
ECE 285 – Assignment #3
Basic Filters

Written by Charles Deledalle on April 19, 2019.

In this assignment we will improve our image manipulation package imagetools by defining more
advanced functions that we will be using for the next assignments.

First, start a Jupyter Notebook, go into the subdirectory ece285 IVR assignments (or whatever you
named it), and create a new notebook assignment3 filters.ipynb with

%load_ext autoreload

%autoreload 2

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

import time

import imagetools.assignment3 as im

%matplotlib notebook

We will be using the files

� assets/train.png

� assets/race.png

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

1 Separable convolutions

1. Copy paste the function kernel from imagetools/assignment2.py into assignment3.py. Modify
the function in order to implement name='gaussian1', 'exponential1', 'box1', 'gaussian2',
'exponential2', 'box2', that implements the Gaussian, exponential and box kernels but only in
direction 1 and 2 respectively.

Hint: just modify the value of s1 and s2 and use name.startswith and name.endswith.

2. Copy paste the function convolve from imagetools/assignment2.py into assignment3.py. Mod-
ify the function in order to implement cases where the kernel is separable. The function signature
will be modified as follows

def convolve(x, nu, boundary='periodical', separable=None)

Here separable can take one of the values: None, 'product' or 'sum'. When separable = None,
the behavior of this function is unchanged. When separable = 'product', nu is a list composed

1

%load_ext autoreload
%autoreload 2
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import time
import imagetools.assignment3 as im

%matplotlib notebook

def convolve(x, nu, boundary='periodical', separable=None)

of two 1d arrays, nu = (nu1, nu2), and the function performs the convolution of x by ν defined
as

ν(i, j) = ν1(i)ν2(j).

When separable = 'sum', ν is defined as

ν(i, j) = 1j=0ν1(i) + 1i=0ν2(j).

where 1condition = 1 if the condition is satisfied, 0 otherwise. Example: the following code

nu1 = im.kernel('gaussian1', tau)

nu2 = im.kernel('gaussian2', tau)

nu = (nu1, nu2)

xconv = im.convolve(x, nu, boundary='mirror', separable='product')

should produce the same result as

nu = im.kernel('gaussian', tau)

xconv = im.convolve(x, nu, boundary='mirror')

3. Perform the convolution of the image x = train with the Gaussian, box and exponential kernel.
Compare the similarity of the results and the execution times of the separable version and the non-
separable one. Display the results and check that your results are consistent with the followings:

(a) Original x (b) xconv non-separable (2.10s) (c) xconv separable (0.32s)

Figure 1: Results of convolutions with the exponential kernel τ = 4.

2 Derivative filters

4. Modify the function kernel such that it implements the following derivative filters:
grad1 forward (forward discrete gradient in the first dimension), grad1 backward, grad2 forward,
grad2 backward, laplacian1 (Laplacian in the first dimension), laplacian2 (Laplacian in the sec-
ond dimension). Please refer to the class for proper definitions. For instance, the code for the
forward discrete gradient in the first dimension reads as:

if name is 'grad1_forward':

nu = np.zeros((3, 1))

nu[1, 0] = -1

nu[2, 0] = 1

2

nu1 = im.kernel('gaussian1', tau)
nu2 = im.kernel('gaussian2', tau)
nu = (nu1, nu2)
xconv = im.convolve(x, nu, boundary='mirror', separable='product')

nu = im.kernel('gaussian', tau)
xconv = im.convolve(x, nu, boundary='mirror')

In this case, the arguments tau and eps are ignored. A kernel should always have odd shape
dimensions.

5. Apply the 6 derivative filters on y = race and display the 6 results (in the range [-.2, .2]). Share
axes, zoom and move on the images, and check that your results are consistent with Figure 2.

(a) Original x (b) ∇forward
1 x (c) ∇backward

2 x (d) ∆1x

Figure 2: Results of derivative filters.

6. For a 1d signal of size 4, the gradient with forward finite difference and periodical boundary condition
can be expressed in matrix form as

∇forward
1 =

−1 1

−1 1
−1 1

1 −1

Derive the expression of the gradient with backward finite difference and periodical boundary con-
dition. Show that (∇forward

1)T = −∇backward
1 .

7. Two linear functions f and g are adjoint of each other (generalization of matrix transposition), if for
all x and y, 〈x, f(y)〉 = 〈y, g(x)〉. We note g = f∗. For x = train and y = race, check whether
〈x, ∇backward

1 y〉 = −〈∇forward
1 x, y〉 up to machine precision (use np.isclose) for different boundary

conditions. Conclude.

Reminder: 〈x, y〉 =
∑

k xkyk.

8. Prove your observations from the previous questions using their corresponding matrix forms on 1d
signals of size 4.

9. Check whether ∇backward
1 ∇forward

1 y = ∆1y up to machine precision for the different boundary condi-
tions. What do you conclude?

10. Prove your previous observation on periodical boundary conditions, by using the corresponding
matrix forms on 1d signals of size 4.

11. Create in imagetools/assignment3.py, the function

def laplacian(x, boundary='periodical')

that returns the Laplacian of the image x.

Hint: use separable = 'sum'.

3

if name is 'grad1_forward':
 nu = np.zeros((3, 1))
 nu[1, 0] = -1
 nu[2, 0] = 1

def laplacian(x, boundary='periodical')

12. Create the function

def grad(x, boundary='periodical')

...

return g

that for a n1 × n2 image x (resp., n1 × n2 × 3 for an RGB image) returns a n1 × n2 × 2 (resp., n1 ×
n2× 2× 3) array g corresponding to the discrete gradient vector field of x with periodical boundary
conditions. More precisely, g[:,:,0] (resp., g[:,:,1]) corresponds to the forward discrete image
gradient in the first (resp., second) direction.

Hint: use np.stack.

13. The divergence of a two-dimensional vector field f : R2 → R2 is defined as the function div f : R2 →
R such that

div f =
∂f1
∂s1

+
∂f2
∂s2

.

Create in imagetools/assignment3.py, the function

def div(f, boundary='periodical')

...

return d

that for a n1 × n2 × 2 vector field f returns its n1 × n2 discrete divergence d.

14. Check that your implementation guarantees that for periodical boundary conditions, div∇x = ∆x
and compare 〈∇x, ∇y〉 = −〈∆x, y〉. Revise your code if it does not. Conclude.

Note: These properties will be essential for the algorithms we will develop next.

4

def grad(x, boundary='periodical')
 ...
 return g

def div(f, boundary='periodical')
 ...
 return d

