
ECE 285 – Project A
Anisotropic Diffusion Regularization

Written by Charles Deledalle on May 31, 2019.

You will have to submit a notebook projectA.ipynb and the package imagetools/projectA.py.
Organize your notebook with headings (following the numbering of the questions). For writing questions,
answer directly in your notebook in markdown cells. For each section, it is indicated in brackets how
much it contributes to the grade.

This project focuses on image restoration by anisotropic diffusion based regularizations. Before start-
ing this project you will need to have gone through all assignments. Functions developed in this project
will complete the imagetools package. We will be using the following assets

� assets/fish.png • assets/mushroom.png • assets/moose.png • assets/starfish.png

1 Operators (25%)

We focus on the estimation of a clean image x0 form its degraded observation y satisfying

y = Hx0 + w

where w is a white Gaussian noise component with standard deviation σ, and H a linear operator.
We will consider three types of linear operators: identity (denoising problem), convolution (deblurring
problem), and random masking (inpainting problem).

We will need to be able to compute for any images x:

� the application of H to x: x 7→ Hx,

� the application of its adjoint: x 7→ H∗x,

� the application of its gram matrix: x 7→ H∗Hx,

� the resolvent of its gram matrix: x 7→ (Id + τH∗H)−1x.

A linear operator will be represented by a Python object as an instance of a class that inherits from our
homemade abstract class LinearOperator defined in imagetools/provided.py. Please have a look at
the code. Note that LinearOperator has a method norm2 that returns an approximation of the spectral
norm of the operator ‖ · ‖2 and normfro that returns an approximation of the Frobenius norm ‖ · ‖F . It
also has two properties ishape and oshape, the first one is the shape of the input of the operator, the
second is the shape of the output. Any class that inherits from it must implement (at least):

� call (self, x) • adjoint(self, x)

� gram(self, x) • gram resolvent(self, x, tau)

As an example, we provided Grad that reuses functions from the previous assignments to implement each
of these methods for the gradient operator. An object can be instantiated as H = im.Grad((n1, n2,

3)) for the gradient of a RGB image of shape (n1, n2, 3).
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1. In imagetools/projectA.py, create a class Identity that implements the identity operator x 7→ x.
An object can be instantiated as H = im.Identity(shape).

2. Create a class Convolution that implements the convolution operator x 7→ ν ∗ x. An object
can be instantiated as Convolution(shape, nu, separable=None). As we will manipulate large
convolution kernels ν, all operations should be implemented in the Fourier domain. Note that during
this project, we will always consider periodical boundary conditions.

Hint: reuse functions from the assignments.

3. Create a class RandomMasking that implements the linear operator that sets a proportion p of
arbitrary pixels to zeros. An object can be instantiated as H = im.RandomMasking(shape, p).

4. In your notebook, load the image x0 = starfish. Create a version y for each of the three operators.
For the random masking we will consider p = .4. For the convolution we will consider the motion
kernel ν. Display the result and check that they are consistent with the following ones.

5. For the three linear operators, check that 〈Hx, y〉 = 〈x, H∗y〉 for any arbitrary arrays x and y of
shape H.ishape and H.oshape respectively (you can generate x and y randomly).

6. Check also that (Id + τH∗H)−1(x+ τH∗Hx) = x for any arbitrary image x of shape H.ishape.

2 Anisotropic diffusion (25%)

7. Create in imagetools/projectA.py, a function

def heat_diffusion(y, m, gamma, scheme='continuous')

that produces the result of the Heat equation in complexity O(n log n) where m is the number of
discrete time steps and γ the step size (refer to Chapter 4). Note that during this project, we will
always consider periodical boundary conditions. You must implement the three schemes: explicit,
implicit and continuous.

Hint: reuse functions from the assignments.

8. In your notebook, load the image x0 = fish and create a noisy version y with Gaussian noise of
standard deviation σ = 10/255. Then, run your function on y for m = 100 and gamma = 1/8.

9. Test different schemes and discuss their convergence depending on the value of γ.

10. Create in imagetools/projectA.py, a function

def norm2(v, keepdims=True)
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def heat_diffusion(y, m, gamma, scheme='continuous')




that returns the square of the `2 norm (amplitude) at each location of the vector field v: ai,j =
||vi,j,:||22. If the image is RGB, it must return the sum of a for the three channels. The result must
have shape (n1, n2) if keepdims=False, otherwise (n1, n2, 1) for grayscale images and (n1, n2, 1, 1)
for color images.

11. Create in imagetools/projectA.py, a function

def anisotropic_step(x, z, gamma, g, nusig, return_conductivity=False)

...

if return_conductivity:

return x, alpha

else:
return x

that implements one step of the explicit scheme for the regularized anisotropic diffusion defined by

αk = g(||∇(Gσ ∗ xk)||22)
vk = αk∇xk

xk+1 = xk + γ div vk

where γ is the step size, g : R→ R is a Python lambda function, and nusig is the Gaussian spatial
kernel (separable). Note that αk is a 2d array and vk is a 2d vector field such that

αki,j = g(||(∇(Gσ ∗ xk))i,j ||22) and vki,j,: = αki,j(∇xk)i,j,: .

Hint: refer to the class and reuse functions from the assignments.

12. Create in imagetools/projectA.py, a function

def anisotropic_diffusion(y, m, gamma, g=None, return_conductivity=False)

that runs m iterations of the explicit scheme for the regularized anisotropic diffusion with Gaussian
smoothing of bandwidth σ = .2 (limited to a support [−1, 1]2), where y is the input image, g(u) =

10
10+2552u/

√
C

if g = None, where C is the number of channels (1 for grayscale images, 3 for RGB).

Note: Don’t store all iterates x1, x2, . . . Instead overwrite the results of iteration k at iteration k+1.

13. In your notebook, run your function on y for m = 100 and gamma = 1/8 with
return conductivity=True. Check that your results are consistent with the ones given
below.

14. Compare anisotropic diffusion with heat diffusion. Conclude.

15. Add an optional argument scheme

def anisotropic_diffusion(y, m, gamma, g=None, return_conductivity=False,

scheme='explicit')

and implement for scheme=’implicit’ the implicit scheme as seen in class using the provided
homemade function im.cgs. In this case, the option return conductivity=True must have no
effect.

16. Run the implicit scheme with m = 5 and γ = 20/8. Compare with the explicit scheme and conclude.

3


def norm2(v, keepdims=True)



def anisotropic_step(x, z, gamma, g, nusig, return_conductivity=False)
    ...
    if return_conductivity:
        return x, alpha
    else:
        return x



def anisotropic_diffusion(y, m, gamma, g=None, return_conductivity=False)



def anisotropic_diffusion(y, m, gamma, g=None, return_conductivity=False,
                          scheme='explicit')




(a) Noisy image (b) RAD (c) Conductivity

3 Truly anisotropic diffusion (25%)

We are going to implement the explicit scheme for the truly anisotropic diffusion given by

x0 = y

Mk = (∇Gσ ∗ xk)(∇Gσ ∗ xk)T

Mk
conv = Gρ ∗Mk

T k = h[Mk
conv]

vk = T k ×∇xk

xk+1 = xk + γ div vk

for ρ = 0.5 (Gaussian limited to a support [−1, 1]2), where Mk is a matrix field of 2 × 2 tensors (size:
n1×n2×2×2), (Mk

conv):,:,p,q = Gρ∗Mk
:,:,p,q, h[A] is a matrix spectral function that applies g to the eigenvalues

of A, and T k × ∇xk is a vector field obtained as the punctual matrix vector product (T k × ∇xk)i,j,:,: =
T ki,j,:,: × (∇xk)i,j,: .

17. Create in imagetools/projectA.py, a function

def tensorize(v, nurho):

n1, n2, p = v.shape[:3]

M = np.zeros((n1, n2, p, p))

for k in range(p):
for l in range(p):

# complete

return M

that takes a p dimensional vector field n1× n2× p (or n1× n2× p× 3 for RGB images) and returns
a tensor field M = Gρ ∗ (vvT ) where nurho is the Gaussian spatial kernel (separable). For RGB
images, vvT must be summed over the 3 color channels.

18. Create in imagetools/projectA.py, a function

def matrix_spectral_func(M, g):

...

return T
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def tensorize(v, nurho):
    n1, n2, p = v.shape[:3]
    M = np.zeros((n1, n2, p, p))
    for k in range(p):
        for l in range(p):
            # complete
    return M




that return the tensor field T (of size n1 × n2 × p × p) after applying g to the eigenvalues of each
p× p tensor of the tensor field M (of size n1 × n2 × p× p).

Hint: use numpy.linealg.svd and read well its documentation. Do not use loops!

19. Create in imagetools/projectA.py, a function

def truly_anisotropic_step(x, z, gamma, g, nusig, nurho,

return_conductivity=False)

...

if return_conductivity:

return x, T

else:
return x

that implements one step of the truly anisotropic diffusion.

Hint: use the function from the two last questions and numpy.matmul.

20. Add an optional argument variant

def anisotropic_diffusion(y, m, gamma, g=None, scheme='explicit', variant=None,

return_conductivity=False, variant=None)

and implement for variant=’truly’ the truly anisotropic diffusion, for both the explicit and im-
plicit schemes.

21. In your notebook, load the image x0 = mushroom and create a noisy version y with Gaussian noise
of standard deviation σ = 10/255. Then, run the truly anisotropic diffusion on y with explicit
scheme, m = 100 and gamma = 1/8. Display the results, compare PSNRs and check that they are
consistent with the following ones.

(a) Noisy (b) AD (15s / 32.5dB) (c) TAD (52s / 33.2dB) (d) Difference

22. Rerun with implicit scheme, m = 5 and gamma = 20/8, and check that your results are of similar
quality but the approach is about 3 times faster.

4 Regularization for image restoration (25%)

23. In imagetools/projectA.py, create the function
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def matrix_spectral_func(M, g):
    ...
    return T



def truly_anisotropic_step(x, z, gamma, g, nusig, nurho,
                           return_conductivity=False)
    ...
    if return_conductivity:
        return x, T
    else:
        return x



def anisotropic_diffusion(y, m, gamma, g=None, scheme='explicit', variant=None,
                          return_conductivity=False, variant=None)




def anisotropic_diffusion_regularization(y, m, sig, H=None, g=None, ...)

that solves our restoration problem
y = Hx0 + w

based on the tools developed in the previous section. The argument sig is the noise standard
deviation σ, H the linear operator H (identity if None) and g(u) = σ2

σ2+u/
√
C

if None. You may come

up with the approach of your choice (you can refer to Chapter 4 for inspiration).

24. Discuss the mathematical foundations of your approach.

25. In your notebook, load the image x0 = moose and create a blurry version y by defining H as the
motion blur kernel, and add a Gaussian noise of standard deviation σ = 2/255. Apply your function
on y.

Results may look like the following ones:

(a) Original (b) Blurry

(c) Based on AD (32.8dB, 73s) (d) Based on TAD (33.9dB, 230s)

26. Repeat the experiment but with a random masking of 40%.

5 Bonus (+10% max)

• Use the exact formula of the eigen decomposition of 2×2 matrices to make matrix spec func faster.
• Implement super-resolution.
• Implement and discuss further possible improvements.
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def anisotropic_diffusion_regularization(y, m, sig, H=None, g=None, ...)



