ECE 285

Machine Learning for Image Processing

Chapter I - Introduction

Charles Deledalle
July 9, 2019

(Source: Jeff Walsh)

Who?

Who am I?

- A visiting scholar from University of Bordeaux (France).
- Visiting UCSD since Jan 2017.
- PhD in signal processing (2011).
- Research in image processing / applied maths.
- Affiliated with CNRS (French scientific research institute).
- Email: cdeledalle@ucsd.edu
- www.charles-deledalle.fr

What?

What is it about?

Machine learning / Deep learning applied to
Image processing / Computer vision

- A bit of theory (but not exhaustive), a bit of math (but not too much),
- Mainly: concepts, vocabulary, recent successful models and applications.

What?

What is it about? - Two examples

(Source: Luc et al., 2017)

(Karpathy \& Fei-Fei, 2015)
(CV:) Automatic extraction of high level information from images/videos, (ML:) by learning from tons of (annotated) examples.

What?

What is it about? - A multidisciplinary field

What? Syllabus

- Introduction to image sciences and machine learning
- Examples of image processing and computer vision tasks,
- Overview of learning problems, approaches and workflow.
- Preliminaries to deep learning
- Perceptron, Artificial Neural Networks (NNs),
- Backpropagation, Support Vector Machines.
- Basics of deep learning
- Representation learning, auto-encoders, algorithmic recipes.
- Applications
- Image classification
- Image generation
\Rightarrow Convolutional NNs, Recurrent NNs, Generative adversarial networks.
- Labs and project using Python \& PyTorch.
- Object detection
- Super resolution
- Style transfer

- Labs and project using Python Py

Why?

Why machine learning / deep learning?

- In the past 10 years, machine learning and artificial intelligence have shown tremendous progress.
- The recent success can be attributed to:
- Explosion of data,
- Cheap computing cost - CPUs and GPUs,
- Improvements of machine learning models.
- Much of the current excitement concerns a subfield of it called "deep learning".

(Source: Poo Kuan Hoong)

Why?

Why image processing / computer vision?

- Images become a major communication media.
- Images need to be analyzed automatically
- Reduce the burden of human operators by teaching a computer to see.
- To produce images with artistic effect.
- Many applications: robotic, medical, video games, sport, smart cars, ...

Why?

Why? More examples. .

Top row, left to right:
Image by Augustas Didžgalvis:-ifensed under CC BY-SA 3.0; changes made Image by Nesster is licensed under CC BY-SA 2.0 Image is CCO 1.0 public domain

Middle row, left to right
Image by BGPHP Conierence is itiensed under CC BY 2.0; changes made Image is Cco 1.0 public domán
Image by NASA is sicensed under CC BY 2.0 ; chang Image is cco 1.0 public domain

Bottom row, left to right
Image is CCO 1.0 public domain
lmage by Derek Keats is ticensed under SC. BY 2.0; changes made mage is public domain
Image is public domain
lmage by Ted Eytan is ticensed under SC BY-SA 2.0; changes made

What for?

What for?

- Industry: be able to use or implement latest machine learning techniques to solve image processing and computer vision tasks.

Top 20 Companies Investing in AI Talent

No other company comes close to matching the $\$ 227.8$ million that hiring and salary firm Paysa estimates Amazon will spend hiring artificial intelligence talent.

- Big actors: Amazon, Google, Microsoft, Facebook, ...

What for?

What for?

- Academic: be able to read and understand latest research papers, and possibly publish new ones.

- Big actors: Stanford, New York U., U. of Montreal, U. of Toronto, ...
- Main conferences: NIPS, CVPR, ICML, ...

How?

How? - Teaching staff

Instructor

Charles Deledalle

Teaching assistants

Inderjot Singh Saggu

How?

How? - Schedule

- $30 \times \mathbf{5 0} \mathbf{~ m i n}$ lectures (10 weeks)
- Mon/Wed/Fri 3:00-3:50pm
- Room CENTR 115 Ledden Auditorium (LEDDN)
- 5×2 hour optional labs every two weeks (refer to Google's calendar)
- Group 1: Fri 10am-12pm (lastnames from A to Kan)
- Group 2: Tues 2-4pm (lastnames from Kar to Ra)
- Group 3: Thurs 10am-12pm (lastnames from Ro to Z)
- Jacobs Hall, Room 4309

Please, coordinate with your classmates to switch groups.

- Office hours
- Charles Deledalle, Weekly on Tues 10am-12pm, Jacobs Hall 4808.
- TAs, every two other weeks, TBA
- Google calendar: https://tinyurl.com/y2gltvzs

How?

How? - Assignments / Project / Evaluation

- 4 assignments in Python/Pytorch (individual) 40\%
- Don't wait for the lectures to start,
- You can start doing them all now.
- 1 project open-ended or to choose among 3 proposed subjects 30\%
- In groups of 3 or 4 (start looking for a group now),
- Details to be announced in a couple of weeks.
- 3 quizzes (~ 45 mins each)
- Multiple choice on the topics of all previous lectures,
- Dates are: April 24, May 17, June 10 12,
- No documents allowed.

How?

How? - What assignments?

Assignment 1 (Backpropagation): Create from scratch a simple machine learning technique to recognize hand-written digits from 0 to 9 .

Assignment 2 (CNNs and PyTorch): Develop a deep learning technique and learn how to use GPUs with PyTorch.

Improve your results to $\mathbf{9 8 \%}$!

How?

How? - What assignments?

Assignment 3 (Transfer learning): Teach a program how to recognize bird species when only a small dataset is available.

How?

How? - What assignments?

Assignment 4 (Image Denoising): Teach a program how to remove noise.

How?

How? - Assignments and Project Deadlines

Calendar Deadline
(1) Assignment 0 - Python/Numpy/Matplotlib (Prereq) optional
(2) Assignment 1 - Backpropagation April 17
(3) Assignment 2 - CNNs and PyTorch May 1
(4) Assignment 3 - Transfer Learning May 15
(5) Assignment 4 - Image Denoising May 29
(6) Project June 79

Refer to the Google calendar: https://tinyurl.com/y2gltvzs

How?

How? - Prerequisites

- Linear algebra + Differential calculus + Basics of optimization + Statistics/Probabilities
- Python programming (at least Assignment 0)

Optional: cookbook for data scientists

How?

How? - Piazza

https://piazza.com/ucsd/spring2019/ece285mlip

Misc

Misc

Programming environment: Python/PyTorch/Jupyter

- We will use UCSD's DSMLP cluster with GPU/CUDA. Great but busy.
- We recommend you to install Conda/Python 3/Jupyter on your laptop.
- Please refer to additional documentations on Piazza.

Communication:

- All your emails must have a title starting with "[ECE285-MLIP]"
\rightarrow or it will end up in my spam/trash.
Note: "[ECE 285-MLIP]", "[ece285 MLIP]", "(ECE285MLIP)" are invalid!
- But avoid emails, use Piazza to communicate instead.
- For questions that may interest everyone else, post on Piazza forums.

Some references

Reference books

C. Bishop

Pattern recognition and Machine Learning
Springer, 2006
T. Hastie, R. Tibshirani, J. Friedman

The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Springer, 2009
http://web.stanford.edu/~hastie/ElemStatLearn/

BAYESIAN REASONING and
MACHINE LEARNING

David Barber

D. Barber

Bayesian Reasoning and Machine Learning
Cambridge University Press, 2012
http://www.cs.ucl.ac.uk/staff/d.barber/brml/
I. Goodfellow, Y. Bengio and A. Courville.

Deep Learning
MIT Press book, 2017
http://www.deeplearningbook.org/

Some references

Reference online classes

Fei-Fei Li, Justin Johnson and Serena Yeung, 2017 (Stanford) CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu

Giró et al, 2017 (Catalonia)
Deep Learning for Artificial Intelligence
https://telecomben-dl.github.io/2017-dlai/

Leonardo Araujo dos Santos.
Artificial Intelligence
https://www.gitbook.com/@leonardoaraujosantos

Image sciences

Imaging sciences - Overview

Image sciences

- Imaging:

Imaging sciences - Overview

Image sciences

- Imaging:

Modeling the image formation process

- Computer graphics:

Rendering images/videos from symbolic representation

Imaging sciences - Overview

Image sciences

- Computer vision:

Extracting information from images/videos

Imaging sciences - Overview

Image sciences

- Computer vision:

Extracting information from images/videos

- Image/Video processing:

Producing new images/videos from input images/videos

Imaging sciences - Image processing and computer vision

Spectrum from image processing to computer vision

Imaging sciences - Image processing

Image processing

Enhancement
Compression

Feature detection

Inpainting

Super-resolution

(Source: lasonas Kokkinos)

- Image processing: define a new image from an existing one
- Video processing: same problems + motion information

Imaging sciences - Image processing

Image processing

Feature detection

Enhancement

Compression
⿹․ㄱ ctf_2 32 KB JPEG Image夏ctf_2 916 KB PostScript

Inpainting

Super-resolution

(Source: lasonas Kokkinos)

- Image processing: define a new image from an existing one
- Video processing: same problems + motion information

Imaging sciences - Computer vision

Computer vision

Definition (The British Machine Vision Association)

Computer vision (CV) is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images.

CV is a subfield of Artificial Intelligence.

Imaging sciences - Computer vision

Computer vision - Artificial Intelligence (AI)

Definition (Collins dictionary)

artificial intelligence, noun: type of computer technology which is concerned with making machines work in an intelligent way, similar to the way that the human mind works.

Definition (Oxford dictionary)

artificial intelligence, noun: the theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation.

Remark:

CV is a subfield of AI, CV's new very best friend is machine learning (ML), ML is also a subfield of AI, but not all computer vision algorithms are ML.

Computer vision - Image classification

Goal: to assign a given image into one of the predefined classes.

Imaging sciences - Computer vision - Object detection

Computer vision - Object detection

(Source: Joseph Redmon)

Goal: to detect instances of objects of a certain class (such as human).

Imaging sciences - Computer vision - Image segmentation

Computer vision - Image segmentation

(Source: Abhijit Kundu)

Goal: to partition an image into multiple segments such that pixels in a same segment share certain characteristics (color, texture or semantic).

Imaging sciences - Computer vision - Image captioning

Computer vision - Image captioning

"girl in pink dress is jumping in air."

'little girl is eating piece of cake."

"black and white dog jumps over bar."

"baseball player is throwing ball in game.'

'young girl in pink shirt is swinging on swing."

"woman is holding bunch of bananas."

"man in blue wetsuit is surfing on wave."

"black cat is sitting on top of suitcase."
(Karpathy, Fei-Fei, CVPR, 2015)
Goal: to write a sentence that describes what is happening.

Imaging sciences - Computer vision - Depth estimation

Computer vision - Depth estimation

(Stereo-vision: from two images acquired with different views.)

Goal: to estimate a depth map from one, two or several frames.

Imaging sciences - IP \cap CV - Image colorization

Image colorization

(Source: Richard Zhang, Phillip Isola and Alexei A. Efros, 2016)
Goal: to add color to grayscale photographs.

Imaging sciences - IP \cap CV - Image generation

Image generation

Generated images of bedrooms (Source: Alec Radford, Luke Metz, Soumith Chintala, 2015)

Goal: to automatically create realistic pictures of a given category.

Imaging sciences - IP \cap CV - Image generation

Image generation - DeepDream

(Source: Google Deep Dream, Mordvintsev et al., 2016)

Goal: to generate arbitrary photo-realistic artistic images, and understand/visualizing deep networks.

Imaging sciences - IP $\cap \mathrm{CV}$ - Image stylization

Image stylization

(Source: Neural Doodle, Champandard, 2016)

Goal: to create stylized images from rough sketches.

Imaging sciences - IP \cap CV - Style transfer

Style transfer

(Source: Gatys, Ecker and Bethge, 2015)
Goal: transfer the style of an image into another one.

Machine learning

Machine learning

What is learning?

Herbert Simon (Psychologist, 1916-2001):
Learning is any process by which a system improves performance from experience.

Pavlov's dog (Mark Stivers, 2003)

Tom Mitchell (Computer Scientist):
A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Machine learning

Machine learning (ML)

Definition

machine learning, noun: type of Artificial Intelligence that provides computers with the ability to learn without being explicitly programmed.

Traditional Programming

Machine Learning

(Source: Pedro Domingos)

Machine learning

Machine learning (ML)

Provides various techniques that can learn from and make predictions on data.
Most of them follow the same general structure:

(Source: Lucas Masuch)

Machine learning - Learning from examples

Learning from examples

3 main ingredients

(1) Training set / examples:

$$
\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}
$$

(2) Machine or model:

$$
\boldsymbol{x} \rightarrow \underbrace{f(\boldsymbol{x} ; \theta)}_{\text {function / algorithm }} \rightarrow \underbrace{\boldsymbol{y}}_{\text {prediction }}
$$

θ : parameters of the model
(3) Loss, cost, objective function / energy:

$$
\underset{\theta}{\operatorname{argmin}} E\left(\theta ; \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)
$$

Machine learning - Learning from examples

Learning from examples

Tools: $\quad\left\{\begin{array}{lll}\text { Data } & \leftrightarrow & \text { Statistics } \\ \text { Loss } & \leftrightarrow & \text { Optimization }\end{array}\right.$

Goal: to extract information from the training set

- relevant for the given task,
- relevant for other data of the same kind.

Can we learn everything? i.e., to be relevant for all problems?

Machine learning - Terminology

Terminology

Sample (Observation or Data): item to process (e.g., classify). Example: an individual, a document, a picture, a sound, a video...

Features (Input): set of distinct traits that can be used to describe each sample in a quantitative manner. Represented as a multi-dimensional vector usually denoted by \boldsymbol{x}. Example: size, weight, citizenship, ...

Training set: Set of data used to discover potentially predictive relationships.
Validation set: Set used to adjust the model hyperparameters.
Testing set: Set used to assess the performance of a model.
Label (Output): The class or outcome assigned to a sample. The actual prediction is often denoted by \boldsymbol{y} and the desired/targeted class by \boldsymbol{d} or \boldsymbol{t}. Example: man/woman, wealth, education level, ...

Machine learning - Learning approaches

Learning approaches

Unsupervised Learning Algorithms

Supervised Learning Algorithms

Semi-supervised Learning Algorithms

Unsupervised learning: Discovering patterns in unlabeled data. Example: cluster similar documents based on the text content.

Supervised learning: Learning with a labeled training set. Example: email spam detector with training set of already labeled emails.

Semisupervised learning: Learning with a small amount of labeled data and a large amount of unlabeled data. Example: web content and protein sequence classifications.

Reinforcement learning: Learning based on feedback or reward. Example: learn to play chess by winning or losing.

Machine learning - Workflow

Machine learning workflow

Machine learning - Problem types

Problem types

Regression
(supervised - predictive)

Anomaly Detection
(unsupervised-descriptive)

Machine learning - Unsupervised learning

Unsupervised learning

Unsupervised learning

- Training set:
- Goal:
$\boldsymbol{X}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$ where $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$.
to find interesting structures in the data \boldsymbol{X}.

$$
\text { Examples: }\left\{\begin{array}{l}
\bullet \text { clustering, } \\
\bullet \text { quantile estimation, } \\
\bullet \text { outlier detection, } \\
\bullet \text { dimensionality reduction. }
\end{array}\right.
$$

Statistical point of view

To estimate a density p which is likely to have generated \boldsymbol{X}, i.e., such that

$$
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \stackrel{\text { i.i.d }}{\sim} p
$$

(i.i.d $=$ identically and independently distributed).

Machine learning - Clustering

Clustering

Clustering: group observations into "meaningful" groups.

(Source: Kasun Ranga Wijeweera)

- Task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar to each other.
- Popular ones are K-means clustering and Hierarchical clustering.

Machine learning - Clustering - K-means

Clustering - K-means

Feature \#1
(1) Consider data in \mathbb{R}^{2} spread on three different clusters,

Machine learning - Clustering - K-means

Clustering - K-means

Feature \#1
(1) Consider data in \mathbb{R}^{2} spread on three different clusters,
(2) Pick randomly $K=3$ data points as cluster centroids,

Machine learning - Clustering - K-means

Clustering - K-means

Feature \#1
(1) Consider data in \mathbb{R}^{2} spread on three different clusters,
(2) Pick randomly $K=3$ data points as cluster centroids,
(3) Assign each data point to the class with closest centroid,

Machine learning - Clustering - K-means

Clustering - K-means

Feature \#1
(1) Consider data in \mathbb{R}^{2} spread on three different clusters,
(2) Pick randomly $K=3$ data points as cluster centroids,
(3) Assign each data point to the class with closest centroid, (4) Update the centroids by taking the means within the clusters,

Machine learning - Clustering - K-means

Clustering - K-means

Feature \#1
(1) Consider data in \mathbb{R}^{2} spread on three different clusters,
(2) Pick randomly $K=3$ data points as cluster centroids,
(3) Assign each data point to the class with closest centroid,
(4) Update the centroids by taking the means within the clusters,
(9) Go back to 3 until no more changes.

Machine learning - Clustering - K-means

Clustering - K-means

Feature \#1
(1) Consider data in \mathbb{R}^{2} spread on three different clusters,
(2) Pick randomly $K=3$ data points as cluster centroids,
(3) Assign each data point to the class with closest centroid,
(4) Update the centroids by taking the means within the clusters,
© Go back to 3 until no more changes.

Machine learning - Clustering - K-means

Clustering - K-means

Feature \#1
(1) Consider data in \mathbb{R}^{2} spread on three different clusters,
(2) Pick randomly $K=3$ data points as cluster centroids,
(3) Assign each data point to the class with closest centroid, (4) Update the centroids by taking the means within the clusters,
© Go back to 3 until no more changes.

Machine learning - Clustering - K-means

Clustering - K-means

Feature \#1
(1) Consider data in \mathbb{R}^{2} spread on three different clusters,
(2) Pick randomly $K=3$ data points as cluster centroids,
(3) Assign each data point to the class with closest centroid,
(4) Update the centroids by taking the means within the clusters,
© Go back to 3 until no more changes.

Machine learning - Clustering - K-means

Clustering - K-means

- Optimal in terms of inter- and extra-class variability (loss),
- In practice, it requires much more iterations,
- Solutions strongly depend on the initialization,
\rightarrow Good initializations can be obtained by K-means++ strategy.
- The number of class K is often unknown:
- usually found by trial and error,
- or by cross-validation, AIC, BIC, ...
- K too small/large \Rightarrow under/overfitting. (we will come back to this)
- The data dimension d is often much larger than 2 ,
\rightarrow subject to the curse of dimensionality. (we will also come back to this)
- Vector quantization (VQ): the centroid substitutes all vectors of its class.

Machine learning - Supervised learning

Supervised learning

Supervised learning

- A training labeled set: $\left(\boldsymbol{x}_{1}, d_{1}\right),\left(\boldsymbol{x}_{2}, d_{2}\right), \ldots,\left(\boldsymbol{x}_{N}, d_{N}\right)$.
- Goal:
to learn a relevant mapping f st
$y_{i}=f\left(\boldsymbol{x}_{i} ; \theta\right) \approx d_{i}$

Examples: $\left\{\begin{array}{l}\bullet \text { classification }\left(d \text { is a categorical variable }{ }^{a}\right), \\ \frac{\bullet \text { regression }(d \text { is a real variable }),}{\text { a. can take one of a limited, and usually fixed, number of possible values. }}\end{array}\right.$

Statistical point of view

- Discriminative models: to estimate the posterior distribution $p(d \mid \boldsymbol{x})$.
- Generative models: to estimate the likelihood $p(\boldsymbol{x} \mid d)$,
or the joint distribution $p(\boldsymbol{x}, d)$.

Machine learning - Supervised learning

Supervised learning - Bayesian inference

Bayes rule

In the case of a categorical variable d and a real vector \boldsymbol{x}

$$
\mathbb{P}(d \mid \boldsymbol{x})=\frac{p(\boldsymbol{x}, d)}{p(\boldsymbol{x})}=\frac{p(\boldsymbol{x} \mid d) \mathbb{P}(d)}{p(\boldsymbol{x})}=\frac{p(\boldsymbol{x} \mid d) \mathbb{P}(d)}{\sum_{d} p(\boldsymbol{x} \mid d) \mathbb{P}(d)}
$$

- $\mathbb{P}(d \mid \boldsymbol{x}): \quad$ probability that \boldsymbol{x} is of class d,
- $p(\boldsymbol{x} \mid d)$ distribution of \boldsymbol{x} within class d,
- $\mathbb{P}(d): \quad$ frequency of class d.

Example of final classifier: $f(\boldsymbol{x} ; \theta)=\underset{d}{\operatorname{argmax}} \mathbb{P}(d \mid \boldsymbol{x})$

Generative models carry more information:
Learning $p(\boldsymbol{x} \mid d)$ and $\mathbb{P}(d)$ allows to deduce $\mathbb{P}(d \mid \boldsymbol{x})$.
But they often require many more parameters and more training data.
Discriminative models are usually easier to learn and thus more accurate.

Machine learning - Classification

Classification

Classification: predict class d from observation \boldsymbol{x}.

- Classify a document into a predefined category.
- Documents can be text, images, videos...
- Popular ones are Support Vector Machines and Artificial Neural Networks.

Machine learning - Regression

Regression

Regression (prediction): predict value(s) from observation.

- Statistical process for estimating the relationships among variables.
- Regression means to predict the output value using training data.
\rightarrow related to interpolation and extrapolation.
- Popular ones are linear least square and Artificial Neural Networks.

Machine learning - Classification vs Regression

Classification vs Regression

Classification

- Assign to a class
- Ex: a type of tumor is harmful or not
- Output is discrete/categorical

Regression

- Predict one or several output values
- Ex: what will be the house price?
- Output is a real number/continuous

Regression

What is the temperature going to be tomorrow?

(Source: Ali Reza Kohani)

Quiz, which one is which?
denoising, identification, verification, approximation.

Machine learning - Polynomial curve fitting

Polynomial curve fitting

- Consider N individuals answering a survey asking for
- their wealth: x_{i}
- level of happiness: d_{i}
- We want to learn how to predict d_{i} (the desired output) from x_{i} as

$$
d_{i} \approx y_{i}=f\left(x_{i} ; \theta\right)
$$

where f is the predictor and y_{i} denotes the predicted output.

Quiz

Supervised or unsupervised?
Classification or regression?

Machine learning - Polynomial curve fitting

Polynomial curve fitting

- We assume that the relation is M-order polynomial

$$
y_{i}=f\left(x_{i} ; \boldsymbol{w}\right)=w_{0}+w_{1} x_{i}+w_{2} x_{i}^{2}+\ldots+w_{M} x_{i}^{M}=\sum_{j=0}^{M} w_{j} x_{i}^{j}
$$

where $\boldsymbol{w}=\left(w_{0}, w_{1}, \ldots, w_{M}\right)^{T}$ are the polynomial coefficients.

- The (multi-dimensional) parameter θ is the vector \boldsymbol{w}.

Machine learning - Polynomial curve fitting

Polynomial curve fitting

- Let $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{N}\right)^{T}$ and $\boldsymbol{X}=\left(\begin{array}{ccccc}1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{M} \\ 1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{M} \\ \vdots & & & \vdots & \\ 1 & x_{N} & x_{N}^{2} & \ldots & x_{N}^{M}\end{array}\right)$, then

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{w} \quad \text { with } \quad \boldsymbol{w}=\left(w_{0}, w_{1}, \ldots, w_{M}\right)^{T}
$$

- Polynomial curve fitting is linear regression.
linear regression $=$ linear relation between \boldsymbol{y} and θ, even though f is non-linear.
- Standard procedures involve minimizing the sum of square errors (SSE)

$$
E(\boldsymbol{w})=\sum_{i=1}^{N}\left(y_{i}-d_{i}\right)^{2}=\|\boldsymbol{y}-\boldsymbol{d}\|_{2}^{2}=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{d}\|_{2}^{2}
$$

Linear regression + SSE \longrightarrow Linear least square regression

Machine learning - Polynomial curve fitting

Polynomial curve fitting

$$
\begin{aligned}
& \text { Recall: } \quad E(\boldsymbol{w})=\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{d}\|_{2}^{2}=(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{d})^{T}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{d}) \\
& \text { Note that: } \quad \nabla \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w}=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) \boldsymbol{w} \quad \text { and } \quad \nabla \boldsymbol{b}^{T} \boldsymbol{w}=\boldsymbol{b}
\end{aligned}
$$

- The solution is obtained by canceling the gradient

$$
\nabla E(\boldsymbol{w})=0 \Rightarrow \underbrace{\boldsymbol{X}^{T}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{d})=0}_{\text {normal equation }}
$$

- As soon as we have $N \geqslant M+1$ distinct x_{i}, the solution is unique

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{d}
$$

- Otherwise, there is an infinite number of solutions.

Machine learning - Polynomial curve fitting

Polynomial curve fitting

- Training data:
- Model:
- Loss:
- Machine learning algorithm:
answers to the survey polynomial function of degree M sum of square errors
linear least square regression

The methodology for Deep Learning will be the exact same one.
The only difference is that the relation between y and θ will be (extremely) non-linear.

Machine learning - Polynomial curve fitting

Polynomial curve fitting

As M increases, unwanted oscillations appear (Runge's phenomenon), even though $N \geqslant M+1$.

How to choose the degree M ?

Machine learning - Overfitting and Generalization

Difficulty of learning

- Fit: to explain the training samples,
\rightarrow requires some flexibility of the model.
- Generalization: to be accurate for samples outside the training dataset.
\rightarrow requires some rigidity of the model.

Machine learning - Overfitting and Generalization

Difficulty of learning

Complexity: number of parameters, degrees of freedom, capacity, richness, flexibility, see also Vapnik-Chervonenkis (VC) dimension.

Machine learning - Overfitting and Generalization

Difficulty of learning

Bias/Variance Data fit/Complexity
Variance: how much the predictions of my model on unseen data fluctuate if trained over different but similar training sets.

Bias: how off is the average of these predictions.

$$
\mathrm{MSE}=\mathrm{Bias}^{2}+\text { Variance }
$$

The tradeoff depends on several factors

- Intrinsic complexity of the phenomenon to be predicted,
- Size of the training set: the larger the better,
- Size of the feature vectors: larger or smaller?

Machine learning - Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

Feature 1
No perfect separation

No perfect separation

Feature 1
Linearly separable case

Looks like the more features we have, the better it is. But. . .

Machine learning - Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

Yes, but overfitting

No, but better on unseen data

Machine learning - Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

Yes, but overfitting

No, but better on unseen data

Why is that?

Machine learning - Overfitting and Generalization

Curse of dimensionality

The amount of training data needed to cover 20% of the feature range grows exponentially with the number of dimensions.
\Rightarrow Reducing the feature dimension is often favorable.
"Many algorithms that work fine in low dimensions become intractable when the input is high-dimensional." Bellman, 1961.

Machine learning - Feature engineering

Feature engineering

- Feature selection: choice of distinct traits used to describe each sample in a quantitative manner.

Ex: fruit \rightarrow acidity, bitterness, size, weight, number of seeds, . . .
Correlations between features: weight vs size, seeds vs bitterness,
\Rightarrow Information is redundant and can be summarized with less but more relevant features.

- Feature extraction: extract/generate new features from the initial set of features intended to be informative, non-redundant and facilitating the subsequent task.
\Rightarrow Common procedure: Principal Component Analysis (PCA)

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

In most applications examples are not spread uniformly throughout the example space, but are concentrated on or near a low-dimensional subspace/manifold.

Feature \#1
No correlations
\Rightarrow Both features are informative,
\Rightarrow No dimensionality reductions.

Strong correlation
\Rightarrow Features "influence" each other, \Rightarrow Dimensionality reductions possible.

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

- Find the principal axes (eigenvectors of the covariance matrix),

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

- Find the principal axes (eigenvectors of the covariance matrix),
- Keep the ones with largest variations (largest eigenvalues),

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

- Find the principal axes (eigenvectors of the covariance matrix),
- Keep the ones with largest variations (largest eigenvalues),
- Project the data on this low-dimensional space,

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

- Find the principal axes (eigenvectors of the covariance matrix),
- Keep the ones with largest variations (largest eigenvalues),
- Project the data on this low-dimensional space,

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

- Find the principal axes (eigenvectors of the covariance matrix),
- Keep the ones with largest variations (largest eigenvalues),
- Project the data on this low-dimensional space,
- Change system of coordinate to reduce data dimension.

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

New low-dimensional feature space

- Find the principal axes (eigenvectors of the covariance matrix),
- Keep the ones with largest variations (largest eigenvalues),
- Project the data on this low-dimensional space,
- Change system of coordinate to reduce data dimension.

Machine learning - Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

- Find the principal axes of variations of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathbb{R}^{d}$:

$$
\begin{aligned}
& \boldsymbol{\mu}=\underbrace{\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}}_{\text {mean (vector) }}, \quad \boldsymbol{\Sigma}=\underbrace{\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{T}}_{\text {covariance }}, \quad \underbrace{\boldsymbol{\Sigma}=\boldsymbol{V}^{T} \boldsymbol{\Lambda} \boldsymbol{V}}_{\text {(matrix) }} \underbrace{\left(\boldsymbol{V} \boldsymbol{V}^{T}=\boldsymbol{V}^{T} \boldsymbol{V}=\mathbf{I d}_{d}\right)}_{\text {eigen decomposition }}
\end{aligned}
$$

- Keep the $K<d$ first dimensions: $\boldsymbol{V}_{K}=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{K}\right) \in \mathbb{R}^{d \times K}$
- Project the data on this low-dimensional space:

$$
\tilde{\boldsymbol{x}}_{i}=\boldsymbol{\mu}+\sum_{k=1}^{K}\left\langle\boldsymbol{v}_{k}, \boldsymbol{x}_{i}-\boldsymbol{\mu}\right\rangle \boldsymbol{v}_{k}=\boldsymbol{\mu}+\boldsymbol{V}_{K} \boldsymbol{V}_{K}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right) \in \mathbb{R}^{d}
$$

- Change system of coordinate to reduce data dimension:

$$
\boldsymbol{h}_{i}=\boldsymbol{V}_{K}^{T}\left(\tilde{\boldsymbol{x}}_{i}-\boldsymbol{\mu}\right)=\boldsymbol{V}_{K}^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right) \in \mathbb{R}^{K}
$$

Machine learning - Clustering - K-means

Principal Component Analysis (PCA)

- Typically: from hundreds to a few (one to ten) dimensions,
- Number K of dimensions often chosen to cover 95% of the variability:

- PCA is done on training data, not on testing data!:
- First, learn the low-dimensional subspace on training data only,
- Then, project both the training and testing samples on this subspace,
- It's an affine transform (translation, rotation, projection, rescaling):

$$
\boldsymbol{h}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b} \quad\left(\text { with } \quad \boldsymbol{W}=\boldsymbol{V}_{K}^{T} \quad \text { and } \quad \boldsymbol{b}=-\boldsymbol{V}_{K}^{T} \boldsymbol{\mu}\right)
$$

Deep learning does something similar but in an (extremely) non-linear way.

Machine learning - Feature extraction

What features for an image?

Image representation

La Trahison des images, René Magritte, 1928 (Los Angeles County Museum of Art)

Image representation

How do we represent images?

A two dimensional function

- Think of an image as a two dimensional function x.
- $x\left(s_{1}, s_{2}\right)$ gives the intensity at location $\left(s_{1}, s_{2}\right)$.

(Source: Steven Seitz)
Convention: larger values correspond to brighter content.

Image representation

How do we represent images?

A two dimensional function

- Think of an image as a two dimensional function x.
- $x\left(s_{1}, s_{2}\right)$ gives the intensity at location $\left(s_{1}, s_{2}\right)$.

(Source: Steven Seitz)
Convention: larger values correspond to brighter content.
A color image is defined similarly as a 3 component vector-valued function:

$$
x\left(s_{1}, s_{2}\right)=\left(\begin{array}{l}
r\left(s_{1}, s_{2}\right) \\
g\left(s_{1}, s_{2}\right) \\
b\left(s_{1}, s_{2}\right)
\end{array}\right)
$$

Image representation - Types of images - Digital imagery

Digital imagery

Raster images

- Sampling: reduce the 2 d continuous space to a discrete grid $\Omega \subseteq \mathbb{Z}^{2}$
- Gray level image:
$\Omega \rightarrow \mathbb{R}$
$\Omega \rightarrow \mathbb{R}^{3}$
(discrete position to gray level) (discrete position to RGB)

Image representation - Types of images - Digital imagery

Bitmap image

- Quantization: map each value to a discrete set $[0, L-1]$ of L values (e.g., round to nearest integer)
- Often $L=2^{8}=256$
- Gray level image:
- Color image:
(8bit images \equiv unsigned char)

$$
\begin{aligned}
& \Omega \rightarrow[0,255] \\
& \Omega \rightarrow[0,255]^{3}
\end{aligned}
$$

$$
\left(255=2^{8}-1\right)
$$

- Optional: assign instead an index to each pixel pointing to a color palette (format: .png, .bmp)

Image representation - Types of images - Digital imagery

Digital imagery

- Digital images: sampling + quantization:

$\longrightarrow 8$ bit images can be seen as a matrix of integer values

We will refer to an element $s \in \Omega$ as a pixel location, $x(s)$ as a pixel value, and the pair $(s, x(s))$ as a pixel ("picture element").

Image representation - Types of images - Digital imagery

Functional representation: $x: \Omega \subseteq \mathbb{Z}^{d} \rightarrow \mathbb{R}^{K}$

- d :
- K :
- $s=(i, j)$:
- $x(s)=x(i, j):$ pixel value(s) in \mathbb{R}^{K}

Image representation - Types of images - Digital imagery

Functional representation: $x: \Omega \subseteq \mathbb{Z}^{d} \rightarrow \mathbb{R}^{K}$

- $d: \quad$ dimension ($d=2$ for pictures, $d=3$ for videos, \ldots)
- $K: \quad$ number of channels ($K=1$ monochrome, 3 colors, ...)
- $s=(i, j): \quad$ pixel position in Ω
- $x(s)=x(i, j):$ pixel value(s) in \mathbb{R}^{K}

Array representation $(d=2): \boldsymbol{x} \in\left(\mathbb{R}^{K}\right)^{n_{1} \times n_{2}}$

- $n_{1} \times n_{2}$: $\quad n_{1}$: image height, and n_{2} : width
- $x_{i, j} \in \mathbb{R}^{K}: \quad$ pixel value(s) at position $s=(i, j): x_{i, j}=x(i, j)$

Image representation - Types of images - Digital imagery

For $d>2$, we speak of multidimensional arrays: $\boldsymbol{x} \in\left(\mathbb{R}^{K}\right)^{n_{1} \times \ldots \times n_{d}}$

- d is called dimension, rank or order,

- In the deep learning community: they are referred to as tensors (not to be confused with tensor fields or tensor imagery).

Image representation - Types of images - Digital imagery

Vector representation: $\boldsymbol{x} \in\left(\mathbb{R}^{K}\right)^{n}$

- $n=n_{1} \times n_{2}: \quad$ image size (number of pixels)
- $x_{k} \in \mathbb{R}^{K}: \quad$ value(s) of the k-th pixel at position $s_{k}: x_{k}=x\left(s_{k}\right)$

Image representation - Types of images - Digital imagery

$\begin{array}{r} 139 \\ 65 \\ 95 \\ \hline \end{array}$	$\begin{array}{r} 162 \\ 121 \\ \hline \end{array}$	$\begin{aligned} & 44 \\ & 83 \end{aligned}$	27	$\begin{gathered} 65 \\ 106 \end{gathered}$	$\begin{array}{r} 202 \\ 160 \\ 184 \\ \hline \end{array}$
		110	0.	159	218
54	42	32	38	15	185
86	80	11	82	143	204
	107	T0	145	200	226
47	26	40	39	160	198
86	11	86	128	187	210
		137	186	220	229
39.	53	79	145	189	199
82	98	120	175	207	207
128	-162	186	208	220	222
60		148	179	194	190
107	149	180	201	207	195
169	192	206	220	219	224
	148	${ }^{170}$	189	187	187
156	171	182	195	192	194

Color 2d image: $\Omega \subseteq \mathbb{Z}^{2} \rightarrow[0,255]^{3}$

- Red, Green, Blue (RGB), $K=3$
- RGB: Usual colorspace for acquisition and display
- There exist other colorspaces for different purposes:

HSV (Hue, Saturation, Value), YUV, YCbCr...

Image representation - Types of images - Digital imagery

Spectral image: $\Omega \subseteq \mathbb{Z}^{2} \rightarrow \mathbb{R}^{K}$

- Each of the K channels is a wavelength band
- For $K \approx 10$: multi-spectral imagery
- For $K \approx 200$: hyper-spectral imagery
- Used in astronomy, surveillance, mineralogy, agriculture, chemistry

Image representation - Types of images - Digital imagery

The Horse in Motion (1878, Eadweard Muybridge)

Gray level video: $\Omega \subseteq \mathbb{Z}^{3} \rightarrow \mathbb{R}$

- 2 dimensions for space
- 1 dimension for time

MRI slices at different depths

3d brain scan: $\Omega \subseteq \mathbb{Z}^{3} \rightarrow \mathbb{C}$

- 3 dimensions for space
- 3d pixels are called voxels ("volume elements")

Image representation - Semantic gap

Semantic gap in CV tasks

Gap between tensor representation and its semantic content.

Image representation - Feature extraction

Old school computer vision

Semantic gap: initial representation of the data is too low-level,
Curse of dimensionality: reducing dimension is necessary for limited datasets, Instead of considering images as a collection of pixel values (tensor), we may consider other features/descriptors:

Designed from prior knowledge

- Image edges,
- Color histogram,
- Local frequencies,
- High-level descriptor (SIFT).

Or learned by unsupervised learning

- Dimensionality reduction (PCA),
- Parameters of density distributions,
- Clustering of image regions,
- Membership to classes (GMM-EM).

Goal: Extract informative features, remove redundancy, reduce dimensionality, facilitating the subsequent learning task.

Image representation - Feature extraction

Example of a classical CV pipeline

Descriptors

Key points

Codebook Generation (Vector Quantization)

Histogram of the words ("Bag" of words)

"Visual" Words (Cluster Centers)
(1) Identify "interesting" key points,
(2) Extract "descriptors" from the interesting points,
(3) Collect the descriptors to "describe" an image.

Image representation - Feature extraction - Key point detector

Key point detector

- Goal: to detect interesting points (without describing them).
- Method: to measure intensity changes in local sliding windows.
- Constraint: to be invariant to illumination, rotation, scale, viewpoint.
- Famous ones: Harris, Canny, DoG, LoG, DoH, ...

Image representation - Feature extraction - Descriptors

Scale-invariant feature transform (SIFT) (Lowe, 1999)

- Goal: to provide a quantitative description at a given image location.
- Based on multi-scale analysis and histograms of local gradients.
- Robust to changes of scales, rotations, viewpoints, illuminations.
- Fast, efficient, very popular in the 2000s.
- Other famous descriptors: HoG, SURF, LBP, ORB, BRIEF, ...

Image representation - Feature extraction - Descriptors

SIFT - Example: Object matching

Image representation - Feature extraction - Bag of words

Bags of words

Image

Bag of words
(Source: Rob Fergus \& Svetlana Lazebnik)
Bag of words: vector of occurrence count of visual descriptors (often obtained after vector quantization).

Before deep learning: most computer vision tasks were relying on feature engineering and bags of words.

Image representation - Deep learning

Modern computer vision - Deep learning

Deep Learning

Deep learning is about learning the feature extraction, instead of designing it yourself.

Deep learning requires a lot of data and hacks to fight the curse of dimensionality (i.e., reduce complexity and overfitting).

Quick overview of ML algorithms

Quick overview of ML algorithms

What about algorithms?

(Source: Michael Walker)

Machine learning - Quick overview of ML algorithms

Quick overview of ML algorithms

In fact, most of statistical tools are machine learning algorithms.
Dimensionality reduction / Manifold learning

- Principal Component Analysis (PCA) / Factor analysis
- Dictionary learning / Matrix factorization
- Kernel-PCA / Self organizing map / Auto-encoders

Linear regression / Variable selection

- Least square regression / Ridge regression / Least absolute deviations
- LASSO / Sparse regression / Matching pursuit / Compressive sensing

Classification and non-linear regression

- K-nearest neighbors
- Naive Bayes / Decision tree / Random forest
- Artificial neural networks / Support vector machines

Quiz: Supervised or unsupervised?

Machine learning - Quick overview of ML algorithms

Quick overview of ML algorithms

Clustering

- K-Means / Mixture models
- Hidden Markov Model
- Non-negative matrix factorization

Recommendation

- Association rules
- Low-rank approximation
- Metric learning

Density estimation

- Maximum likelihood / a posteriori
- Parzen windows / Mean shift
- Expectation-Maximization

Simulation / Sampling / Generation

- Variational auto-encoders
- Deep Belief Network
- Generative adversarial network

Often based on tools from optimization, sampling or operations research:

- Gradient descent / Quasi-Newton / Proximal methods / Duality
- Simulated annealing / Genetic algorithms
- Gibbs sampling / Metropolis-hasting / MCMC

Questions?

Next class: Preliminaries to deep learning

Sources, images courtesy and acknowledgment

L. Condat	A. Karpathy	S. Seitz
R. Fergus	S. Lazebnik	V. Spruyt
P. Gallinari	F.-F. Li	V. Tong Ta
N. Harris	A. Newson	R. Wendell
A. Horodniceanu	S. Parameswaran	Wikipedia
J. Johnson	D. C. Pearson	

