . . , ym;x) = argmax
x

m∏
k=1

p(yk;x)

• Then x̂ is asymptotically unbiased, asymptotically efficient and consistent

lim
m→∞

E[x̂] = x, lim
m→∞

Var[x̂] = 0, plim
m→∞

x̂ = x and lim
m→∞

tr I−1

tr Var[x̂]
= 1

• If an efficient estimator exists, it is the MLE and, then, the MVUE.

• Otherwise, the MVUE might be more efficient than the MLE.

MLE: look for the image that best explains the observations.
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Unbiased estimators – Maximum Likelihood Estimator
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(f) Impulse likelihood

• These curves are not laws but likelihoods: x 7→ p(y1, . . . , ym;x).

• The considered samples are yk = 4, 10, 3, 6, 2, 3, 2, 2, 4.

• MLE can be the sample mean, median, mode, or something else.
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Unbiased estimators – Maximum Likelihood Estimator

How to find the MLE for yk iid?

• Rewrite the MLE as a minimization problem

x̂? ∈ argmax
x

m∏
k=1

p(yk;x) = argmin
x

m∑
k=1

− log p(yk;x)︸ ︷︷ ︸
ˆ̀(x)

• Why − log?

• Strictly decreasing function: same locations for the optima,

• Sums are easier to manipulate than products,

• ∏ p(yk;x) very small: safer to manipulate −16 than 10−16.
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Unbiased estimators – Maximum Likelihood Estimator

How to find the MLE for yk iid?

• If ˆ̀ differentiable: find x̂? that cancels the gradient

• Twice diff. at x̂? and ˆ̀′′(x̂?) > 0: a local minimum

• ˆ̀ convex: a global minimum

ˆ̀(αx+ βy) 6 αˆ̀(x) + β ˆ̀(y)

• Twice diff. everywhere and ˆ̀′′(x) > 0: ˆ̀ convex

⇒ a global minimum

• Often analytical solutions, otherwise use numerical solvers

(ex: Gradient descent, Newton-Raphson, Expectation-Maximization)

In multivariate setting, ˆ̀′′(x) > 0 means

the Hessian is symmetric positive definite at x.
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Unbiased estimators – Maximum Likelihood Estimator

Example (Poisson noise (1/3))

• Consider samples y1, . . . , ym ∈ N iid versions of x > 0 such that

p(y;x) =
xye−x

y!
• We have

ˆ̀(x) =

m∑
k=1

− log p(yk;x) =

m∑
k=1

−yk log x+ x− log yk!

• It follows that ˆ̀ is twice differentiable and

ˆ̀′(x) =

m∑
k=1

(
−y

k

x
+ 1

)
= m− 1

x

m∑
k=1

yk and ˆ̀′′(x) =
1

x2

m∑
k=1

yk

• For all x, ˆ̀′′(x) > 0, then ˆ̀′′ is convex and thus x̂? satisfies

m− 1

x̂?

m∑
k=1

yk = 0 ⇔ x̂? =
1

m

m∑
k=1

yk
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Unbiased estimators – Maximum Likelihood Estimator
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Unbiased estimators – Maximum Likelihood Estimator
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Unbiased estimators – Maximum Likelihood Estimator

Example (Poisson noise (2/3))

• The MLE for Poisson noise is unique and is the sample mean,

• Recall that for Poisson noise E[yk] = x and Var[yk] = x,

• It follows that the variance of the MLE is

Var[x̂?] =
1

m2

m∑
k=1

Var[yk] =
1

m2

m∑
k=1

x =
x

m

• Besides, the Fisher information is

I = E[ˆ̀′′(x)] = E

[
1

x2

m∑
k=1

yk
]

=
1

x2

m∑
k=1

E[yk] =
1

x2

m∑
k=1

x =
m

x

• Hence

Var[x̂?] = I−1

• The MLE reaches the Cramér-Rao, even non-asymptotically.

• It is 100% efficient for all m, it’s the MVUE.
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Unbiased estimators – Maximum Likelihood Estimator
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Unbiased estimators – Maximum Likelihood Estimator
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• It is 100% efficient for all m, it’s the MVUE.
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Unbiased estimators – Maximum Likelihood Estimator

Law MLE Comments MVUE

Gaussian Sample mean 100% efficient for all m
√

(sample median ≈ 64%)

Poisson Sample mean 100% efficient for all m
√

Gamma Sample mean 100% efficient for all m
√

Cauchy No closed form (sample median ≈ 81%)

(24%-trimmed mean ≈ 88%)

Laplacian Sample median asymptotically efficient with m

Impulse Sample mode no CR bound

Remarks: robust estimators

• Even though the sample mean is often the MLE, the sample median

(which always converges) or the trimmed mean are often preferred when

the noise distribution is unknown or known approximately.

(their efficiency often drops slower under mis-specified noise models)

• More robust to outliers, when some samples are not iid.
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Least square – Best Linear Unbiased Estimator

Motivation:

{ • The MVUE not always exist,

• Can be difficult to find.

Idea:


• Restrict the estimator to be linear with respect to y,

• Restrict the estimator to be unbiased,

• Find the best one (i.e., with minimum variance)

Definition (BLUE: Best linear unbiased estimator)

• Consider yk ∈ Rn and x ∈ Rp,

• BLUE is the MVUE for the class of linear estimators

C =

{
x̂ ; ∃A1, . . . ,Am ∈ Rp×n, x̂(y1, . . . , ym) =

m∑
k=1

Aky
k

}
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Least square – Best Linear Unbiased Estimator

Theorem (Gauss-Markov theorem)

• Assume

• H ∈ Rn×p with rank p 6 n (i.e., over-determined)
• E[yk] = Hx
• Var[yk] = Σ

• Then, the BLUE is

x̂? = (H∗Σ−1H)−1H∗Σ−1ȳ where ȳ =
1

m

m∑
k=1

yk .

• BLUE always exists for over-determined linear regression problems,
• Can be used even though we do not know precisely p(y1, . . . , ym;x) as:

It only requires the noise to be zero-mean,

and knowing its covariance matrix.

• H∗Σ−1H is always sdp ⇒ can be inverted by conjugate gradient.
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Least square – Best Linear Unbiased Estimator

MLE with Gaussian noise = BLUE = LSE

• Assume

• H ∈ Rn×p with rank p 6 n (i.e., over-determined),
• yk ∼ N (Hx,Σ) and independent.

• Then, the MLE is unique and is the least square estimator (LSE)

x? = argmin
x

m∑
k=1

||Σ−1/2(Hx− yk)||22

= (H∗Σ−1H)−1H∗Σ−1ȳ

• It is also the BLUE and the MVUE.

Imposing linearity and unbiasedness
(sub-optimal in general)

≡
Imposing unbiasedness and assuming Gaussianity.

(optimal under this assumption)
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Least square – Least square for super-resolution

Σ = σ2Id

x̂? = (H∗H)−1H∗ȳ
p1, p2 = x.shape[:2]

sigma = 60/255

m = 20

# Subsampling: each line is the average of two consecutive ones

H = lambda x: (x[0::2, :] + x[1::2, :]) / 2

y = [ H(x) + sigma * np.random.randn(int(p1 / 2), p2, 3) for k in range(m) ]

# Adjoint of H: each line is duplicated and divided by two

Ha = lambda x: x[[int(i/2) for i in range(p1)], :] / 2

# Least square solution with cg (Note: non optimal)

ybar = np.mean(y, axis=0)

xblue = im.cg(lambda x: Ha(H(x)), Ha(ybar))

(a) yk = Hx + wk (b) x̂?, m = 1 (c) x̂?, m = 4 (d) x̂?, m = 20 42



Least square – Under-determined least square

Oops, we have not checked that H∗H was invertible.

In image processing tasks

• H is almost always under-determined ⇒ H∗H is non-invertible.

Examples

• Low-pass: sets high frequencies to zero, thus non-invertible,

• Radon transform: sets some frequencies to zero, thus non-invertible,

• Inpainting: sets some pixels to zero, thus non-invertible,

• Super-resolution: p > n the problem is under-determined.

If H is non-invertible, BLUE does not exist.

Realizable estimators cannot be unbiased.

They cannot guess, not even in average, what was lost.
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Least square – Least square and normal equation

So, what was im.cg computing in the previous example?

Least-square estimator and normal equation

• im.cg finds one of the infinite solutions of the least square problem

x? ∈ argmin
x

||Hx− ȳ||22

• They are characterized by the normal equation

H∗Hx? = H∗ȳ

• If initialized to zero, im.cg finds the one with minimum norm ||x̂?||2.

• This solution reads as x̂? = H+ȳ

where H+ ∈ Rp×n is the Moore-Penrose pseudo-inverse of H.
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Least square – Least square and normal equation

Moore-Penrose pseudo-inverse

• The Moore-Penrose pseudo-inverse is the unique matrix satisfying

1 HH+H = H

2 H+HH+ = H+

3 (HH+)∗ = HH+

4 (H+H)∗ = H+H

• The Moore-Penrose pseudo-inverse always exists.

• If H is square and invertible: H+ = H−1

• H+ also satisfy: H+ = (H∗H)+H∗ = H∗(HH∗)+

• If H has full rank: H+ =(H∗H)−1H∗, we recover Gauss-Markov thm.
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Least square – Moore-Penrose pseudo-inverse

Small detour to Singular Value Decompositions (SVD)

• Any matrix H ∈ Rn×m admits a Singular Value Decomposition (SVD) as

H = UΣV ∗ with


• U ∈ Cn×n, U∗U = U∗U = Idn

• V ∈ Cm×m, V ∗V = V V ∗ = Idm

• Σ ∈ Rn×m a diagonal matrix.

• σi = Σii > 0: called singular values (often sorted in decreasing order),

• Rank r 6 min(n,m): number of non-zero singular values.
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Least square – Moore-Penrose pseudo-inverse

SVD, image and null space

• If the singular values are sorted in decreasing order

Im[H] = {y ∈ Rn ; ∃x ∈ Rm, y = Hx}

= Span({ui ∈ Rn ; i ∈ [1 . . . r]}) (what can be observed)

Ker[H] = {x ∈ Rm ; Hx = 0}

= Span({vi ∈ Rm ; i ∈ [r + 1 . . .m]}) (what is lost)

where ui are the columns of U and vi are the columns of V

Null-space: set of zero-frequencies, set of missing pixels, ...
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Least square – Moore-Penrose pseudo-inverse

SVD and Moore-Penrose pseudo-inverse

• Let H = UΣV ∗ be its SVD, the Moore-Penrose pseudo inverse is

H+ = V Σ+U∗ where σ+
i =

{
1
σi

if σi > 0

0 otherwise

• For deconvolution: SVD ∼= eigendecomposition ∼= Fourier decomposition

⇒ inversion of the non-zero frequencies.

• Difficulty: 1
σi

can be very large (ill-conditioned matrix)

⇒ numerical issues (refer to Assignment 6).

Compared to other least square solutions, the Moore-Penrose

pseudo-inverse does not create new content in Ker[H],

i.e., where the information was lost.

It is unbiased only on Ker[H]⊥.

48



Least square – Pseudo inverse for deconvolution

In practice, the threshold

1e-2 is difficult to choose

n1, n2 = x.shape[:2]

sigma = 2/255

m = 20

# Deconvolution problem setting

nu = im.kernel('gaussian', tau=2, s1=20, s2=20)

lbd = im.kernel2fft(nu, n1, n2)

H = lambda x: im.convolvefft(x, lbd)

y = [ H(x) + sigma * np.random.randn(n1, n2, 3) for i in range(m) ]

# Numerical Fourier approximation of the pseudo inverse

lbd_pinv = 1 / lbd

lbd_pinv[np.abs(lbd) < 1e-2] = 0

ybar = np.mean(y, axis=0)

x_pinv = im.convolvefft(ybar, lbd_pinv)

(a) yk (b) m = 1 (c) m = 10 (d) m = 20
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Least square and unbiased estimator issues

The M.-P. pseudo-inverse does not create new content on Ker[H],

it cannot recover missing information /

Moreover, unbiased estimators amplify and colorize noise.

−−−−−−−−−→
PINV/LSE/MLE/MVUE

• In practice, the number m of samples/frames/views is small,

• The asymptotic behavior when m→∞ is far from being reached,

• In fact, in our contexts of interest, we often have m = 1.
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Bayesian approach – Motivations

Why unbiased estimators are not working in our context?

Because they attempt to be optimal

whatever the underlying image x.

Bayesian answer:

Forget about unbiasedness and be optimal

only for the class of images x that looks like clean images.

Expected behavior:

If x looks like a clean image: small bias, small variance.

If x does not look like a clean image: large bias and/or large variance.
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Bayesian approach – Random vector models

Observed image y ∈ Rn (n pixels): random vector with density

p(y) =

∫
p(y, x) dx =

∫
p(y|x)p(x) dx (Marginalization)

where x ∈ Rn is also a random vector modeling clean images.

• p(y|x) degradation model – law of y|x – likelihood of x|y
• p(x) prior distribution of x

• p(y) marginal distribution of y
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Bayesian approach – How to choose the likelihood?

Modeling the likelihood p(y|x) (relatively easy)

• Based on the knowledge of the acquisition process

• Linear additive model: y = Hx+ w

• Multiplicative noise: y = x× w

• Poisson noise: p(y|x) =
xye−x

y!
• White noise: E[w] = 0 and Var[w] diagonal
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Bayesian approach – How to choose the prior?

Modeling the prior p(x) (hard)

• Based on your prior knowledge of the underlying signal

• Are clean images piece-wise smooth? simple? observable on the web? . . .

x = ?

Try to cover as many cases as possible without covering bad images.

The prior should help at separating signal and noise.
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Bayesian approach – Framework

Bayesian approach

• Model the likelihood: p(y | x),

• Choose a prior: p(x),

• Estimate the posterior distribution based on Bayes rule:

p(x | y) =
p(y |x)p(x)

p(y)
i.e, Posterior =

Likelihood× Prior

Marginal
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Bayesian approach – Posterior mean

Posterior mean

• Compute the mean of the posterior, or posterior mean

x? = E[x|y] =

∫
xp(x | y) dx

• Potentially, compute the posterior variance

Var[x|y] =

∫
(x− E[x|y])(x− E[x|y])∗p(x | y) dx

to build regions of confidence, and account for uncertainty.
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Bayesian approach – MAP

or

Maximum a Posteriori (MAP)

• Take a mode of the posterior, or Maximum a Posteriori

x? ∈ argmax
x

p(x | y)
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Posterior mean estimator



Posterior mean

Posterior mean depends only on the likelihood and the prior

x̂(y) = E[x | y] =

∫
xp(x|y) dx

=

∫
xp(y|x)p(x) dx

p(y)

=

∫
xp(y|x)p(x) dx∫
p(y, x) dx

=

∫
xp(y|x)p(x) dx∫
p(y|x)p(x) dx

Posterior mean is always realizable.
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Posterior mean

Bayesian MSE

As x is random, the mean square error (MSE) is defined as a double integral

MSE(x̂) = E[||x− x̂||22] =
x
||x− x̂(y)||22 p(y, x) dy dx

Theorem (Optimality of the posterior mean)

The Minimum (Bayesian) MSE estimator (MMSE) is unique and given by the

posterior mean

x̂? = argmin
x̂

MSE(x̂) = E[x | y] =

∫
xp(x | y) dx

The posterior mean x̂ is the estimator that is as close as possible to x,

on average for likely clean images x and their corrupted versions y.
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Posterior mean – Proof

Lemma – Conditional expectation.

E[f(x)] =

∫
f(x)p(x) dx

=
x

f(x)p(x, y) dxdy

=
x

f(x)p(x|y)p(y) dxdy

=

∫ [∫
f(x)p(x|y) dx

]
p(y) dy

=

∫
E[f(x) | y] p(y) dy

= E {E[f(x)|y]}
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Posterior mean – Proof

Proof.

The previous Lemma leads to

E[||x− x̂(y)||22] = E
{
E[||x− x̂(y)||22 | y]

}
=

∫
E[||x− x̂(y)||22 | y] p(y) dy

This quantity is minimal if, for all y, we have

x̂(y) ∈ argmin
z

E[||x− z||22 | y]

Given y, we have to minimize with respect to z the quantity

E[||x− z||22 | y] = E[||x||2 | y] + ||z||2 − 2 〈z, E[x | y]〉

The first order optimality condition gives

2z? − 2E[x | y] = 0 ⇔ z? = E[x | y]
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Posterior mean

• Optimal in the MMSE sense ,

• In general, difficult integration problem /

• Explicit solutions in few cases

(see, conjugate priors)

E[x | y] =

∫
xp(y|x)p(x) dx∫
p(y|x)p(x) dx

If no explicit solutions, several workarounds:

1 LMMSE estimator: Restrict to linear estimators.

2 Wiener estimator: Restrict to LTI estimators.

3 Monte-Carlo estimator: Estimate E[x | y] from a data-set.

4 MCMC/Metropolis Hastings: Otherwise.
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Maximum A Posteriori (MAP) estimator

Forget about the optimality of the MMSE, and

instead of taking the posterior mean, take the posterior mode.

Maximum A Posteriori (MAP) estimator

x̂(y) ∈ argmax
x

p(x | y) = argmax
x

p(y|x)p(x)

p(y)
= argmax

x
p(y|x)p(x)

As for the posterior mean,

the MAP depends only on the likelihood and the prior.
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Maximum A Posteriori (MAP) estimator

Maximum A Posteriori (MAP) estimator

• The MAP is connected with variational methods:

x̂(y) ∈ argmax
x

p(y|x)︸ ︷︷ ︸
Likelihood

p(x)︸︷︷︸
prior

= argmin
x

− log p(y|x)︸ ︷︷ ︸
Data fit

− log p(x)︸ ︷︷ ︸
Regularisation
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Maximum A Posteriori (MAP) estimator

MMSE∫
xp(y|x)p(x) dx∫
p(y|x)p(x) dx

Integration problem

vs

MAP

argmax
x

p(y|x)p(x)

Optimization problem

• Integration can be intractable and/or leads to long computation time.

• Optimization is often simpler and faster (does not mean straightforward).

• We will see several examples later.

But first, when do both estimators coincide?
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LMMSE estimator – Optimal linear filtering

Linear Minimum Mean Square Error (LMMSE)

• Let y ∈ Rn and x ∈ Rp be two random vectors such that

E[y |x] = Hx and Var[y |x] = Σ

E[x] = µ and Var[x] = L

• Consider the class of affine estimators

C =
{
x̂ ; ∃A ∈ Rp×n, b ∈ Rp, x̂(y) = Ay + b

}
• The LMMSE estimator is

x̂? = argmin
x̂∈C

E[||x− x̂||22]

= µ+LH∗(HLH∗ + Σ)−1(y −Hµ)

• Unlike BLUE, H can be under-determined here because L and Σ are

always sdp, hence invertible.
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LMMSE estimator – Optimal linear filtering

As for the BLUE, the LMMSE depends only on the means and variances
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LMMSE estimator – Optimal linear filtering

MAP with Gaussian models = LMMSE = Penalized Least Square

• Let y ∈ Rn and x ∈ Rp be independent and such that

y|x ∼ N (Hx,Σ)

x ∼ N (µ,L)

• Then, the MAP is a penalized least square estimator (PLSE)

x̂? = argmin
x̂

− log p(y|x̂)− log p(x̂)

= argmin
x̂

||Σ−1/2(y −Hx̂)||22︸ ︷︷ ︸
Data fit

+ ||L−1/2(x̂− µ)||22︸ ︷︷ ︸
Penalization

= µ+ (H∗Σ−1H +L−1)−1H∗Σ−1(y −Hµ) (Null gradient)

= µ+LH∗(HLH∗ + Σ)−1(y −Hµ) (Woodbury)

• It is also the MMSE and the LMMSE.
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LMMSE estimator – Optimal linear filtering

LMMSE under white noise

• For simplicity add the restriction that the noise is white

Var[y |x] = Σ = σ2Id

• In this case the LMMSE has a simplified expression

x̂? = argmin
x̂

1

σ2
||y −Hx̂||22 + ||L−1/2(x̂− µ)||22

= µ+ (H∗H + σ2L)−1H∗(y −Hµ)

• H∗H + σ2L−1 always invertible and symmetric positive definite

(you can always use conjugate gradient ,)
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LMMSE estimator – Optimal linear filtering

x̂? = µ+ (H∗H + σ2L−1)−1H∗(y −Hµ)

LMMSE vs BLUE

• Define SNR2 =
trL

nσ2
=

Uncertainty on the signal

Variation of the noise

• If H over-determined, the LMMSE tends to the BLUE (least square)

lim
SNR→∞

x̂? = µ+ (H∗H)−1H∗(y −Hµ)

= µ+ (H∗H)−1H∗y − (H∗H)−1H∗Hµ︸ ︷︷ ︸
µ

= (H∗H)−1H∗y

= H+y

As you try to be uniformly optimal for all x (maximal uncertainty)

you will fail at restoring y, all the more as you have noise.
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LMMSE estimator – Optimal linear filtering

LMMSE for denoising

• If moreover H = Id (denoising problem), this simplifies as

x̂? = argmin
x̂

1

σ2
||y − x̂||22 + ||L−1/2(x̂− µ)||22

= µ+L(L+ σ2Id)−1(y − µ)

Let us pick some µ and L and try this formula for denoising.

71



LMMSE estimator – Optimal linear filtering

Example (Lets pick a naive model)

• Consider y = x+ w ∈ Rn with x and w independent such that

E[y |x] = x and Var[y |x] = σ2Idn,

E[x] = 0 and Var[x] = L = λ2Idn.

• Then the LMMSE filter reads as

x̂? = µ+L(L+ σ2Id)−1(y − µ)

= 0 + λ2(λ2Id + σ2Id)−1(y − 0)

=
λ2

λ2 + σ2
y

=
SNR2

SNR2 + 1
y with SNR2 =

λ2

σ2

• It’s similar to the optimal amplified estimator except this one is realizable.
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LMMSE estimator – Naive model – Limitations

(a) x (unknown) (b) y (observation) (c) x̂? (estimate)

Limitations of this naive model

• Amplifying the noisy input will never allow us removing noise,

• Would work only if all clean images were like pure white noise.
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LMMSE estimator – Naive model – Limitations

(a) We assumed x to be likely somewhere here. (b) but it was somewhere there.

Limitations of this naive model

• Images contain structures that must be captured by µ and L,

• Goal: define/find the ellipsoid localizing x with high probability,

• How: make use of the eigendecomposition: L = EΛE∗.
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LMMSE estimator – Filtering in the eigenspace

x̂? = µ+L(L+ σ2Id)−1(y − µ)

• Consider the eigendecomposition: L = EΛE∗, then

L(L+ σ2Idn)
−1 = E



λ2
1

λ2
1+σ

2 0

λ2
2

λ2
2+σ

2

. . .

0
λ2
n

λ2
n+σ

2


E∗

⇒ The LMMSE filter can be re-written as

x̂? = µ+Eẑ︸ ︷︷ ︸
Come back

where ẑi =
λ2
i

λ2
i + σ2

zi︸ ︷︷ ︸
shrinkage

and z = E∗(y − µ)︸ ︷︷ ︸
Change of origin and basis

• Shrinkage adapts to the SNR in each eigendirection: SNR2
i = λ2

i /σ
2.

What representation (µ and E)? What shrinkage (Λ)?
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Wiener filtering



Wiener filtering – Whitening via the Fourier transform

Whitening

Let L−1/2 = Λ−1/2E∗. Let x be a random variable. Then

E[x] = µ and Var[x] = L

if and only if

η = L−1/2(x− µ) with E[η] = 0 and Var[η] = Idn

76



Wiener filtering – Whitening via the Fourier transform

L−1/2(x−µ)
−−−−→

Modeling the two first moments of x

≡
Find the affine transform that makes it look like white noise

What kind of transform can make typical images white?
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Wiener filtering – Whitening via the Fourier transform

Whitening using DFT

• Assume Fourier coefficients to be decorrelated,

• Choose µ = 0 and L = EΛE−1 with

E =
1√
n


×n


︸ ︷︷ ︸

DFT: F

←−−−− Columns form the Fourier basis

E−1 =
√
nF−1

Λ = diagonal, real and positive (L is sdp)
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Wiener filtering – Whitening via the Fourier transform

Whitening using DFT

• E and µ fixed: L = Cov[x] ⇔ Λ = Var[E∗(x− µ)]

• In our case: λ2
i = n−1 × E[|(Fx)i|2] = mean power spectral density

= variance for each frequency
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Wiener filtering – Whitening via the Fourier transform

Mean power spectral density

Si = E[|(Fx)i|2]

• Estimate it from a collection of clean images x1, x2, . . .

• Use a model to reduce its degree of freedom [Van der Schaafa et al., 1996]

Si = neβ

√(
ui
n1

)2

+

(
vi
n2

)2
α

.

• Estimate α and β by least square in log-log (see assignment).

• Arbitrary zero frequency (DC component): its variance goes to infinity.
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Wiener filtering – Whitening via the Fourier transform

Prior localization for clean images
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Wiener filtering – Denoising

Wiener filter for denoising

• In denoising, this LMMSE is called Wiener filter and reads

x̂? = F−1ẑ︸ ︷︷ ︸
iDFT

where ẑi =
λ2
i

λ2
i + σ2

zi︸ ︷︷ ︸
shrink each frequency

and z = F y︸︷︷︸
DFT

• Using λ0 →∞: DC is unchanged.

(a) y = x + w (b) z (c)
λ2i

λ2
i
+σ2

(d) ẑ (e) x̂
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Wiener filtering – Denoising

Results of Wiener filtering in denoising

(a) y (b) z (c)
λ2i

λ2
i
+σ2

(d) ẑ (e) x̂

y = x + sigma * np.random.randn(x.shape)

z = nf.fft2(y, axes=(0, 1))

zhat = lbd**2 / (lbd**2+ sigma**2) * z

xhat = np.real(nf.ifft2(zhat, axes=(0, 1)))

z =
√
n
−1
F y

ẑi =
λ2
i

λ2
i + σ2

zi

x̂ =
√
nF−1ẑ

The technique auto-adapts to the noise level ,

Results are blurry, too smooth /
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Wiener filtering – Denoising

Results of Wiener filtering in denoising

(a) y (b) z (c)
λ2i

λ2
i
+σ2

(d) ẑ (e) x̂

y = x + sigma * np.random.randn(x.shape)

z = nf.fft2(y, axes=(0, 1))

zhat = lbd**2 / (lbd**2+ sigma**2) * z

xhat = np.real(nf.ifft2(zhat, axes=(0, 1)))

z =
√
n
−1
F y

ẑi =
λ2
i

λ2
i + σ2

zi

x̂ =
√
nF−1ẑ

The technique auto-adapts to the noise level ,

Results are blurry, too smooth /
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Wiener filtering – Denoising

Results of Wiener filtering in denoising

(a) y (b) z (c)
λ2i

λ2
i
+σ2

(d) ẑ (e) x̂

y = x + sigma * np.random.randn(x.shape)

z = nf.fft2(y, axes=(0, 1))

zhat = lbd**2 / (lbd**2+ sigma**2) * z

xhat = np.real(nf.ifft2(zhat, axes=(0, 1)))

z =
√
n
−1
F y

ẑi =
λ2
i

λ2
i + σ2

zi

x̂ =
√
nF−1ẑ

The technique auto-adapts to the noise level ,

Results are blurry, too smooth /
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Wiener filtering – Limits and connections to LTI filters

Wiener filtering for denoising

ẑi =
λ2
i

λ2
i + σ2

zi︸ ︷︷ ︸
elementwise product

⇔ x̂ = ν ∗ y︸ ︷︷ ︸
convolution ≡ moving average

• Wiener filter: optimal LTI filter in the Bayesian MMSE sense,

⇒ It is a low-pass filter, i.e., a weighted average.

-30 -20 -10 0 10 20 30

0

0.005

0.01

0.015

0.02

0.025

Heat/Gauss kernel

Wiener kernel
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Wiener filtering – Application to deconvolution

Wiener deconvolution

• For deconvolution, the LMMSE filter reads as

x̂? = µ+ (H∗H + σ2L−1)−1H∗(y − µ)

with H a circulant matrix: H = F−1ΩF with Ω = diag(ω1, . . . , ωn).

• We get that

x̂? = (F−1Ω∗FF−1ΩF + σ2F−1Λ−1F )−1F−1Ω∗F y

= F−1(Ω∗Ω + σ2Λ−1)−1Ω∗F y

• Or equivalently

x̂? = F−1ẑ where ẑi =
ω∗i

|ωi|2 + σ2/λ2
i

zi and z = F y

• Filter adapts to the SNR for each frequency.
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Wiener filtering – Application to deconvolution

(a) y (b) z (c)
ω∗i

|ωi|2+σ2/λ2
i

(d) ẑ (e) x̂

Wiener deconvolution: optimal spectral sharpening.
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Wiener filtering – Application to deconvolution

Wiener versus pseudo inverse

(a) Observation y (b) PINV H+y (c) Wiener x̂?

Invert attenuated frequencies while preventing from amplifying the noise.
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Wiener filtering – Application to deconvolution

Wiener versus pseudo inverse

(a) Observation y (b) PINV H+y (c) Wiener x̂?

Invert attenuated frequencies while preventing from amplifying the noise.
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LMMSE + Learning with PCA

Can we instead learn the ellipsoid (µ and L)?

Use an external data-set

• Let x1, . . . , xk be a collection of images.

• Estimate µ = E[xk] and L = Var[xk] from the samples

µ =
1

K

K∑
k=1

xk and L =
1

K − 1

K∑
k=1

(xk − µ)(xk − µ)∗

• Problem: computing L requires to store n2 values,

• For an image of size n = 256× 256

n2 = 4,294,967,296 (16Gb in single precision) /
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LMMSE + Learning with PCA

Use SVD

• Let x̃k = xk − µ and X̃ = 1√
K−1

(
x̃1 . . . x̃K

)
, we have

L =
1

K − 1

K∑
k=1

(xk − µ)(xk − µ)∗ = X̃X̃∗

• The SVD of X̃ reads X̃ = EΛ1/2V ∗ for some V ∗=V −1.

Proof: L = X̃X̃∗ = EΛ1/2V ∗V Λ1/2E∗ = EΛE∗

• The SVD decomposition of X̃ gives E and Λ.

• No need to build X̃X̃∗, but still E is a n× n matrix (16 Gb) /
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LMMSE + Learning with PCA

Low rank property

• X̃ is a n×K matrix (K < n), whose columns are zero on average:

1

K

K∑
k=1

x̃k =
1

K

K∑
k=1

(xk − µ) =
1

K

K∑
k=1

xk − µ = 0

• One of the columns is a linear combination of the others

K∑
k=1

x̃k = 0 ⇔ x̃1 = −
K∑
k=2

x̃k

• The family {x̃k} has K − 1 independent vectors.

• The rank of X̃ is r = K − 1.

How does that help?
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LMMSE + Learning with PCA

Reduced SVD

• X̃ has only r non-zero singular values

X̃ = EΛ1/2V ∗ =
(
E1 E0

)(Λ
1/2
1 0

0 0

)(
V ∗1
V ∗0

)
= E1Λ

1/2
1 V ∗1

• L has only r non-zero eigenvalues and depends only on E1 and Λ1

L = EΛE∗ =
(
E1 E0

)(Λ1 0

0 0

)(
E∗1
E∗0

)
= E1Λ1E

∗
1

Require to store only n× r + r values

(r vectors ei ∈ Rn + r values λi ∈ R+)
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LMMSE + Learning with PCA

Principle component analysis (PCA)

• Assume the rank r being K − 1 or even lower

L = EΛE∗ = E1Λ1E
∗
1 =

r∑
i=1

λ2
i eie

∗
i

⇒ Clean images are a linear combination of a few r images

x = µ+L1/2η = µ+

r∑
i=1

ηiλiei

with controlled weights E[ηi] = 0 and Var[ηi] = 1.

• The r directions ei are called principle direction.

• Best way to capture most of variability with r dimensions only,

i.e., to cover most of the clean images with limited memory.
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LMMSE + Learning with PCA

Example (Face dataset with additive white Gaussian noise)

• AT&T Database of Faces

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

• 40 subjects, 10 images per subject (400 images in total)

• Gray-scale images of size 92× 112 = 10304 pixels

• 39 subjects for the xk and 1 subject for y = x+ w

X = (x1, . . . , xK)

=

 , , , , ,

×390

, . . .


y = = + , w ∼ N (0, σ2Idn)
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LMMSE + Learning with PCA – Example

X =

 , , , , ,

×390

, . . .


import numpy.linalg as nl

# Learning step (K = 390 files)

fs = [ 'filetrain1.png', ... ]

X = np.zeros((n, K))

for i in range(K):

X[:, i] = plt.imread(fs{i}).reshape(-1,)

mu = X.mean(axis=1)

X = X - mu

X = X / np.sqrt(K-1)

E, L, _ = nl.svd(X, full_matrices=False)

E =

 , , , , ,

×390

, . . .

 µ =
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LMMSE + Learning with PCA – Filtering

# Denoising step

sig = 40

x = plt.imread('filetest.png').reshape(-1,)

y = x + sig * np.random.randn(size(x))

z = E.T.dot(y - mu)

hatz = L**2 / (L**2 + sig**2) * z

hatx = mu + E.dot(hatz)

z = E∗(y − µ)

ẑi =
λ2
i

λ2
i + σ2

zi

x̂ = µ+Eẑ

(a) x (unknown) (b) y (observation) (c) x̂ (estimate)

Was there a bug somewhere?
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LMMSE + Learning with PCA – Checking the model

Did the model learn correctly on the training samples?
T

es
ti

n
g

sa
m

p
le

T
ra

in
in

g
sa

m
p

le

(a) x (unknown) (b) y (observation) (c) x̂ (estimate)

Yes. But it cannot generalize to new samples (over-fitting).
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LMMSE + Learning with PCA – Checking the model

How to assess the model quality?

{
• Generate samples from N (µ,L)

• Judge if representative of targeted images.

How to generate samples from N (µ,L)?{
η ∼ N (0, Idn)

x̃ = µ+EΛ1/2η
⇒ x̃ ∼ N (µ,L)

The model does not generate realistic faces.
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LMMSE + Learning with PCA – Limits

Should we have used more than K = 390 training images?

Accuracy problem

• µ ∈ Rn: n degrees of freedom

• L ∈ Rn×n: (n2 + n)/2 degrees of freedom

For the estimation to be accurate: n
√
K� degrees of freedom!

• For a size n = 256× 256: ⇒K� 1,073,840,130 /

• For a size n = 8× 8: ⇒K� 1,122 ,

Scaling/Memory problem (assume 1Gb available)

• Storing E and Λ require 4(n×K + n) bytes in single precision

• For n = 256× 256: ⇒K < 4,096 /

• For n = 8× 8: ⇒K < 4,194,304 ,

Except if n = 8× 8 this method does not work. . .
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Non-Local Bayes

Non-Local Bayes [Lebrun, Buades, Morel, 2013]

• Apply LMMSE on patches by mimicking the (block) Non-Local means,

• Instead of taking only the average of similar patches

µ̂i =
1

Z

∑
j

wi,jyj and Z =
∑
j

wi,j

• Estimate also the covariance matrix of the patches in the stack

Ĉi =
1

Z

∑
j

wi,j(yj − µ̂i)(yj − µ̂i)∗
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Non-Local Bayes

Non-Local Bayes [Lebrun, Buades, Morel, 2013]

• Assuming the noise to be additive Gaussian, we have

E[Ĉi] = Li + Σi

• which provides us a local estimate for Li:

L̂i = Ĉi −Σi

• L̂i may have negative eigenvalues, set them to zero

(often required for small stacks or low SNR).
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Non-Local Bayes

Non-Local Bayes [Lebrun, Buades, Morel, 2013]

• Plug these estimators in the LMMSE to denoise each patch of the stack

x̂j = µ̂+ L̂i(L̂i + Σ)−1(yj − µ̂i)

• Note: As µ̂i and L̂i depends on yj , in fact non-linear filter.

• Reproject each patch at their original location,

• Average overlapping patches together.
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Non-Local Bayes

Non-Local Bayes [Lebrun, Buades, Morel, 2013]

• By estimating the statistics of similar patches,

• The estimators may amplify random patterns in the noise.

(a) Noisy image (b) 1st step (c) 2nd step

Workaround: 2 steps filtering

• Repeat the filter a second time,

• Estimate µi and Li from patches of the first estimate,

• Assume them to be clean: L̂i = Ĉi.
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Non-Local Bayes

(a) Noisy image
103



Non-Local Bayes

(b) 1st step
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Non-Local Bayes

(c) 2nd step
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Non-Local Bayes

(d) Block Non-Local means
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Non-Local Bayes

(a) Noisy image
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Non-Local Bayes

(b) 1st step
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Non-Local Bayes

(c) 2nd step
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Non-Local Bayes

(d) Block Non-Local means
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Non-Local Bayes and LMMSE

Pros and cons (compared to Non-Local means)

By taking into account the covariance (2nd order moment):

• More degrees of freedom

⇒ capture complex patterns/textures even with low SNR,

• Too much flexibility, over-fit the low-frequency components of the noise,

⇒ Use a multi-scale approach + Trick for homogeneous regions

[Lebrun, Colom, Morel, 2015]

Conclusions about LMMSE

• Except if it is made spatially adaptive for patches (hence non-linear),

⇒ The LMMSE is linear, thus inappropriate for image processing.

• As: Assuming Gaussian noise + Gaussian prior ⇒ LMMSE,

⇒ The limitation of the LMMSE means that:

Natural clean images are far from being Gaussian distributed.
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Questions?

Next class: Shrinkage and wavelets

Sources, images courtesy and acknowledgment

• L. Condat

• A. Horodniceanu

• S. Kay

• R. Willet

• Wikipedia
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