
ECE 285

Image and video restoration

Chapter VII – Patch models and dictionary learning

Charles Deledalle

May 31, 2019

1

Motivations

• Modeling the distribution of images is difficult.

• Images lie in a complex and large dimensional space/manifold.

• Their distribution may be spread out on different clusters.

Divide and conquer approach:

Break down images into small patches and model their distribution.

2

Motivations

Patches capture local context: geometry and texture.

3

Motivations

Theoretical and experimental works on the primary visual cortex have shed

new light on the importance of patch-level image coding.

Biological observations (1/2)

[Olshausen et al., 1996]:

The receptive fields of cells in

mammalian primary visual cortex are

1 spatially localized,

2 oriented,

3 bandpass.
[Ringach, 2002]

4

Motivations

Theoretical and experimental works on the primary visual cortex have shed

new light on the importance of patch-level image coding.

Biological observations (2/2)

[Olshausen and Field, 2004]:

Neural responses in the primary cortex are:

• sparse,

• sparser thanks to interactions with other areas.

This sparse coding confers several advantages

• eases read out at subsequent levels,

• increases storage capacity in associative memories,

• saves energy.

http://thebrain.mcgill.ca

5

http://thebrain.mcgill.ca

Motivations

Theoretical and experimental works on the primary visual cortex have shed

new light on the importance of patch-level image coding.

Computational models of biological vision

[Olshausen et al. 1996, Olshausen and Field, 2004, Vinje and Gallant, 2000]:

Sparse coding of patches proposed to model the primary visual cortex:

6

Learning sparse representations

Dictionary learning problem

Reminder about sparse decomposition

Given a dictionary D = (d1, d2, . . . , dK) ∈ Rn×K , with K > n for

redundancy, represent an image x as a sparse linear combination of the atoms

η? ∈ argmin
η∈RK

1

2
||x−

K∑
k=1

ηkdk||22︸ ︷︷ ︸
data fit

+ τ

K∑
k=1

|ηk|p︸ ︷︷ ︸
sparsity

, τ > 0

= argmin
η∈RK

1

2
||x−Dη||22︸ ︷︷ ︸

data fit

+ τ ||η||ρρ︸︷︷︸
sparsity

, ρ > 0

7

Dictionary learning problem

Reminder about sparse priors

• `ρ prior ||η||ρρ =
∑
k |ηk|

ρ

• convexity ρ > 1

• sparsity ρ 6 1

• `0 prior ||η||0 =number of non-zero elements

• `1 prior ||η||1 =
∑
k |ηk|

(Source: G. Peyré)
8

Dictionary learning problem

Instead of choosing the dictionary: wavelet basis, derivative filters, . . .

Can we learn it from a data-set x1, . . . , xm?

Sparsifying dictionary learning for images

Find a dictionary D = (d1, d2, . . . , dK) ∈ Rn×K , with K > n for redundancy,

such that the data-set X = (x1, x2, . . . , xm) ∈ Rn×m can be represented by

sparse linear combinations of the atoms

D? ∈ argmin
D∈Rn×K

min
η∈RK×m

1

2

m∑
j=1

||xj −
K∑
k=1

ηk,jdk||22︸ ︷︷ ︸
data fit

+ τ

m∑
j=1

K∑
k=1

|ηk,j |ρ︸ ︷︷ ︸
sparsity

= argmin
D∈Rn×K

min
η∈RK×m

1

2
||X −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||ρρ︸︷︷︸
sparsity

.

Idea: find a dictionary that sparsifies the data-set.

9

Dictionary learning problem

D ∈ Rn×K has too many degrees of freedom!

It cannot be estimated properly, and even then, it does not fit in memory.

It would be feasible if the images were 8× 8, but they are not.

10

Dictionary learning problem

Remarks: for wavelets and gradients, the atoms

1 have limited support 2 are stationary 3 are overlapping

D =

d1 d2 . . . dK

d1 d2 . . . dK

d1 d2 . . . dK

. . .

d1 d2 . . . dK

d1 d2 . . . dK

If we cannot learn D, can we learn the small atoms d1, . . . , dK?

Ex: if the support is p = 8× 8 and K = 512, the learning problem is tractable

even with a reasonable number K of training images xk.
11

Dictionary learning problem

Sparsifying dictionary learning for patches

Find a dictionary of patches D = (d1, d2, . . . , dK) ∈ Rp×K , with K > p for

redundancy, such that the data-set of patches X = (x1, x2, . . . , xm) ∈ Rp×m

can be represented by sparse linear combinations of the atoms

D? ∈ argmin
D∈Rp×K

min
η∈RK×m

1

2
||X −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||ρ,1︸ ︷︷ ︸
sparsity

.

12

Dictionary learning problem

D? ∈ argmin
D∈Rp×K

min
η∈RK×m

1

2
||X −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||ρρ︸︷︷︸
sparsity

.

Optimization problem

• Add the constraint: ||dk||2 6 1,

Otherwise: D →∞ and η → 0.

• For ρ > 1:

• Convex with respect to D,

• Convex with respect to η,

• Non-convex with respect to (D, η).

• For ρ = 0:

• Convex with respect to D,

• Non-convex with respect to η,

• Non-convex with respect to (D, η).

13

Dictionary learning problem with k-SVD

D? ∈ argmin
D∈Rp×K

min
η∈RK×m

1

2
||X −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||0︸︷︷︸
sparsity

subject to ||dk||2 6 1

k-SVD: Greedy algorithm for ρ = 0 (1/2) [Aharon et al., 2006]

1 Initialize D with normalized columns ||dk||2 = 1.

2 Sparse-coding stage: fix D and solve for each 1 6 j 6 m

η?:,j ∈ min
η∈RK

1

2
||xj −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||0︸︷︷︸
sparsity

with matching pursuit or orthogonal matching pursuit (see previous class).

14

Dictionary learning problem with k-SVD

D? ∈ argmin
D∈Rp×K

min
η∈RK×m

1

2
||X −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||0︸︷︷︸
sparsity

subject to ||dk||2 6 1

k-SVD: Greedy algorithm for ρ = 0 (1/2) [Aharon et al., 2006]

1 Initialize D with normalized columns ||dk||2 = 1.

2 Sparse-coding stage: fix D and solve for each 1 6 j 6 m

η?:,j ∈ min
η∈RK

1

2
||xj −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||0︸︷︷︸
sparsity

with matching pursuit or orthogonal matching pursuit (see previous class).

14

Dictionary learning problem with k-SVD

D? ∈ argmin
D∈Rp×K

min
η∈RK×m

1

2
||X −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||0︸︷︷︸
sparsity

subject to ||dk||2 6 1

k-SVD: Greedy algorithm for ρ = 0 (1/2) [Aharon et al., 2006]

1 Initialize D with normalized columns ||dk||2 = 1.

2 Sparse-coding stage: fix D and solve for each 1 6 j 6 m

η?:,j ∈ min
η∈RK

1

2
||xj −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||0︸︷︷︸
sparsity

with matching pursuit or orthogonal matching pursuit (see previous class).

14

Dictionary learning problem with k-SVD

D? ∈ argmin
D∈Rp×K

min
η∈RK×m

1

2
||X −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||0︸︷︷︸
sparsity

subject to ||dk||2 6 1

k-SVD: Greedy algorithm for ρ = 0 (1/2) [Aharon et al., 2006]

1 Initialize D with normalized columns ||dk||2 = 1.

2 Sparse-coding stage: fix D and solve for each 1 6 j 6 m

η?:,j ∈ min
η∈RK

1

2
||xj −Dη||2F︸ ︷︷ ︸

data fit

+ τ ||η||0︸︷︷︸
sparsity

with matching pursuit or orthogonal matching pursuit (see previous class).

14

Dictionary learning with k-SVD

k-SVD: Greedy algorithm for ρ = 0 (2/2) [Aharon et al., 2006]

3 Dictionary update: for all columns 1 6 k 6 K

• Compute the residual without using the current atom dk:

Ek = X −
∑
l 6=k

dlηl,: = X − (Dη − dkηk,:)

• ER
k : pick only the columns j of Ek for patches xj using atom dk,

• Update dk and ηk,: by finding the best rank 1 approximation

ER
k ≈ dkηk,: subject to ||dk||2 = 1

Use reduces SVD for rank 1 matrices:

ER
k = USV T ⇒ dk = U:,1 and ηk,: = S1,1V:,1

• Return to step 2 until convergence.

−→ k × SVD are performed at each iteration.
15

Dictionary learning with k-SVD

Update for atom k = 1

16

Dictionary learning with k-SVD

Update for atom k = 2

16

Dictionary learning with k-SVD

Update for atom k = 3

16

Dictionary learning with k-SVD

Update for atom k = K

16

Dictionary learning with k-SVD

A collection of 500 random patches (8x8) that were used for training, sorted

by their variance.

(a) (b) (c)

(a) The learned dictionary. Its elements are sorted in an ascending order of

their variance and stretched to maximal range for display purposes. (b) The

overcomplete separable Haar dictionary and (c) the over complete DCT

dictionary are used for comparison.
17

Dictionary learning with k-SVD

k-SVD based restoration (1/3) [Elad et al., 2006]

min
x∈Rn

η1,...,ηn∈RK

1

2σ2
||Hx− y||22︸ ︷︷ ︸

data fit

+
n∑
i=1

[
β

2
||Pix−Dηi||22︸ ︷︷ ︸
patch approximation

+ τ ||ηi||0︸ ︷︷ ︸
sparsity

]

(Half-Quadratic Splitting)

• x ∈ Rn: unknown image,
• y = Hx+ w ∈ Rq: observed image with w ∼ N (0, σ2Idq),
• H ∈ Rq×n: blur, super-resolution, Radon transform. . .
• Pi ∈ Rp×n: extract a patch of size p around pixel with index i,
• D ∈ Rp×K : learned patch dictionary,
• ηi ∈ RK : sparse code for patch with index i,
• β > 0, τ > 0: hyper-parameters.

Look for an image such that all its patches are well explained by sparse

linear combinations of learned atoms.

18

Dictionary learning with k-SVD

min
x∈Rn

η1,...,ηn∈RK

1

2σ2
||Hx− y||22︸ ︷︷ ︸

data fit

+
n∑
i=1

[
β

2
||Pix−Dηi||22︸ ︷︷ ︸
patch approximation

+ τ ||ηi||0︸ ︷︷ ︸
sparsity

]

k-SVD based restoration (2/3) [Elad et al., 2006]

Alternate minimization:

1 Initialize x, and repeat steps 2 and 3 until convergence,

2 Sparse coding: fix x and solve for all index 1 6 i 6 n

argmin
ηi∈RK

β

2
||Pix−Dηi||22︸ ︷︷ ︸
patch approximation

+ τ ||ηi||0︸ ︷︷ ︸
sparsity

with matching pursuit or orthogonal matching pursuit (see previous class).

19

Dictionary learning with k-SVD

min
x∈Rn

η1,...,ηn∈RK

1

2σ2
||Hx− y||22︸ ︷︷ ︸

data fit

+
n∑
i=1

[
β

2
||Pix−Dηi||22︸ ︷︷ ︸
patch approximation

+ τ ||ηi||0︸ ︷︷ ︸
sparsity

]

k-SVD based restoration (3/3) [Elad et al., 2006]

Alternate minimization:

3 Patch reprojection: for all ηi and solve for x

x? ∈ argmin
x∈Rn

1

2σ2
||Hx− y||22︸ ︷︷ ︸

data fit

+
n∑
i=1

[
β

2
||Pix−Dηi||22︸ ︷︷ ︸
patch approximation

]

=

(
H∗H + σ2β

n∑
i=1

P∗i Pi

)−1(
H∗y + σ2β

n∑
i=1

P∗i Dηi

)

• If H = Idn: average overlapping patches Dηi with the noisy image y

• Otherwise, solved by conjugate gradient, or efficiently depending on H.

20

Dictionary learning with k-SVD

Adaptively trained dictionary.

k-SVD for denoising

• Quality improvement: learned the dictionary on the noisy image itself,

• Speed-up: only once: sparse coding + reprojection (do not iterate).

21

Dictionary learning with k-SVD

k-SVD: Importance of redundancy Color k-SVD [Mairal et al., 2008]

Related works:

• Non-negative k-SVD [Aharon et al., 2005].

• Color k-SVD [Mairal et al., 2008].

• Analysis k-SVD [Rubinstein et al., 2013].

22

Sparsity with collaborative filtering

Sparsity with collaborative filtering

Motivations

• k-SVD:

• Patches are denoised independently,

• Use non-linear shrinkages to create sparsity,

• Use redundant learned dictionaries.

• Non-local Bayes:

• Denoise similar patches together,

• Use linear shrinkages (LMMSE),

• Use (non-local) orthogonal PCA basis.

Idea: use sparsity on stacks of similar patches.

23

Sparsity with collaborative filtering – BM3D

BM3D: Block-matching and 3D filtering [Dabov et al., 2007]

• Build groups of similar patches,

• Apply sparsifying 3D transform,

• Denoise each group (thresholding or LMMSE),

• Reproject/Aggregate overlapping patches.

Some results:

24

Sparsity with collaborative filtering – BM3D

Grouping by matching

R is a targeting patch, other patches are grouped

with this patch by similarity (Euclidean distance).

25

Sparsity with collaborative filtering – BM3D

Grouping by matching

Non-locality: patches that are far apart can be stacked together.

26

Sparsity with collaborative filtering – BM3D

Grouping for collaborative filtering

• As groups contain similar patches:

• intrapatch correlation: peculiarity of natural images,
• interpatch correlation: results of grouping by similarity,

⇒ highly sparse representation.

R

Block matching

3D
grouping 3D transform Inverse 3D

transform

Denoised 3D
group

R R

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Filter / Shrinkage

Collaborative filtering:

{ • reveals finest details shared by similar patches,

• preserves unique features of each patch.

27

Sparsity with collaborative filtering – BM3D

Aggregation

• Each pixel gets multiple estimates from different groups

• Naive approach: average all estimates

. . . not all estimates are as good.

• Give higher weights to more reliable estimates

. . . measured according to their sparsity.

R

thr

thr

R

R R

Aggregation

28

Sparsity with collaborative filtering – BM3D

Two steps filtering

• Noise may result in poor matching ⇒ degrades denoising performance.

• As for NL-Bayes, use two stages. At the second stage:

• Build stacks based on the similarity of pre-denoised patches,
• Use pre-denoised stacks to refine the shrinkage.

1 Step 1: Shrinkage: Hard thresholding with fixed threshold

3D trans.: Bi-orthogonal wavelets in space + Haar in 3rd dim.

2 Step 2: Shrinkage: LMMSE with signal variances deduced form step 1.

3D trans.: DCT in space + Haar in 3rd dim.

29

Sparsity with collaborative filtering – BM3D

BM3D provides impressive results.

Since 2007, denoising results have not significantly improved.

30

Sparsity with collaborative filtering – BM3D

Adaptations to color and videos.

Color image denoising with BM3D [Dabov, 2007]

Video denoising with BM3D [Dabov, 2007]

31

Plug-and-play ADMM with BM3D

min
x∈Rn

{
E(x) =

1

2σ2
||y −Hx||22︸ ︷︷ ︸
F (x)

+R(x)

}

Adaptation to inverse-problems with Plug-and-play ADMM (1/2)

• Reminder: ADMM algorithm reads, for γ > 0, as

xk+1 = ProxγF (x̃k + dk) (1)

x̃k+1 = ProxγR(xk+1 − dk) (2)

dk+1 = dk − xk+1 + x̃k+1

(1)⇒ xk+1 = (σ2Idn + γH∗H)−1(σ2(x̃k + dk) + γH∗y) (inversion)

(2)⇒ x̃k+1 = argmin
z

1

2
||z − (xk+1 − dk)||22 + γR(z) (denoising)

• Convergence when R is convex.

• Convergence when R is non-convex in some cases [Hong et al. 2016].

32

Plug-and-play ADMM with BM3D

min
x∈Rn

{
E(x) =

1

2σ2
||y −Hx||22︸ ︷︷ ︸
F (x)

+R(x)

}

Adaptation to inverse-problems with Plug-and-play ADMM (2/2)

• Plug-and-play ADMM [Venkatakrishnan et al. 2013]

• Use any Gaussian denoiser for the denoising step

ex: (2)⇒ x̃k+1 = BM3D(xk+1 − dk, γ)

• The regularization R is implicit.

• Convergence in some cases [Chan et al. 2016].

• Non-Gaussian noise: adapt F in (1) but (2) remains a Gaussian denoiser.

[Rond et al. 2015, Deledalle et al. 2017].

Simple solution allowing to use any of the many and very efficient

Gaussian denoisers to solve different kinds of image restoration problems.

33

Plug-and-play ADMM with BM3D

Im
ag

e
d

o
m

ai
n

W
av

el
et

d
o

m
.

F
o

u
ri

er
d

o
m

.

(a) Original image (b) Blurry image (c) Total-Variation (d) BM3D

Lost frequencies are recovered. Spatial contents and scales as well.

34

Plug-and-play ADMM with BM3D

Im
ag

e
d

o
m

ai
n

W
av

el
et

d
o

m
.

F
o

u
ri

er
d

o
m

.

(a) Original image (b) Blurry image (c) Total-Variation (d) BM3D

Lost frequencies are recovered. Spatial contents and scales as well.

34

Sparsity and patch similarity – Denoising with NLSM

BM3D uses fix dictionaries. Can we learn them à la k-SVD?

Non-local sparse model (NLSM) [Mairal, 2009]

Learn a dictionary of patches:

• Use group sparsity for similar patches,

• Force similar patches to use the same

atoms (joint sparsity).

Then denoise each patch by sparse coding.

decomposition with joint sparsitysparse decomposition

non zero

coefficients

patches
patches

non zero

coefficients

patches

Some results:

35

Expected patch log-likelihood (EPLL)

Expected patch log-likelihood (EPLL)

Expected patch log-likelihood (1/2) [Zoran & Weiss, 2011]

• Use MAP with prior expressed on patches

min
x∈Rn

1

2σ2
||Hx− y||22︸ ︷︷ ︸

data fit

+
n∑
i=1

− log p(Pix)︸ ︷︷ ︸
patch prior

• x ∈ Rn: unknown image,

• y = Hx+ w ∈ Rq: observed image with w ∼ N (0, σ2Idq),

• H ∈ Rq×n: blur, super-resolution, Radon transform. . .

• Pi ∈ Rp×n: extract a patch of size p around pixel with index i,

Look for an image such that all its patches are

well explained by the patch prior.

36

Expected patch log-likelihood (EPLL)

Expected patch log-likelihood (2/2) [Zoran & Weiss, 2011]

• Prior for a path zi = Pix ∈ Rp, a Gaussian Mixture Model (GMM):

p(zi) =
K∑
k=1

wkN (zi;µk,Σk),

• wk > 0: weights of Gaussian component k (
∑
k wk = 1),

• µk ∈ Rp: mean of Gaussian component k,

• Σk ∈ Rp×p: covariance matrix of Gaussian component k.

Represent the patch distribution by a superposition of ellipsoids.

37

Expected patch log-likelihood (EPLL)

Learning step

• Fit the distribution on a large dataset of clean patches:

input: x1, x2, . . . , xm clean patches

output: wk, µk,Σk for all 1 6 k 6 K

• Standard choice:

• Dataset of m =2,000,000 patches,
• Patch size p = 8× 8,
• Number of clusters K = 200.

• Use Expectation-Maximization algorithm [Dempster, 1977]

• Iterative algorithm similar to K-means,
• Greedy (maximizes the likelihood at each iteration),
• Converges to a local optimum (depending on the initialization).

38

Expected patch log-likelihood (EPLL)

Eigenvectors of 6 (among 200) covariance matrices of the learned GMM.

Some look like Fourier atoms while others model textures,

edges or other structures at different scales and orientations.

39

Expected patch log-likelihood (EPLL)

min
x∈Rn

1

2σ2
||Hx− y||22 +

n∑
i=1

− log p(Pix)

Optimization by Half-Quadratic Splitting

• Use Half-Quadratic Splitting (as done in k-SVD)

min
x∈Rn

z1,...,zn∈Rp

1

2σ2
||Hx− y||22︸ ︷︷ ︸

data fit

+

n∑
i=1

[
β

2
||Pix− zi||22︸ ︷︷ ︸

patch approximation

− log p(zi)︸ ︷︷ ︸
patch prior

]

with β > 0 an hyper-parameter.

• Alternate the minimization for all zi and x.

• Increase β after each iteration.

40

Expected patch log-likelihood (EPLL)

Greedy alternate minimization

• Repeat steps 1 and 2 (usually 5 iterations are enough):

1 Fix x and optimize for all patch zi:

min
zi∈Rp

β

2
||Pix− zi||22 +

n∑
i=1

− log

(
K∑
k=1

wkN (zi;µk,Σk)

)
• Prior is multi-modal: non-convex optimization problem.
• Look for the most likely Gaussian component k?i given zi.
• Performs LMMSE with this Gaussian prior N (µk?i ,Σk?i).

2 Fix zi and optimize for the image x:

min
x∈Rn

1

2σ2
||Hx− y||22 +

β

2

n∑
i=1

||Pix− zi||22

• Linear solution: same patch reprojection as for k-SVD (see slide 20).

41

Expected patch log-likelihood (EPLL)

Fast EPLL [Parameswaran et al., 2017]

1 Process only 3% of the patches at each iteration (chosen randomly),

2 Use a binary search tree to match for the best Gaussian component,

3 Approximate smallest eigenvalues of the covariance matrices.

⇒ 180× speed-up

(a) Random selection (b) Binary tree

10 20 30 40 50 60

10−3

10−1
95% 5%

Index of eigen dimension

E
ig
en
va
lu
e

data1
data2
data3
data4

(c) Cov. approx.

42

Expected patch log-likelihood (EPLL)

(a) Reference

22.1 / .368

(b) Noisy image

30.6 / .872 (1.68s)

(c) BM3D result

30.2 / .862 (0.36s)

(d) FEPLL result

Results of denoising (σ = 20)

43

Expected patch log-likelihood (EPLL)

(a) Reference / Blur kernel

24.9 / .624

(b) Blurry image

32.7 / .924 (0.46s)

(c) FEPLL result

Results of removing motion blur (subject to noise σ = 0.5)

44

Expected patch log-likelihood (EPLL)
In

p
u

t

11.1 / .662 20.8 / .598 8.31 / .112

F
E

P
L

L

36.8 / .972 (0.38s)

(a) devignetting

23.3 / .738 (0.29s)

(b) ×3 super-resolution

27.0 / .905 (0.36s)

(c) 50% random inpainting

Various inverse problems (subject to noise σ = 2)

45

Other patch based restoration models

Patch based restoration models

Inpainting

Patch propagation [Xu and Sun, 2010]

• Inpaint progressively from the

edges of the missing region.

• Start with the pixels whose

patches are “rare” (i.e., sparse

similarity maps).

46

Patch based restoration models

Super-resolution

Super-resolution from a single image [Glasner et al., 2009]

• Simulate multi-frames: use similar patches and their sub-pixel registration.

• Match patches from low-res and hi-res pairs.

magnification x3 (nearest neighbor, patch-based)

47

Patch based restoration models

Deblurring

Adaptive sparse domain selection and regularization [Dong et al., 2011]

• Locally select dictionaries (sub-spaces),

• Perform sparse coding with the selected dictionary,

• Enforce stability under non-local filtering.

blurry
total variation

minimization BM3D Dong 2009

patch based

48

What’s next?

What’s next?

Next open problems to deal with

• Blind denoising: statistics of the noise are unknown.

• Blind deconvolution: convolution kernel is unknown.

• Non-stationary blur: ex: moving objects, Bokeh. . .

• Non-linear degradations: ex: saturation, atmospheric turbulence. . .

(a) Motion blur (b) Bokeh (Mulholand drive, 2001) (c) Turbulence (OTIS dataset)

49

What’s next?

Next generations of restoration techniques

• Instead of learning statistics of images or patches, such as:

• Mean power spectral density (for Wiener filtering),
• PCA (for LMMSE),
• Non-local PCA (for NL Bayes),
• Sparsifying dictionaries (k-SVD),
• Gaussian mixture models (EPLL).

⇒ Learn directly the algorithm.

What do all these algorithms have in common?

50

What’s next?

Non-Local means

for k in range(-s1, s1 + 1):

for l in range(-s2, s2 + 1):

yshift = shift(y, k, l) # Global linear

dist2 = (yshift - y)**2 # Pointwise non-linear

dist2 = convolve(dist2, nu) # Global linear

w = phi(dist2, sig, h, P * c) # Pointwise non-linear

x += w * yshift # Pointwise non-linear

Regularized anisotropic diffusion

for k in range(m-1):

gconv = grad(convolve(x, nu)) # Global linear

alpha = g(norm2(gconv)) # Pointwise non-linear

g = grad(z) # Global linear

v = alpha * g # Pointwise non-linear

x = x + gamma * div(v) # Global linear

ISTA+LASSO+UDWT+Deconvolution: BaB = WH∗HW+

while condition:

z = z - gamma * (BaB(z) - Bay) # Global linear

z = SoftT(z, gamma * tau / lambda) # Pointwise non-linear

51

What’s next?

All restoration methods perform successions of:

• global linear operations (mixing everything):

ex: convolutions, shifts, patch extractions, aggregations, decimations...

• pointwise non-linear operations (taking decisions):

ex: thresholdings, exponentials, squares, element-wise products...

These are artificial (deep convolutional) Neural Networks (NNs).

Instead of designing all steps yourself, let the machine learn them.
52

What’s next?

Fast Super-Resolution Convolutional NN [Dong et al., 2016]

BM3D-Net [Yang & Sun, 2017]

Want to learn more?

Fall quarter 2019: Machine Learning for Image Processing

53

Questions?

That’s all folks!

Sources, images courtesy and acknowledgment

• L. Denis

• J. Gilles

• A. Horodniceanu

• G. Peyré

• W. Sharba

• F. Tupin

• Wikipedia

53

	Learning sparse representations
	Sparsity with collaborative filtering
	Expected patch log-likelihood (EPLL)
	Other patch based restoration models
	What's next?

