
ECE 285 – Project C
Wavelet based image restoration

Written by Charles Deledalle on June 7, 2019.

You will have to submit a notebook projectC.ipynb and the package imagetools/projectC.py.
Organize your notebook with headings (following the numbering of the questions). For writing questions,
answer directly in your notebook in markdown cells. For each section, it is indicated in brackets how
much it contributes to the grade.

This project focuses on image restoration using wavelet transforms. Before starting this project you
will need to have gone through all assignments. Functions developed in this project will complete the
imagetools package. We will be using the following assets

� assets/starfish.png • assets/normandy.png • assets/dragonfly.png • assets/topgun.png

1 Operators (25%)

We focus on the estimation of a clean image x0 form its degraded observation y satisfying

y = Hx0 + w

where w is a white Gaussian noise component with standard deviation σ, and H a linear operator.
We will consider three types of linear operators: identity (denoising problem), convolution (deblurring
problem), and random masking (inpainting problem).

We will need to be able to compute for any images x:

� the application of H to x: x 7→ Hx,

� the application of its adjoint: x 7→ H∗x,

� the application of its gram matrix: x 7→ H∗Hx,

� the resolvent of its gram matrix: x 7→ (Id + τH∗H)−1x.

A linear operator will be represented by a Python object as an instance of a class that inherits from our
homemade abstract class LinearOperator defined in imagetools/provided.py. Please have a look at
the code. Note that LinearOperator has a method norm2 that returns an approximation of the spectral
norm of the operator ‖ · ‖2 and normfro that returns an approximation of the Frobenius norm ‖ · ‖F . It
also has two properties ishape and oshape, the first one is the shape of the input of the operator, the
second is the shape of the output. Any class that inherits from it must implement (at least):

� call (self, x) • adjoint(self, x)

� gram(self, x) • gram resolvent(self, x, tau)

As an example, we provided Grad that reuses functions from the previous assignments to implement each
of these methods for the gradient operator. An object can be instantiated as H = im.Grad((n1, n2,

3)) for the gradient of a RGB image of shape (n1, n2, 3).

1

1. In imagetools/projectC.py, create a class Identity that implements the identity operator x 7→ x.
An object can be instantiated as H = im.Identity(shape).

2. Create a class Convolution that implements the convolution operator x 7→ ν ∗ x. An object
can be instantiated as Convolution(shape, nu, separable=None). As we will manipulate large
convolution kernels ν, all operations should be implemented in the Fourier domain. Note that during
this project, we will always consider periodical boundary conditions.

Hint: reuse functions from the assignments.

3. Create a class RandomMasking that implements the linear operator that sets a proportion p of
arbitrary pixels to zeros. An object can be instantiated as H = im.RandomMasking(shape, p).

4. In your notebook, load the image x0 = starfish. Create a version y for each of the three operators.
For the random masking we will consider p = .4. For the convolution we will consider the motion
kernel ν. Display the result and check that they are consistent with the following ones.

5. For the three linear operators, check that 〈Hx, y〉 = 〈x, H∗y〉 for any arbitrary arrays x and y of
shape H.ishape and H.oshape respectively (you can generate x and y randomly).

6. Check also that (Id + τH∗H)−1(x+ τH∗Hx) = x for any arbitrary image x of shape H.ishape.

2 Discrete Wavelet Transform (25%)

7. In imagetools/projectC.py, create the function

def dwt(x, J, h, g):

...

return z

that implements the 2d Discrete Wavelet Transform (DWT) with J scales, where h and g are high-
pass and low-pass wavelet filters of shape (n, 1) as provided by the homemade function wavelet in
imagetools/provided.py.

Hint: refer to Chapter 6.

8. We will use Daubechies-2 wavelets and J = 3 scales. In your notebook, load the image x0 =

normandy and crop its dimension to the largest dimension compatible with the DWT by using
the homemade function im.dtw crop. Apply your function on this image and display its wavelet
coefficients by using the homemade function im.showdwt. Check that your results are consistent
with the following ones:

2

def dwt(x, J, h, g):
 ...
 return z

9. Create the function

def idwt(z, J, h, g)

implementing the 2d Inverse DWT.

10. In your notebook, check that idwt is the inverse of dwt. Check for both, the left and right invert:
dwt ◦ idwt and idwt ◦ dwt. Check also whether it is the adjoint of dwt. How is a linear operation
called when its inverse is its own adjoint?

11. Create the class DWT as a wrapper for the previous functions. It should inherit from LinearOperator

and be instantiated as

W = im.DWT(shape, J, name='db2')

and also implements two methods

� invert(self, x) such that x = W.invert(W(x)) = W(W.invert(x)),

� power(self) that returns the results of our homemade function dwt power(n1, n2, J).

12. Write the function

def softthresh(z, t):

that for an array z implements point-wise the soft-thresholding defined as:

z 7→

0 if |z| 6 t
z − t if z > t
z + t otherwise

(1)

Do not use loops!

Hint: You can write it in a single line by combining np.abs, np.maximum and np.sign.

13. Write the function

def softthresh_denoise(y, sig, W, alpha=10/255)

that removes noise by performing soft-thresholding on the coefficients W (y)i by using the threshold

τi =
√
2σ2

λi
where λi is the expected standard deviation of the corresponding clean wavelet coefficient.

We will model it as λi = αpi where pi = 2(j−1) as provided by W.power() where j is the scale of
the pixel index i. The scalar α is the last optional argument.

3

def idwt(z, J, h, g)

W = im.DWT(shape, J, name='db2')

def softthresh(z, t):

def softthresh_denoise(y, sig, W, alpha=10/255)

14. In your notebook, create a noisy version y of x0 = dragonfly (cropped to compatible dimension)
with noise standard deviation σ = 20/255. Run your function with different values of α and check
that your results are consistent with the following ones:

3 Undecimated Discrete Wavelet Transform (25%)

15. In imagetools/projectC.py, create the function

def udwt(x, J, h, g):

...

return z

that implements the 2d Undecimated Discrete Wavelet Transform (UDWT) with J scales.

Hint: refer again to Chapter 6.

16. In your notebook, test again your function on x0 = dragonfly and display its undecimated wavelet
coefficients by using im.show (you can make one subplot per channel). Again use Daubechies-2
wavelets and J = 3. Describe the result.

17. Create the function

def iudwt(z, J, h, g)

implementing the 2d Inverse UDWT.

18. In your notebook, check for both, the left and right invert: iudwt ◦ udwt and udwt ◦ iudwt. Is the
UDWT invertible? Check also whether iudwt is the adjoint of udwt.

19. Implement udwt create fb, fb apply and fb adjoint as introduced in Chapter 6.

20. Create the class UDWT as a wrapper for the previous functions. It should inherit from
LinearOperator and be instantiated as

W = im.UDWT(shape, J, name='db2', using_fb=True)

where the flag using fb allows your wrapper to switch between the recursive and the filter bank
implementation. As for DWT, implement also the two methods

� invert(self, x) corresponding to its pseudo-inverse,

4

def udwt(x, J, h, g):
 ...
 return z

def iudwt(z, J, h, g)

W = im.UDWT(shape, J, name='db2', using_fb=True)

� power(self) that returns the results of our homemade function udwt power(J).

21. Run softthresh denoise on the noisy image y with W the undecimated wavelet transform. Com-
pare the results computation time of both, the recursive and the filter bank implementation. Com-
pare that you have a gain of about 1dB compared to the results with the DWT.

4 Wavelet based image restoration (25%)

We now aim at reconstructing an approximation of the image x0 by sparse analysis regularization of
wavelet coefficients. This consists of minimizing the following energy

E(x) =
1

2
||y −Hx||22 + τ ||Λ−1/2Wx||1 where Λ+1/2 = diag(λ1, . . . , λn) . (2)

where we will choose τ =
√

2
√

m
n σ

2 where m is the dimension of y and n the dimension of Wx.

22. ADMM (Alternating Direction Method of Multipliers) is an optimization algorithm that can be
used to solve our optimization problem as

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = softthresh(z̃k + dkz ,
γτ

λi
)

x̃k+1 = (Idn + W∗W)−1(xk+1 − dkx + W∗(zk+1 − dkz))
z̃k+1 = Wx̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

where γ > 0. The iterates xk converge to a solution for any value γ > 0 and initializations
(x̃0, z̃0, d0x, d

0
z). Note that the x variables are images and the z variables are wavelet coefficients.

Please refer to the class for more details (chapter 6). In imagetools/projectC.py, create the
function

def sparse_analysis_regularization(y, sig, W, H=None, m=40, alpha=10/255,

gamma=1, return_energy=False):

...

if return_energy:

return x, e

else:
return x

that performs m iterations of ADMM. The argument sig is the noise standard deviation σ and H

the linear operator H (identity if None). If return energy=True, your function should also return a
list e of size m of the energy E(xk) obtained at each iteration. Consider the initialization x̃0 = H∗y,
z̃0 = Wx̃0, d0x = 0 and d0z = 0.

23. In your notebook, run sparse analysis regularization on the noisy image y of x0 = dragonfly

with default parameters, first with W the DWT, and next with the UDWT. Interpret the results.
About how many iterations are required before the energy plateaus? Check that your results are
consistent with the following ones

5

def sparse_analysis_regularization(y, sig, W, H=None, m=40, alpha=10/255,
 gamma=1, return_energy=False):
 ...
 if return_energy:
 return x, e
 else:
 return x

24. In your notebook, load the image x0 = topgun, crop it to a compatible dimension, and create a
blurry version y by defining H as the motion blur kernel, and add a Gaussian noise of standard
deviation σ = 2/255. Apply your function on y (choose default parameters but with gamma=100).
Check the evolution of the loss.

Results must look like the following ones:

25. Repeat the experiment but with a random masking of 40%.

5 Bonus (+10% max)

• In denoising, for different noise levels and parameters, compare your wavelet implementation with
the one of Scikit image: skimage.restoration.denoise wavelet.
• Implement super-resolution.
• Study the influence of the wavelet family and the number of scales.
• Implement and compare with sparse synthesis regularization.
• Implement and discuss further possible improvements.

6

