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Who?

Who am I?

• A visiting scholar from University of Bordeaux (France).

• Visiting UCSD since Jan 2017.

• PhD in signal processing (2011).

• Research in image processing / applied maths.

• Affiliated with CNRS (French scientific research institute).

• Email: cdeledalle@ucsd.edu

• www.charles-deledalle.fr
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What?

What is it about?

Machine learning / Deep learning

applied to

Image processing / Computer vision

• A bit of theory (but not exhaustive), a bit of math (but not too much),

• Mainly: concepts, vocabulary, recent successful models and applications.
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What?

What is it about? – Two examples

(Source: Luc et al., 2017) (Karpathy & Fei-Fei, 2015)

(CV:) Automatic extraction of high level information from images/videos,

(ML:) by learning from tons of (annotated) examples.
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What?

What is it about? – A multidisciplinary field
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What? Syllabus

• Introduction to image sciences and machine learning

• Examples of image processing and computer vision tasks,
• Overview of learning problems, approaches and workflow.

• Preliminaries to deep learning

• Perceptron, Artificial Neural Networks (NNs),
• Backpropagation, Support Vector Machines.

• Basics of deep learning

• Representation learning, auto-encoders, algorithmic recipes.

• Applications

• Image classification

• Image generation

• Object detection

• Super resolution

• Image captioning

• Style transfer

⇒ Convolutional NNs, Recurrent NNs, Generative adversarial networks.

• Labs and project using Python & PyTorch.
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Why?

Why machine learning / deep learning?

• In the past 10 years, machine learning and artificial

intelligence have shown tremendous progress.

• The recent success can be attributed to:

• Explosion of data,
• Cheap computing cost – CPUs and GPUs,
• Improvements of machine learning models.

• Much of the current excitement concerns a subfield of

it called “deep learning”.
(Source: Poo Kuan Hoong)
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Why?

Why image processing / computer vision?

• Images become a major communication media.

• Images need to be analyzed automatically

• Reduce the burden of human operators by

teaching a computer to see.

• To produce images with artistic effect.

• Many applications: robotic, medical, video games,

sport, smart cars, . . .
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Why?

Why? More examples. . .

(Source: Stanford 2017’CS231n class) 9



What for?

What for?

• Industry: be able to use or implement latest machine learning techniques

to solve image processing and computer vision tasks.

• Big actors: Amazon, Google, Microsoft, Facebook, . . .

10



What for?

What for?

• Academic: be able to read and understand latest research papers, and

possibly publish new ones.

• Big actors: Stanford, New York U., U. of Montreal, U. of Toronto, . . .

• Main conferences: NIPS, CVPR, ICML, . . .
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How?

How? – Teaching staff

Instructor

Charles Deledalle

Teaching assistants

Sneha Gupta Abhilash Kasarla Anurag Paul Inderjot
Singh Saggu
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How?

How? – Schedule

• 30× 50 min lectures (10 weeks)

• Mon/Wed/Fri 3:00-3:50pm
• Room CENTR 115 Ledden Auditorium (LEDDN)

• 5× 2 hour optional labs every two weeks (refer to Google’s calendar)

• Group 1: Fri 10am-12pm (lastnames from A to Kan)
• Group 2: Tues 2-4pm (lastnames from Kar to Ra)
• Group 3: Thurs 10am-12pm (lastnames from Ro to Z)
• Jacobs Hall, Room 4309

Please, coordinate with your classmates to switch groups.

• Office hours

• Charles Deledalle, Weekly on Tues 10am-12pm, Jacobs Hall 4808.
• TAs, every two other weeks, TBA

• Google calendar: https://tinyurl.com/y2gltvzs
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How?

How? – Assignments / Project / Evaluation

• 4 assignments in Python/Pytorch (individual) . . . . . . . . . . . . . . . . . . . 40%

• Don’t wait for the lectures to start,
• You can start doing them all now.

• 1 project open-ended or to choose among 3 proposed subjects . . . . 30%

• In groups of 3 or 4 (start looking for a group now),
• Details to be announced in a couple of weeks.

• 3 quizzes (∼45 mins each) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30%

• Multiple choice on the topics of all previous lectures,
• Dates are: April 24, May 17, June 10 12,
• No documents allowed.
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How?

How? – What assignments?

Assignment 1 (Backpropagation): Create from scratch a simple machine

learning technique to recognize hand-written digits from 0 to 9.

−→ 96% success

Assignment 2 (CNNs and PyTorch): Develop a deep learning technique and

learn how to use GPUs with PyTorch.

Improve your results to 98%!
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How?

How? – What assignments?

Assignment 3 (Transfer learning): Teach a program how to recognize bird

species when only a small dataset is available.

−→ Mocking bird!
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How?

How? – What assignments?

Assignment 4 (Image Denoising): Teach a program how to remove noise.

−→
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How?

How? – Assignments and Project Deadlines

Calendar Deadline

1 Assignment 0 – Python/Numpy/Matplotlib (Prereq) . . . . . . . . . . . . . . . . optional

2 Assignment 1 – Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . April 17

3 Assignment 2 – CNNs and PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May 1

4 Assignment 3 – Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May 15

5 Assignment 4 – Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May 29

6 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . June 7 9

Refer to the Google calendar: https://tinyurl.com/y2gltvzs
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How?

How? – Prerequisites

• Linear algebra + Differential calculus + Basics of optimization + Statistics/Probabilities

• Python programming (at least Assignment 0)

Optional: cookbook for data scientists

Cookbook for data scientists
Charles Deledalle

Convex optimization

Conjugate gradient

Let A ∈ Cn×n be Hermitian positive definite The
sequence xk defined as, r0 = p0 = b, and

xk+1 = xk + αkpk

rk+1 = rk − αkApk
with αk =

r∗krk
p∗kApk

pk+1 = rk+1 + βkpk with βk =
r∗k+1rk+1

r∗krk

converges towards A−1b in at most n steps.

Lipschitz gradient

f : Rn → R has a L Lipschitz gradient if

||∇f(x)−∇f(y)||2 6 L||x− y||2

If ∇f(x) = Ax, L = ||A||2. If f is twice differentiable
L = supx ||Hf (x)||2, i.e., the highest eigenvalue of
Hf (x) among all possible x.

Convexity

f : Rn → R is convex if for all x, y and λ ∈ (0, 1)

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

f is strictly convex if the inequality is strict. f is
convex and twice differentiable iif Hf (x) is Hermitian
non-negative definite. f is strictly convex and twice
differentiable iif Hf (x) is Hermitian positive definite.
If f is convex, f has only global minima if any. We
write the set of minima as

argmin
x

f(x) = {x \ for all z ∈ Rnf(x) 6 f(z)}

Gradient descent

Let f : Rn → R be differentiable with L Lipschitz
gradient then, for 0 < γ 6 1/L, the sequence

xk+1 = xk − γ∇f(xk)

converges towards a stationary point x? in O(1/k)

∇f(x?) = 0

If f is moreover convex then

x? ∈ argmin
x

f(x).

Newton’s method

Let f : Rn → R be convex and twice continuously
differentiable then, the sequence

xk+1 = xk −Hf (xk)
−1∇f(xk)

converges towards a minimizer of f in O(1/k2).

Subdifferential / subgradient

The subdifferential of a convex† function f is

∂f(x) = {p \ ∀x′, f(x)− f(x′) > 〈p, x− x′〉} .

p ∈ ∂f(x) is called a subgradient of f at x.
A point x? is a global minimizer of f iif

0 ∈ ∂f(x?).

If f is differentiable then ∂f(x) = {∇f(x)}.

Proximal gradient method

Let f = g + h with g convex and differentiable with
Lip. gradient and h convex†. Then, for 0<γ61/L,

xk+1 = proxγh(xk − γ∇g(xk))

converges towards a global minimizer of f where

proxγh(x) = (Id + γ∂h)−1(x)

= argmin
z

1

2
||x− z||2 + γh(z)

is called proximal operator of f .

Convex conjugate and primal dual problem

The convex conjugate of a function f : Rn → R is

f∗(z) = sup
x
〈z, x〉 − f(x)

if f is convex (and lower semi-continuous) f = f??.
Moreover, if f(x) = g(x) + h(Lx), then minimizers
x? of f are solutions of the saddle point problem

(x?, z?) ∈ args min
x

max
z

g(x) + 〈Lx, z〉 − h∗(z)

z? is called dual of x? and satisfies

{
Lx? ∈ ∂h∗(z?)
L∗z ∈ ∂g(x?)

Cookbook for data scientists
Charles Deledalle

Multi-variate differential calculus

Partial and directional derivatives

Let f : Rn → Rm. The (i, j)-th partial derivative of
f , if it exists, is

∂fi
∂xj

(x) = lim
ε→0

fi(x+ εej)− fi(x)

ε

where ei ∈ Rn, (ej)j = 1 and (ej)k = 0 for k 6= j.
The directional derivative in the dir. d ∈ Rn is

Ddf(x) = lim
ε→0

f(x+ εd)− f(x)

ε
∈ Rm

Jacobian and total derivative

Jf =
∂f

∂x
=

(
∂fi
∂xj

)

i,j

(m× n Jacobian matrix)

df(x) = tr

[
∂f

∂x
(x) dx

]
(total derivative)

Gradient, Hessian, divergence, Laplacian

∇f =

(
∂f

∂xi

)

i

(Gradient)

Hf = ∇∇f =

(
∂2f

∂xi∂xj

)

i,j

(Hessian)

div f = ∇tf =
n∑

i=1

∂fi
∂xi

= tr Jf (Divergence)

∆f = div∇f =
n∑

i=1

∂2f

∂x2i
= trHf (Laplacian)

Properties and generalizations

∇f = J tf (Jacobian ↔ gradient)

div = −∇∗ (Integration by part)

df(x) = tr [Jf dx] (Jacob. character. I)

Ddf(x) = Jf (x)× d (II)

f(x+h)=f(x) +Dhf(x) + o(||h||) (1st order exp.)

f(x+h)=f(x) +Dhf(x) + 1
2h
∗Hf (x)h+ o(||h||2)

∂(f ◦ g)

∂x
=

(
∂f

∂x
◦ g
)
∂g

∂x
(Chain rule)

Elementary calculation rules

dA = 0

d[aX + bY ] = adX + bdY (Linearity)

d[XY ] = (dX)Y +X(dY ) (Product rule)

d[X∗] = (dX)∗

d[X−1] = −X−1(dX)X−1

d tr[X] = tr[dX]

dZ

dX
=

dZ

dY

dY

dX
(Leibniz’s chain rule)

Classical identities

d tr[AXB] = tr[BA dX]

d tr[X∗AX] = tr[X∗(A∗ + A) dX]

d tr[X−1A] = tr[−X−1AX−1 dX]

d tr[Xn] = tr[nXn−1 dX]

d tr[eX ] = tr[eX dX]

d|AXB| = tr[|AXB|X−1 dX]

d|X∗AX| = tr[2|X∗AX|X−1 dX]

d|Xn| = tr[n|Xn|X−1 dX]

d log |aX| = tr[X−1 dX]

d log |X∗X| = tr[2X+ dX]

Implicit function theorem

Let f : Rn+m → Rn be continuously differentiable
and f(a, b) = 0 for a ∈ Rn and b ∈ Rm. If ∂f

∂y (a, b)

is invertible, then there exist g such that g(a) = b
and for all x ∈ Rn in the neighborhood of a

f(x, g(x)) = 0

∂g

∂xi
(x) = −

(
∂f

∂y
(x, g(x))

)−1 ∂f
∂xi

(x, g(x))

In a system of equations f(x, y) = 0 with an infinite
number of solutions (x, y), IFT tells us about the
relative variations of x with respect to y, even in
situations where we cannot write down explicit
solutions (i.e., y = g(x)). For instance, without
solving the system, it shows that the solutions (x, y)
of x2 + y2 = 1 satisfies ∂y

∂x = −x/y.
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Probability and Statistics

Kolmogorov’s probability axioms

Let Ω be a sample set and A an event

P[Ω] = 1, P[A] > 0

P

[ ∞⋃

i=1

Ai

]
=
∞∑

i=1

P[Ai] with Ai ∩ Aj = ∅

Basic properties

P[∅] = 0, P[A] ∈ [0, 1], P[Ac] = 1− P[A]

P[A] 6 P[B] if A ⊆ B

P[A ∪B] = P[A] + P[B]− P[A ∩B]

Conditional probability

P[A|B] =
P[A ∩B]

P[B]
subject to P[B] > 0

Bayes’ rule

P[A|B] =
P[B|A]P[A]

P[B]

Independence

Let A and B be two events, X and Y be two rv

A⊥B if P[A ∩B] = P[A]P[B]

X⊥Y if (X 6 x)⊥(Y 6 y)

If X and Y admit a density, then

X⊥Y if fX,Y (x, y) = fX(x)fY (y)

Properties of Independence and uncorrelation

P[A|B] = P[A]⇒ A⊥B
X⊥Y ⇒ (E[XY ∗] = E[X]E[Y ∗]⇔ Cov[X, Y ] = 0)

Independence⇒ uncorrelation

correlation⇒ dependence

uncorrelation ; Independence

dependence ; correlation

Discrete random vectors

Let X be a discrete random vector defined on Nn

E[X]i =
∞∑

k=0

kP[Xi = k]

The function fX : k → P[X = k] is called the
probability mass function (pmf) of X.

Continuous random vectors

Let X be a continuous random vector on Cn.
Assume there exist fX such that, for all A ⊆ Cn,

P[X ∈ A] =

∫

A

fX(x) dx.

Then fX is called the probability density function
(pdf) of X, and

E[X] =

∫

Cn

xfX(x) dx.

Variance / Covariance

Let X and Y be two random vectors. The
covariance matrix between X and Y is defined as

Cov[X, Y ] = E[XY ∗]− E[X]E[Y ]∗.

X and Y are said uncorrelated if Cov[X, Y ] = 0.
The variance-covariance matrix is

Var[X] = Cov[X,X] = E[XX∗]− E[X]E[X]∗.

Basic properties

• The expectation is linear

E[aX + bY + c] = aE[X] + bE[Y ] + c

• If X and Y are independent

Var[aX + bY + c] = a2Var[X] + b2Var[Y ]

• Var[X] is always Hermitian positive definite

Cookbook for data scientists
Charles Deledalle

Fourier analysis

Fourier Transform (FT)

Let x : R→ C such that

∫ +∞

−∞
|x(t)| dt <∞. Its

Fourier transform X : R→ C is defined as

X(u) = F [x](u) =

∫ +∞

−∞
x(t)e−i2πut dt

x(t) = F−1[X](t) =

∫ +∞

−∞
X(u)ei2πut du

where u is referred to as the frequency.

Properties of continuous FT

F [ax+ by] = aF [x] + bF [y] (Linearity)

F [x(t− a)] = e−i2πauF [x] (Shift)

F [x(at)](u) =
1

|a|F [x](u/a) (Modulation)

F [x∗](u) = F [x](−u)∗ (Conjugation)

F [x](0) =

∫ +∞

−∞
x(t) dt (Integration)

∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|X(u)|2 du (Parseval)

F [x(n)](u) = (2πiu)nF [x](u) (Derivation)

F [e−π
2at2](u) =

1√
πa
e−u

2/a (Gaussian)

x is real⇔ X(ε) = X(−ε)∗ (Real ↔ Hermitian)

Properties with convolutions

(x ? y)(t) =

∫ ∞

−∞
x(s)y(t− s) ds (Convolution)

F [x ? y] = F [x]F [y] (Convolution theorem)

Multidimensional Fourier Transform

Fourier transform is separable over the different d
dimensions, hence can be defined recursively as

F [x] = (F1 ◦ F2 ◦ . . . ◦ Fd)[x]

where Fk[x](t1 . . . , εk, . . . , td) =

F [tk 7→ x(t1, . . . , tk, . . . , td)](εk)

and inherits from above properties (same for DFT).

Discrete Fourier Transform (DFT)

Xu = F [x]u =
n−1∑

t=0

xte
−i2πut/n

xt = F−1[X]t =
1

n

n−1∑

u=0

Xke
i2πut/n

Or in a matrix-vector form X = Fx and x = F−1X
where Fu,k = e−i2πuk/n. We have

F ∗ = nF−1 and U = n−1/2F is unitary

Properties of discrete FT

F [ax+ by] = aF [x] + bF [y] (Linearity)

F [xt−a] = e−i2πau/nF [x] (Shift)

F [x∗]u = F [x]∗n−u mod n (Conjugation)

F [x]0 =
n−1∑

t=0

xt (Integration)

||x||22 =
1

n
||X||22 (Parseval)

||x||1 6 ||X||1 6 n||x||1
||X||∞ 6 ||x||1 and ||x||∞ 6 1

n
||X||1

x is real⇔ Xu = X∗n−u mod n (Real ↔ Hermitian)

Discrete circular convolution

(x ∗ y)t =
n∑

s=1

xsy(t−s mod n)+1 or x ∗ y = Φyx

where (Φy)t,s = y(t−s mod n)+1 is a circulant matrix
diagonalizable in the discrete Fourier basis, thus

F [x ∗ y]u = F [x]uF [y]u

Fast Fourier Transform (FFT)

The matrix-by-vector product Fx can be computed
in O(n log n) operations (much faster than the
general matrix-by-vector product that required O(n2)
operations). Same for F−1 and same for
multi-dimensional signals.
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Linear algebra II
Eigenvalues / eigenvectors

If λ ∈ C and e ∈ Cn( 6= 0) satisfy

Ae = λe

λ is called the eigenvalue associated to the
eigenvector e of A. There are at most n distinct
eigenvalues λi and at least n linearly independent
eigenvectors ei (with norm 1). The set λi of n (non
necessarily distinct) eigenvalues is called the
spectrum of A (for a proper definition see
characteristic polynomial, multiplicity, eigenspace).
This set has exactly r = rankA non zero values.

Eigendecomposition (m = n)

If it exists E ∈ Cn×n, and a diagonal matrix
Λ ∈ Cn×n st

A = EΛE−1

A is said diagonalizable and the columns of E are
the n eigenvectors ei of A with corresponding
eigenvalues Λi,i = λi.

Properties of eigendecomposition (m = n)

• If, for all i, Λi,i 6= 0, then A is invertible and

A−1 = EΛ−1E−1 with Λ−1i,i = (Λi,i)
−1

• If A is Hermitian (A = A∗), such decomposition
always exists, the eigenvectors of E can be chosen
orthonormal such that E is unitary (E−1 = E∗), and
λi are real.
• If A is Hermitian (A = A∗) and λi > 0, A is said
positive definite, and for all x 6= 0, xAx∗ > 0.

Singular value decomposition (SVD)

For all matrices A there exists two unitary matrices
U ∈ Cm×m and V ∈ Cn×n, and a real non-negative
diagonal matrix Σ ∈ Rm×n st

A = UΣV ∗ and A =
r∑

k=1

σkukv
∗
k

with r = rankA non zero singular values Σk,k=σk.

Eigendecomposition and SVD

• If A is Hermitian, the two decompositions coincide
with V = U = E and Σ = Λ.
• Let A = UΣV ∗ be the SVD of A, then the
eigendecomposition of AA∗ is E = U and Λ = Σ2.

SVD, image and kernel

Let A = UΣV ∗ be the SVD of A, and assume Σi,i

are ordered in decreasing order then

Im[A] = Span({ui ∈ Rm \ i ∈ (1 . . . r)})
Ker[A] = Span({vi ∈ Rn \ i ∈ (r + 1 . . . n)})

Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse reads

A+ = V Σ+U∗ with Σ+
i,i =

{
(Σi,i)

−1 if Σii > 0,
0 otherwise

and is the unique matrix satisfying A+AA+ = A+

and AA+A = A with A+A and AA+ Hermitian.
If A is invertible, A+ = A−1.

Matrix norms

||A||p = sup
x;||x||p=1

||Ax||p, ||A||2 = max
k

σk, ||A||∗ =
∑

k

σk,

||A||2F =
∑

i,j

|ai,j|2 = trA∗A =
∑

k

σ2k
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Linear algebra I

Notations

x, y, z, . . . : vectors of Cn
a, b, c, . . . : scalars of C
A, B, C : matrices of Cm×n
Id : identity matrix
i = 1, . . . ,m and j = 1, . . . , n

Matrix vector product

(Ax)i =
n∑

k=1

Ai,kxk

(AB)i,j =
n∑

k=1

Ai,kBk,j

Basic properties

A(ax+ by) = aAx+ bAy

AId = IdA = A

Inverse (m = n)

A is said invertible, if it exists B st

AB = BA = Id.

B is unique and called inverse of A.
We write B = A−1.

Adjoint and transpose

(At)j,i = Ai,j, At ∈ Cm×n

(A∗)j,i = (Ai,j)
∗, A∗ ∈ Cm×n

〈Ax, y〉 = 〈x, A∗y〉

Trace and determinant (m = n)

trA=
n∑

i=1

Ai,i=
n∑

i=1

λi

detA =
n∏

i=1

λi

trA = trA∗

trAB = trBA

detA∗ = detA

detA−1 = (detA)−1

detAB = detA detB

A is invertible⇔ detA 6= 0⇔ λi 6= 0,∀i

Scalar products, angles and norms

〈x, y〉 = x · y = x∗y =
n∑

k=1

xkyk (dot product)

||x||2 = 〈x, x〉 =
n∑

k=1

x2k (`2 norm)

|〈x, y〉| 6 ||x||||y|| (Cauchy-Schwartz inequality)

cos(∠(x, y)) =
〈x, y〉
||x||||y|| (angle and cosine)

||x+ y||2 = ||x||2 + ||y||2 + 2〈x, y〉 (law of cosines)

||x||pp =
n∑

k=1

|xk|p, p > 1 (`p norm)

||x+ y||p 6 ||x||p + ||y||p (triangular inequality)

Orthogonality, vector space, basis, dimension

x⊥y ⇔ 〈x, y〉 = 0 (Orthogonality)

x⊥y ⇔ ||x+ y||2 = ||x||2 + ||y||2 (Pythagorean)

Let d vectors xi be st xi⊥xj, ||xi|| = 1. Define

V = Span({xi}) =
{
y \ ∃α ∈ Cd, y =

d∑

i=1

αixi

}

V is a vector space, {xi} is an orthonormal basis of V and

∀y ∈ V, y =
d∑

i=1

〈y, xi〉xi

and d = dimV is called the dimensionality of V . We have

dim(V ∪W ) = dimV + dimW − dim(V ∩W )

Column/Range/Image and Kernel/Null spaces

Im[A] = {y ∈ Rm \ ∃x ∈ Rn such that y = Ax} (image)

Ker[A] = {x ∈ Rn \ Ax = 0} (kernel)

Im[A] and Ker[A] are vector spaces satisfying

Im[A] = Ker[A∗]⊥ and Ker[A] = Im[A∗]⊥

rankA+ dim(Ker[A]) = n (rank-nullity theorem)

where rankA = dim(Im[A]) (matrix rank)

Note also rankA = rankA∗

rankA+ dim(Ker[A∗]) = m

www.charles-deledalle.fr/pages/teaching/
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How?

How? – Piazza
https://piazza.com/ucsd/spring2019/ece285mlip

If you cannot get access to it contact me asap

at cdeledalle@ucsd.edu

(title: “[ECE285-MLIP][Piazza] Access issues”).
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Misc

Misc

Programming environment: Python/PyTorch/Jupyter

• We will use UCSD’s DSMLP cluster with GPU/CUDA. Great but busy.

• We recommend you to install Conda/Python 3/Jupyter on your laptop.

• Please refer to additional documentations on Piazza.

Communication:

• All your emails must have a title starting with “[ECE285-MLIP]”

→ or it will end up in my spam/trash.

Note: “[ECE 285-MLIP]”, “[ece285 MLIP]”, “(ECE285MLIP)” are invalid!

• But avoid emails, use Piazza to communicate instead.

• For questions that may interest everyone else, post on Piazza forums.
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Some references

Reference books

C. Bishop

Pattern recognition and Machine Learning

Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Springer, 2009

http://web.stanford.edu/~hastie/ElemStatLearn/

D. Barber

Bayesian Reasoning and Machine Learning

Cambridge University Press, 2012

http://www.cs.ucl.ac.uk/staff/d.barber/brml/

I. Goodfellow, Y. Bengio and A. Courville.

Deep Learning

MIT Press book, 2017

http://www.deeplearningbook.org/
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Some references

Reference online classes

Fei-Fei Li, Justin Johnson and Serena Yeung, 2017 (Stanford)

CS231n: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu

Giró et al, 2017 (Catalonia)

Deep Learning for Artificial Intelligence

https://telecombcn-dl.github.io/2017-dlai/

Leonardo Araujo dos Santos.

Artificial Intelligence

https://www.gitbook.com/@leonardoaraujosantos
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Image sciences



Imaging sciences – Overview

Image sciences

• Imaging:

Modeling the image formation process

• Computer graphics:

Rendering images/videos from symbolic representation
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Imaging sciences – Overview

Image sciences

• Computer vision:

Extracting information from images/videos

• Image/Video processing:

Producing new images/videos from input images/videos
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Imaging sciences – Image processing and computer vision

Spectrum from image processing to computer vision
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Imaging sciences – Image processing

Image processing

(Source: Iasonas Kokkinos)

• Image processing: define a new image from an existing one

• Video processing: same problems + motion information
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Imaging sciences – Computer vision

Computer vision

Definition (The British Machine Vision Association)

Computer vision (CV) is concerned with the automatic extraction, analysis

and understanding of useful information from a single image or a sequence of

images.

CV is a subfield of Artificial Intelligence.
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Imaging sciences – Computer vision

Computer vision – Artificial Intelligence (AI)

Definition (Collins dictionary)

artificial intelligence, noun: type of computer technology which is concerned

with making machines work in an intelligent way, similar to the way that the

human mind works.

Definition (Oxford dictionary)

artificial intelligence, noun: the theory and development of computer systems

able to perform tasks normally requiring human intelligence, such as visual

perception, speech recognition, decision-making, and translation.

Remark:

CV is a subfield of AI,

CV’s new very best friend is machine learning (ML),

ML is also a subfield of AI,

but not all computer vision algorithms are ML.
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Imaging sciences – Computer vision – Image classification

Computer vision – Image classification

Goal: to assign a given image into one of the predefined classes.
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Imaging sciences – Computer vision – Object detection

Computer vision – Object detection

(Source: Joseph Redmon)

Goal: to detect instances of objects of a certain class (such as human).
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Imaging sciences – Computer vision – Image segmentation

Computer vision – Image segmentation

(Source: Abhijit Kundu)

Goal: to partition an image into multiple segments such that pixels in a same

segment share certain characteristics (color, texture or semantic).
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Imaging sciences – Computer vision – Image captioning

Computer vision – Image captioning

(Karpathy, Fei-Fei, CVPR, 2015)

Goal: to write a sentence that describes what is happening.
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Imaging sciences – Computer vision – Depth estimation

Computer vision – Depth estimation

→ →

(Stereo-vision: from two images acquired with different views.)

Goal: to estimate a depth map from one, two or several frames.
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Imaging sciences – IP ∩ CV – Image colorization

Image colorization

(Source: Richard Zhang, Phillip Isola and Alexei A. Efros, 2016)

Goal: to add color to grayscale photographs.
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Imaging sciences – IP ∩ CV – Image generation

Image generation

Generated images of bedrooms (Source: Alec Radford, Luke Metz, Soumith Chintala, 2015)

Goal: to automatically create realistic pictures of a given category.
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Imaging sciences – IP ∩ CV – Image generation

Image generation – DeepDream

(Source: Google Deep Dream, Mordvintsev et al., 2016)

Goal: to generate arbitrary photo-realistic artistic images,

Goal:

and understand/visualizing deep networks.
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Imaging sciences – IP ∩ CV – Image stylization

Image stylization

(Source: Neural Doodle, Champandard, 2016)

Goal: to create stylized images from rough sketches.
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Imaging sciences – IP ∩ CV – Style transfer

Style transfer

(Source: Gatys, Ecker and Bethge, 2015)

Goal: transfer the style of an image into another one.
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Machine learning



Machine learning

What is learning?

Herbert Simon (Psychologist, 1916–2001):

Learning is any process by which

a system improves performance from

experience.
Pavlov’s dog (Mark Stivers, 2003)

Tom Mitchell (Computer Scientist):

A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E.
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Machine learning

Machine learning (ML)

Definition

machine learning, noun: type of Artificial Intelligence that provides computers

with the ability to learn without being explicitly programmed.

(Source: Pedro Domingos)
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Machine learning

Machine learning (ML)

Provides various techniques that can learn from and make predictions on data.

Most of them follow the same general structure:

(Source: Lucas Masuch)
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Machine learning – Learning from examples

Learning from examples

3 main ingredients

1 Training set / examples:

{x1,x2, . . . ,xN}

2 Machine or model:

x→ f(x; θ)︸ ︷︷ ︸
function / algorithm

→ y︸︷︷︸
prediction

θ: parameters of the model

3 Loss, cost, objective function / energy:

argmin
θ

E(θ;x1,x2, . . . ,xN )
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Machine learning – Learning from examples

Learning from examples

Tools:

{
Data ↔ Statistics

Loss ↔ Optimization

Goal: to extract information from the training set

• relevant for the given task,

• relevant for other data of the same kind.

Can we learn everything? i.e., to be relevant for all problems?
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Machine learning – Terminology

Terminology

Sample (Observation or Data): item to process (e.g., classify). Example: an

individual, a document, a picture, a sound, a video. . .

Features (Input): set of distinct traits that can be used to describe each

sample in a quantitative manner. Represented as a multi-dimensional vector

usually denoted by x. Example: size, weight, citizenship, . . .

Training set: Set of data used to discover potentially predictive relationships.

Validation set: Set used to adjust the model hyperparameters.

Testing set: Set used to assess the performance of a model.

Label (Output): The class or outcome assigned to a sample. The actual

prediction is often denoted by y and the desired/targeted class by d or t.

Example: man/woman, wealth, education level, . . .
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Machine learning – Learning approaches

Learning approaches

Unsupervised learning: Discovering patterns in unlabeled

data. Example: cluster similar documents based on the

text content.

Supervised learning: Learning with a labeled training set.

Example: email spam detector with training set of already

labeled emails.

Semisupervised learning: Learning with a small amount of

labeled data and a large amount of unlabeled data.

Example: web content and protein sequence classifications.

Reinforcement learning: Learning based on feedback or

reward. Example: learn to play chess by winning or losing.

(Source: Jason Brownlee and Lucas Masuch)
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Machine learning – Workflow

Machine learning workflow

(Source: Michael Walker)
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Machine learning – Problem types

Problem types

(Source: Lucas Masuch)

48



Machine learning – Unsupervised learning

Unsupervised learning

Unsupervised learning

• Training set: X = (x1,x2, . . . ,xN ) where xi ∈ Rd.

• Goal: to find interesting structures in the data X.

Examples:


• clustering,

• quantile estimation,

• outlier detection,

• dimensionality reduction.

Statistical point of view

To estimate a density p which is likely to have generated X, i.e., such that

x1,x2, . . . ,xN
i.i.d∼ p

(i.i.d = identically and independently distributed).
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Machine learning – Clustering

Clustering

Clustering: group observations into “meaningful” groups.

(Source: Kasun Ranga Wijeweera)

• Task of grouping a set of objects in such a way that objects in the same

group (called a cluster) are more similar to each other.

• Popular ones are K-means clustering and Hierarchical clustering.
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Machine learning – Clustering – K-means

Clustering – K-means
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Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.
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Machine learning – Clustering – K-means

Clustering – K-means

• Optimal in terms of inter- and extra-class variability (loss),

• In practice, it requires much more iterations,

• Solutions strongly depend on the initialization,

→ Good initializations can be obtained by K-means++ strategy.

• The number of class K is often unknown:

• usually found by trial and error,
• or by cross-validation, AIC, BIC, . . .
• K too small/large ⇒ under/overfitting. (we will come back to this)

• The data dimension d is often much larger than 2,

→ subject to the curse of dimensionality. (we will also come back to this)

• Vector quantization (VQ): the centroid substitutes all vectors of its class.
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Machine learning – Supervised learning

Supervised learning

Supervised learning

• A training labeled set: (x1, d1), (x2, d2), . . . , (xN , dN ).

• Goal: to learn a relevant mapping f st

yi = f(xi; θ) ≈ di

Examples:


• classification (d is a categorical variable a),

• regression (d is a real variable),

a. can take one of a limited, and usually fixed, number of possible values.

Statistical point of view

• Discriminative models: to estimate the posterior distribution p(d|x).

• Generative models: to estimate the likelihood p(x|d),

or the joint distribution p(x, d).
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Machine learning – Supervised learning

Supervised learning – Bayesian inference

Bayes rule

In the case of a categorical variable d and a real vector x

P(d|x) =
p(x, d)

p(x)
=
p(x|d)P(d)

p(x)
=

p(x|d)P(d)∑
d p(x|d)P(d)

• P(d|x): probability that x is of class d,

• p(x|d): distribution of x within class d,

• P(d): frequency of class d.

Example of final classifier: f(x; θ) = argmax
d

P(d|x)

Generative models carry more information:

Learning p(x|d) and P(d) allows to deduce P(d|x).

But they often require many more parameters and more training data.

Discriminative models are usually easier to learn and thus more accurate.
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Machine learning – Classification

Classification

Classification: predict class d from observation x.

(Source: Philip Martin)

• Classify a document into a predefined category.

• Documents can be text, images, videos. . .

• Popular ones are Support Vector Machines and Artificial Neural Networks.
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Machine learning – Regression

Regression

Regression (prediction): predict value(s) from observation.

• Statistical process for estimating the relationships among variables.

• Regression means to predict the output value using training data.

→ related to interpolation and extrapolation.

• Popular ones are linear least square and Artificial Neural Networks.
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Machine learning – Classification vs Regression

Classification vs Regression

Classification

• Assign to a class

• Ex: a type of tumor is harmful or not

• Output is discrete/categorical

v.s

Regression

• Predict one or several output values

• Ex: what will be the house price?

• Output is a real number/continuous

(Source: Ali Reza Kohani)

Quiz, which one is which?

denoising, identification, verification, approximation.
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Machine learning – Polynomial curve fitting

Polynomial curve fitting

• Consider N individuals answering a survey asking for

• their wealth: xi
• level of happiness: di

• We want to learn how to predict di (the desired output) from xi as

di ≈ yi = f(xi; θ)

where f is the predictor and yi denotes the predicted output.

Quiz

Supervised or unsupervised?

Classification or regression?
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Machine learning – Polynomial curve fitting

Polynomial curve fitting

• We assume that the relation is M -order polynomial

yi = f(xi;w) = w0 + w1xi + w2x
2
i + . . .+ wMx

M
i =

M∑
j=0

wjx
j
i

where w = (w0, w1, . . . , wM )T are the polynomial coefficients.

• The (multi-dimensional) parameter θ is the vector w.
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Machine learning – Polynomial curve fitting

Polynomial curve fitting

• Let y = (y1, y2, . . . , yN )T and X =


1 x1 x21 . . . xM1
1 x2 x22 . . . xM2
...

...

1 xN x2N . . . xMN

, then

y = Xw with w = (w0, w1, . . . , wM )T

• Polynomial curve fitting is linear regression.

linear regression = linear relation between y and θ, even though f is non-linear.

• Standard procedures involve minimizing the sum of square errors (SSE)

E(w) =

N∑
i=1

(yi − di)2 = ||y − d||22 = ||Xw − d||22
also called sum of square differences (SSD), or

mean square error (MSE, when divided by N).

Linear regression + SSE −→ Linear least square regression
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Machine learning – Polynomial curve fitting

Polynomial curve fitting

Recall: E(w) = ||Xw − d||22 = (Xw − d)T (Xw − d)

Note that: ∇wTAw = (A+AT )w and ∇bTw = b

• The solution is obtained by canceling the gradient

∇E(w) = 0 ⇒ XT (Xw − d) = 0︸ ︷︷ ︸
normal equation

• As soon as we have N >M + 1 distinct xi, the solution is unique

w∗ =
(
XTX

)−1

XTd

• Otherwise, there is an infinite number of solutions.
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Machine learning – Polynomial curve fitting

Polynomial curve fitting

• Training data: answers to the survey

• Model: polynomial function of degree M

• Loss: sum of square errors

• Machine learning algorithm: linear least square regression

The methodology for Deep Learning will be the exact same one.

The only difference is that the relation between

y and θ will be (extremely) non-linear.
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Machine learning – Polynomial curve fitting

Polynomial curve fitting

As M increases, unwanted oscillations appear (Runge’s phenomenon),

even though N >M + 1.

How to choose the degree M?
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Machine learning – Overfitting and Generalization

Difficulty of learning

• Fit: to explain the training samples,

→ requires some flexibility of the model.

• Generalization: to be accurate for samples outside the training dataset.

→ requires some rigidity of the model.
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Machine learning – Overfitting and Generalization

Difficulty of learning

Complexity: number of parameters, degrees of freedom, capacity, richness,

flexibility, see also Vapnik–Chervonenkis (VC) dimension.
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Machine learning – Overfitting and Generalization

Difficulty of learning

Tradeoff: Underfitting/Overfitting Bias/Variance Data fit/Complexity

Variance: how much the

predictions of my model on unseen

data fluctuate if trained over

different but similar training sets.

Bias: how off is the average of

these predictions.

MSE = Bias2 + Variance

The tradeoff depends on several factors

• Intrinsic complexity of the phenomenon to be predicted,

• Size of the training set: the larger the better,

• Size of the feature vectors: larger or smaller?
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Machine learning – Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

No perfect separation No perfect separation Linearly separable case

Looks like the more features we have, the better it is. But. . .

(Source: Vincent Spruyt)
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Machine learning – Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

Yes, but overfitting No, but better on unseen data

Why is that?

(Source: Vincent Spruyt)
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Machine learning – Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

Yes, but overfitting No, but better on unseen data

Why is that?

(Source: Vincent Spruyt)
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Machine learning – Overfitting and Generalization

Curse of dimensionality

The amount of training data needed to cover 20% of the feature range grows

exponentially with the number of dimensions.

⇒ Reducing the feature dimension is often favorable.

“Many algorithms that work fine in low dimensions become intractable when the input

is high-dimensional.” Bellman, 1961.

(Source: Vincent Spruyt)
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Machine learning – Feature engineering

Feature engineering

• Feature selection: choice of distinct traits used to describe each sample

in a quantitative manner.

Ex: fruit → acidity, bitterness, size, weight, number of seeds, . . .

Correlations between features: weight vs size, seeds vs bitterness, . . . .

⇒ Information is redundant and can be summarized with less but

more relevant features.

• Feature extraction: extract/generate new features from the initial set of

features intended to be informative, non-redundant and facilitating the

subsequent task.

⇒ Common procedure: Principal Component Analysis (PCA)
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Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

In most applications examples are not spread uniformly throughout the example

space, but are concentrated on or near a low-dimensional subspace/manifold.

No correlations

⇒ Both features are informative,

⇒ No dimensionality reductions.

Strong correlation

⇒ Features “influence” each other,

⇒ Dimensionality reductions possible.
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Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes (eigenvectors of the covariance matrix),
• Keep the ones with largest variations (largest eigenvalues),
• Project the data on this low-dimensional space,
• Change system of coordinate to reduce data dimension.
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Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes of variations of x1, . . . ,xN ∈ Rd:

µ =
1

N

N∑
i=1

xi︸ ︷︷ ︸
mean (vector)

, Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)T︸ ︷︷ ︸
covariance (matrix)

, Σ = V TΛV︸ ︷︷ ︸
eigen decomposition

(V V T=V TV =Idd)

V = (v1, . . . ,vd︸ ︷︷ ︸
eigenvectors

), Λ = diag(λ1, . . . , λd︸ ︷︷ ︸
eigenvalues

) and λ1 > · · · > λd

• Keep the K < d first dimensions: VK = (v1, . . . ,vK) ∈ Rd×K

• Project the data on this low-dimensional space:

x̃i = µ+

K∑
k=1

〈vk, xi − µ〉vk = µ+ VKV
T
K (xi − µ) ∈ Rd

• Change system of coordinate to reduce data dimension:

hi = V T
K (x̃i − µ) = V T

K (xi − µ) ∈ RK
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Machine learning – Clustering – K-means

Principal Component Analysis (PCA)

• Typically: from hundreds to a few (one to ten) dimensions,

• Number K of dimensions often chosen to cover 95% of the variability:

K = min

{
K \

∑K
k=1 λk∑d
k=1 λk

> .95

}

• PCA is done on training data, not on testing data!:
• First, learn the low-dimensional subspace on training data only,
• Then, project both the training and testing samples on this subspace,
• It’s an affine transform (translation, rotation, projection, rescaling):

h = Wx+ b (with W = V T
K and b = −V T

K µ)

Deep learning does something similar but in an (extremely) non-linear way.
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Machine learning – Feature extraction

What features for an image?

(Source: Michael Walker)
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Image representation

La Trahison des images, René Magritte, 1928
(Los Angeles County Museum of Art)



Image representation

How do we represent images?

A two dimensional function

• Think of an image as a two dimensional function x.

• x(s1, s2) gives the intensity at location (s1, s2).

(Source: Steven Seitz)

Convention: larger values correspond to brighter content.

A color image is defined similarly as a 3 component vector-valued function:

x(s1, s2) =

r(s1, s2)

g(s1, s2)

b(s1, s2)

 .

75



Image representation

How do we represent images?

A two dimensional function

• Think of an image as a two dimensional function x.

• x(s1, s2) gives the intensity at location (s1, s2).

(Source: Steven Seitz)

Convention: larger values correspond to brighter content.

A color image is defined similarly as a 3 component vector-valued function:

x(s1, s2) =

r(s1, s2)

g(s1, s2)

b(s1, s2)

 .

75



Image representation – Types of images – Digital imagery

Digital imagery

Raster images

• Sampling: reduce the 2d continuous space to a discrete grid Ω ⊆ Z2

• Gray level image: Ω→ R (discrete position to gray level)

• Color image: Ω→ R3 (discrete position to RGB)
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Image representation – Types of images – Digital imagery

Bitmap image

• Quantization: map each value to a discrete set [0, L− 1] of L values

(e.g., round to nearest integer)

• Often L = 28 = 256 (8bit images ≡ unsigned char)

• Gray level image: Ω→ [0, 255] (255 = 28 − 1)
• Color image: Ω→ [0, 255]3

• Optional: assign instead an index to each pixel pointing to a color palette

(format: .png, .bmp)
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Image representation – Types of images – Digital imagery

Digital imagery

• Digital images: sampling + quantization:

−→ 8bit images can be seen as a matrix of integer values

We will refer to an element s ∈ Ω as a pixel location, x(s) as a pixel value,

and the pair (s, x(s)) as a pixel (“picture element”).
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Image representation – Types of images – Digital imagery

Functional representation: x : Ω ⊆ Zd → RK

• d: dimension (d = 2 for pictures, d = 3 for videos, . . . )

• K: number of channels (K = 1 monochrome, 3 colors, . . . )

• s = (i, j): pixel position in Ω

• x(s) = x(i, j) : pixel value(s) in RK

Array representation (d = 2): x ∈ (RK)n1×n2

• n1 × n2: n1: image height, and n2: width

• xi,j ∈ RK : pixel value(s) at position s = (i, j): xi,j = x(i, j)

79



Image representation – Types of images – Digital imagery

Functional representation: x : Ω ⊆ Zd → RK

• d: dimension (d = 2 for pictures, d = 3 for videos, . . . )

• K: number of channels (K = 1 monochrome, 3 colors, . . . )

• s = (i, j): pixel position in Ω

• x(s) = x(i, j) : pixel value(s) in RK

Array representation (d = 2): x ∈ (RK)n1×n2

• n1 × n2: n1: image height, and n2: width

• xi,j ∈ RK : pixel value(s) at position s = (i, j): xi,j = x(i, j)

79



Image representation – Types of images – Digital imagery

For d > 2, we speak of multidimensional arrays: x ∈ (RK)n1×...×nd

• d is called dimension, rank or order,

• In the deep learning community: they are referred to as tensors

(not to be confused with tensor fields or tensor imagery).
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Image representation – Types of images – Digital imagery

Vector representation: x ∈ (RK)n

• n = n1 × n2: image size (number of pixels)

• xk ∈ RK : value(s) of the k-th pixel at position sk: xk = x(sk)
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Image representation – Types of images – Digital imagery

Color 2d image: Ω ⊆ Z2 → [0, 255]3

• Red, Green, Blue (RGB), K = 3

• RGB: Usual colorspace for acquisition and display

• There exist other colorspaces for different purposes:

HSV (Hue, Saturation, Value), YUV, YCbCr. . .
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Image representation – Types of images – Digital imagery

Spectral image: Ω ⊆ Z2 → RK

• Each of the K channels is a wavelength band

• For K ≈ 10: multi-spectral imagery

• For K ≈ 200: hyper-spectral imagery

• Used in astronomy, surveillance, mineralogy, agriculture, chemistry
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Image representation – Types of images – Digital imagery

The Horse in Motion (1878, Eadweard Muybridge)

Gray level video: Ω ⊆ Z3 → R

• 2 dimensions for space

• 1 dimension for time
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Image representation – Types of images – Digital imagery

MRI slices at different depths

3d brain scan: Ω ⊆ Z3 → C

• 3 dimensions for space

• 3d pixels are called voxels (“volume elements”)
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Image representation – Semantic gap

Semantic gap in CV tasks

Gap between tensor representation and its semantic content.
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Image representation – Feature extraction

Old school computer vision

Semantic gap: initial representation of the data is too low-level,

Curse of dimensionality: reducing dimension is necessary for limited datasets,

Instead of considering images as a collection of pixel values (tensor),

we may consider other features/descriptors:

Designed from prior knowledge

• Image edges,

• Color histogram,

• Local frequencies,

• High-level descriptor (SIFT).

Or learned by unsupervised learning

• Dimensionality reduction (PCA),

• Parameters of density distributions,

• Clustering of image regions,

• Membership to classes (GMM-EM).

Goal: Extract informative features, remove redundancy, reduce

dimensionality, facilitating the subsequent learning task.
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Image representation – Feature extraction

Example of a classical CV pipeline

1 Identify “interesting” key points,

2 Extract “descriptors” from the interesting points,

3 Collect the descriptors to “describe” an image.
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Image representation – Feature extraction – Key point detector

Key point detector

• Goal: to detect interesting points (without describing them).
• Method: to measure intensity changes in local sliding windows.
• Constraint: to be invariant to illumination, rotation, scale, viewpoint.

• Famous ones: Harris, Canny, DoG, LoG, DoH, . . .
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Image representation – Feature extraction – Descriptors

Scale-invariant feature transform (SIFT) (Lowe, 1999)
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• Goal: to provide a quantitative description at a given image location.
• Based on multi-scale analysis and histograms of local gradients.
• Robust to changes of scales, rotations, viewpoints, illuminations.
• Fast, efficient, very popular in the 2000s.

• Other famous descriptors: HoG, SURF, LBP, ORB, BRIEF, . . .
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Image representation – Feature extraction – Descriptors

SIFT – Example: Object matching
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Image representation – Feature extraction – Bag of words

Bags of words

(Source: Rob Fergus & Svetlana Lazebnik)

Bag of words: vector of occurrence count of visual descriptors

(often obtained after vector quantization).

Before deep learning: most computer vision tasks were relying

on feature engineering and bags of words.
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Image representation – Deep learning

Modern computer vision – Deep learning

Deep learning is about learning the feature extraction,

instead of designing it yourself.

Deep learning requires a lot of data and hacks to fight the curse of

dimensionality (i.e., reduce complexity and overfitting).
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Quick overview of ML algorithms



Quick overview of ML algorithms

What about algorithms?

(Source: Michael Walker)
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Machine learning – Quick overview of ML algorithms

Quick overview of ML algorithms

In fact, most of statistical tools are machine learning algorithms.

Dimensionality reduction / Manifold learning

• Principal Component Analysis (PCA) / Factor analysis

• Dictionary learning / Matrix factorization

• Kernel-PCA / Self organizing map / Auto-encoders

Linear regression / Variable selection

• Least square regression / Ridge regression / Least absolute deviations

• LASSO / Sparse regression / Matching pursuit / Compressive sensing

Classification and non-linear regression

• K-nearest neighbors

• Naive Bayes / Decision tree / Random forest

• Artificial neural networks / Support vector machines

Quiz: Supervised or unsupervised?
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Machine learning – Quick overview of ML algorithms

Quick overview of ML algorithms

Clustering
• K-Means / Mixture models

• Hidden Markov Model

• Non-negative matrix factorization

Recommendation
• Association rules

• Low-rank approximation

• Metric learning

Density estimation
• Maximum likelihood / a posteriori

• Parzen windows / Mean shift

• Expectation-Maximization

Simulation / Sampling / Generation
• Variational auto-encoders

• Deep Belief Network

• Generative adversarial network

Often based on tools from optimization, sampling or operations research:

• Gradient descent / Quasi-Newton / Proximal methods / Duality

• Simulated annealing / Genetic algorithms

• Gibbs sampling / Metropolis-hasting / MCMC
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Questions?

Next class: Preliminaries to deep learning

Sources, images courtesy and acknowledgment

• L. Condat

• R. Fergus

• P. Gallinari

• N. Harris

• A. Horodniceanu

• J. Johnson

• A. Karpathy

• S. Lazebnik

• F.-F. Li

• A. Newson

• S. Parameswaran

• D. C. Pearson

• S. Seitz

• V. Spruyt

• V. Tong Ta

• R. Wendell

• Wikipedia
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