
ECE 285

Machine Learning for Image Processing

Chapter I – Introduction

Charles Deledalle

July 9, 2019

(Source: Jeff Walsh)

1

Who?

Who am I?

• A visiting scholar from University of Bordeaux (France).

• Visiting UCSD since Jan 2017.

• PhD in signal processing (2011).

• Research in image processing / applied maths.

• Affiliated with CNRS (French scientific research institute).

• Email: cdeledalle@ucsd.edu

• www.charles-deledalle.fr

2

cdeledalle@ucsd.edu
www.charles-deledalle.fr

What?

What is it about?

Machine learning / Deep learning

applied to

Image processing / Computer vision

• A bit of theory (but not exhaustive), a bit of math (but not too much),

• Mainly: concepts, vocabulary, recent successful models and applications.

3

What?

What is it about? – Two examples

(Source: Luc et al., 2017) (Karpathy & Fei-Fei, 2015)

(CV:) Automatic extraction of high level information from images/videos,

(ML:) by learning from tons of (annotated) examples.

4

What?

What is it about? – A multidisciplinary field

5

What? Syllabus

• Introduction to image sciences and machine learning

• Examples of image processing and computer vision tasks,
• Overview of learning problems, approaches and workflow.

• Preliminaries to deep learning

• Perceptron, Artificial Neural Networks (NNs),
• Backpropagation, Support Vector Machines.

• Basics of deep learning

• Representation learning, auto-encoders, algorithmic recipes.

• Applications

• Image classification

• Image generation

• Object detection

• Super resolution

• Image captioning

• Style transfer

⇒ Convolutional NNs, Recurrent NNs, Generative adversarial networks.

• Labs and project using Python & PyTorch.

6

Why?

Why machine learning / deep learning?

• In the past 10 years, machine learning and artificial

intelligence have shown tremendous progress.

• The recent success can be attributed to:

• Explosion of data,
• Cheap computing cost – CPUs and GPUs,
• Improvements of machine learning models.

• Much of the current excitement concerns a subfield of

it called “deep learning”.
(Source: Poo Kuan Hoong)

G
o

o
g

le
tr

en
d

s

7

Why?

Why image processing / computer vision?

• Images become a major communication media.

• Images need to be analyzed automatically

• Reduce the burden of human operators by

teaching a computer to see.

• To produce images with artistic effect.

• Many applications: robotic, medical, video games,

sport, smart cars, . . .

8

Why?

Why? More examples. . .

(Source: Stanford 2017’CS231n class) 9

What for?

What for?

• Industry: be able to use or implement latest machine learning techniques

to solve image processing and computer vision tasks.

• Big actors: Amazon, Google, Microsoft, Facebook, . . .

10

What for?

What for?

• Academic: be able to read and understand latest research papers, and

possibly publish new ones.

• Big actors: Stanford, New York U., U. of Montreal, U. of Toronto, . . .

• Main conferences: NIPS, CVPR, ICML, . . .

11

How?

How? – Teaching staff

Instructor

Charles Deledalle

Teaching assistants

Sneha Gupta Abhilash Kasarla Anurag Paul Inderjot
Singh Saggu

12

How?

How? – Schedule

• 30× 50 min lectures (10 weeks)

• Mon/Wed/Fri 3:00-3:50pm
• Room CENTR 115 Ledden Auditorium (LEDDN)

• 5× 2 hour optional labs every two weeks (refer to Google’s calendar)

• Group 1: Fri 10am-12pm (lastnames from A to Kan)
• Group 2: Tues 2-4pm (lastnames from Kar to Ra)
• Group 3: Thurs 10am-12pm (lastnames from Ro to Z)
• Jacobs Hall, Room 4309

Please, coordinate with your classmates to switch groups.

• Office hours

• Charles Deledalle, Weekly on Tues 10am-12pm, Jacobs Hall 4808.
• TAs, every two other weeks, TBA

• Google calendar: https://tinyurl.com/y2gltvzs

13

https://tinyurl.com/y2gltvzs

How?

How? – Assignments / Project / Evaluation

• 4 assignments in Python/Pytorch (individual) 40%

• Don’t wait for the lectures to start,
• You can start doing them all now.

• 1 project open-ended or to choose among 3 proposed subjects 30%

• In groups of 3 or 4 (start looking for a group now),
• Details to be announced in a couple of weeks.

• 3 quizzes (∼45 mins each) . 30%

• Multiple choice on the topics of all previous lectures,
• Dates are: April 24, May 17, June 10 12,
• No documents allowed.

14

How?

How? – What assignments?

Assignment 1 (Backpropagation): Create from scratch a simple machine

learning technique to recognize hand-written digits from 0 to 9.

−→ 96% success

Assignment 2 (CNNs and PyTorch): Develop a deep learning technique and

learn how to use GPUs with PyTorch.

Improve your results to 98%!

15

How?

How? – What assignments?

Assignment 3 (Transfer learning): Teach a program how to recognize bird

species when only a small dataset is available.

−→ Mocking bird!

16

How?

How? – What assignments?

Assignment 4 (Image Denoising): Teach a program how to remove noise.

−→

17

How?

How? – Assignments and Project Deadlines

Calendar Deadline

1 Assignment 0 – Python/Numpy/Matplotlib (Prereq) optional

2 Assignment 1 – Backpropagation . April 17

3 Assignment 2 – CNNs and PyTorch . May 1

4 Assignment 3 – Transfer Learning . May 15

5 Assignment 4 – Image Denoising . May 29

6 Project . June 7 9

Refer to the Google calendar: https://tinyurl.com/y2gltvzs

18

https://tinyurl.com/y2gltvzs

How?

How? – Prerequisites

• Linear algebra + Differential calculus + Basics of optimization + Statistics/Probabilities

• Python programming (at least Assignment 0)

Optional: cookbook for data scientists

Cookbook for data scientists
Charles Deledalle

Convex optimization

Conjugate gradient

Let A ∈ Cn×n be Hermitian positive definite The
sequence xk defined as, r0 = p0 = b, and

xk+1 = xk + αkpk

rk+1 = rk − αkApk
with αk =

r∗krk
p∗kApk

pk+1 = rk+1 + βkpk with βk =
r∗k+1rk+1

r∗krk

converges towards A−1b in at most n steps.

Lipschitz gradient

f : Rn → R has a L Lipschitz gradient if

||∇f(x)−∇f(y)||2 6 L||x− y||2

If ∇f(x) = Ax, L = ||A||2. If f is twice differentiable
L = supx ||Hf (x)||2, i.e., the highest eigenvalue of
Hf (x) among all possible x.

Convexity

f : Rn → R is convex if for all x, y and λ ∈ (0, 1)

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

f is strictly convex if the inequality is strict. f is
convex and twice differentiable iif Hf (x) is Hermitian
non-negative definite. f is strictly convex and twice
differentiable iif Hf (x) is Hermitian positive definite.
If f is convex, f has only global minima if any. We
write the set of minima as

argmin
x

f(x) = {x \ for all z ∈ Rnf(x) 6 f(z)}

Gradient descent

Let f : Rn → R be differentiable with L Lipschitz
gradient then, for 0 < γ 6 1/L, the sequence

xk+1 = xk − γ∇f(xk)

converges towards a stationary point x? in O(1/k)

∇f(x?) = 0

If f is moreover convex then

x? ∈ argmin
x

f(x).

Newton’s method

Let f : Rn → R be convex and twice continuously
differentiable then, the sequence

xk+1 = xk −Hf (xk)
−1∇f(xk)

converges towards a minimizer of f in O(1/k2).

Subdifferential / subgradient

The subdifferential of a convex† function f is

∂f(x) = {p \ ∀x′, f(x)− f(x′) > 〈p, x− x′〉} .

p ∈ ∂f(x) is called a subgradient of f at x.
A point x? is a global minimizer of f iif

0 ∈ ∂f(x?).

If f is differentiable then ∂f(x) = {∇f(x)}.

Proximal gradient method

Let f = g + h with g convex and differentiable with
Lip. gradient and h convex†. Then, for 0<γ61/L,

xk+1 = proxγh(xk − γ∇g(xk))

converges towards a global minimizer of f where

proxγh(x) = (Id + γ∂h)−1(x)

= argmin
z

1

2
||x− z||2 + γh(z)

is called proximal operator of f .

Convex conjugate and primal dual problem

The convex conjugate of a function f : Rn → R is

f∗(z) = sup
x
〈z, x〉 − f(x)

if f is convex (and lower semi-continuous) f = f??.
Moreover, if f(x) = g(x) + h(Lx), then minimizers
x? of f are solutions of the saddle point problem

(x?, z?) ∈ args min
x

max
z

g(x) + 〈Lx, z〉 − h∗(z)

z? is called dual of x? and satisfies

{
Lx? ∈ ∂h∗(z?)
L∗z ∈ ∂g(x?)

Cookbook for data scientists
Charles Deledalle

Multi-variate differential calculus

Partial and directional derivatives

Let f : Rn → Rm. The (i, j)-th partial derivative of
f , if it exists, is

∂fi
∂xj

(x) = lim
ε→0

fi(x+ εej)− fi(x)

ε

where ei ∈ Rn, (ej)j = 1 and (ej)k = 0 for k 6= j.
The directional derivative in the dir. d ∈ Rn is

Ddf(x) = lim
ε→0

f(x+ εd)− f(x)

ε
∈ Rm

Jacobian and total derivative

Jf =
∂f

∂x
=

(
∂fi
∂xj

)

i,j

(m× n Jacobian matrix)

df(x) = tr

[
∂f

∂x
(x) dx

]
(total derivative)

Gradient, Hessian, divergence, Laplacian

∇f =

(
∂f

∂xi

)

i

(Gradient)

Hf = ∇∇f =

(
∂2f

∂xi∂xj

)

i,j

(Hessian)

div f = ∇tf =
n∑

i=1

∂fi
∂xi

= tr Jf (Divergence)

∆f = div∇f =
n∑

i=1

∂2f

∂x2i
= trHf (Laplacian)

Properties and generalizations

∇f = J tf (Jacobian ↔ gradient)

div = −∇∗ (Integration by part)

df(x) = tr [Jf dx] (Jacob. character. I)

Ddf(x) = Jf (x)× d (II)

f(x+h)=f(x) +Dhf(x) + o(||h||) (1st order exp.)

f(x+h)=f(x) +Dhf(x) + 1
2h
∗Hf (x)h+ o(||h||2)

∂(f ◦ g)

∂x
=

(
∂f

∂x
◦ g
)
∂g

∂x
(Chain rule)

Elementary calculation rules

dA = 0

d[aX + bY] = adX + bdY (Linearity)

d[XY] = (dX)Y +X(dY) (Product rule)

d[X∗] = (dX)∗

d[X−1] = −X−1(dX)X−1

d tr[X] = tr[dX]

dZ

dX
=

dZ

dY

dY

dX
(Leibniz’s chain rule)

Classical identities

d tr[AXB] = tr[BA dX]

d tr[X∗AX] = tr[X∗(A∗ + A) dX]

d tr[X−1A] = tr[−X−1AX−1 dX]

d tr[Xn] = tr[nXn−1 dX]

d tr[eX] = tr[eX dX]

d|AXB| = tr[|AXB|X−1 dX]

d|X∗AX| = tr[2|X∗AX|X−1 dX]

d|Xn| = tr[n|Xn|X−1 dX]

d log |aX| = tr[X−1 dX]

d log |X∗X| = tr[2X+ dX]

Implicit function theorem

Let f : Rn+m → Rn be continuously differentiable
and f(a, b) = 0 for a ∈ Rn and b ∈ Rm. If ∂f

∂y (a, b)

is invertible, then there exist g such that g(a) = b
and for all x ∈ Rn in the neighborhood of a

f(x, g(x)) = 0

∂g

∂xi
(x) = −

(
∂f

∂y
(x, g(x))

)−1 ∂f
∂xi

(x, g(x))

In a system of equations f(x, y) = 0 with an infinite
number of solutions (x, y), IFT tells us about the
relative variations of x with respect to y, even in
situations where we cannot write down explicit
solutions (i.e., y = g(x)). For instance, without
solving the system, it shows that the solutions (x, y)
of x2 + y2 = 1 satisfies ∂y

∂x = −x/y.

Cookbook for data scientists
Charles Deledalle

Probability and Statistics

Kolmogorov’s probability axioms

Let Ω be a sample set and A an event

P[Ω] = 1, P[A] > 0

P

[∞⋃

i=1

Ai

]
=
∞∑

i=1

P[Ai] with Ai ∩ Aj = ∅

Basic properties

P[∅] = 0, P[A] ∈ [0, 1], P[Ac] = 1− P[A]

P[A] 6 P[B] if A ⊆ B

P[A ∪B] = P[A] + P[B]− P[A ∩B]

Conditional probability

P[A|B] =
P[A ∩B]

P[B]
subject to P[B] > 0

Bayes’ rule

P[A|B] =
P[B|A]P[A]

P[B]

Independence

Let A and B be two events, X and Y be two rv

A⊥B if P[A ∩B] = P[A]P[B]

X⊥Y if (X 6 x)⊥(Y 6 y)

If X and Y admit a density, then

X⊥Y if fX,Y (x, y) = fX(x)fY (y)

Properties of Independence and uncorrelation

P[A|B] = P[A]⇒ A⊥B
X⊥Y ⇒ (E[XY ∗] = E[X]E[Y ∗]⇔ Cov[X, Y] = 0)

Independence⇒ uncorrelation

correlation⇒ dependence

uncorrelation ; Independence

dependence ; correlation

Discrete random vectors

Let X be a discrete random vector defined on Nn

E[X]i =
∞∑

k=0

kP[Xi = k]

The function fX : k → P[X = k] is called the
probability mass function (pmf) of X.

Continuous random vectors

Let X be a continuous random vector on Cn.
Assume there exist fX such that, for all A ⊆ Cn,

P[X ∈ A] =

∫

A

fX(x) dx.

Then fX is called the probability density function
(pdf) of X, and

E[X] =

∫

Cn

xfX(x) dx.

Variance / Covariance

Let X and Y be two random vectors. The
covariance matrix between X and Y is defined as

Cov[X, Y] = E[XY ∗]− E[X]E[Y]∗.

X and Y are said uncorrelated if Cov[X, Y] = 0.
The variance-covariance matrix is

Var[X] = Cov[X,X] = E[XX∗]− E[X]E[X]∗.

Basic properties

• The expectation is linear

E[aX + bY + c] = aE[X] + bE[Y] + c

• If X and Y are independent

Var[aX + bY + c] = a2Var[X] + b2Var[Y]

• Var[X] is always Hermitian positive definite

Cookbook for data scientists
Charles Deledalle

Fourier analysis

Fourier Transform (FT)

Let x : R→ C such that

∫ +∞

−∞
|x(t)| dt <∞. Its

Fourier transform X : R→ C is defined as

X(u) = F [x](u) =

∫ +∞

−∞
x(t)e−i2πut dt

x(t) = F−1[X](t) =

∫ +∞

−∞
X(u)ei2πut du

where u is referred to as the frequency.

Properties of continuous FT

F [ax+ by] = aF [x] + bF [y] (Linearity)

F [x(t− a)] = e−i2πauF [x] (Shift)

F [x(at)](u) =
1

|a|F [x](u/a) (Modulation)

F [x∗](u) = F [x](−u)∗ (Conjugation)

F [x](0) =

∫ +∞

−∞
x(t) dt (Integration)

∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|X(u)|2 du (Parseval)

F [x(n)](u) = (2πiu)nF [x](u) (Derivation)

F [e−π
2at2](u) =

1√
πa
e−u

2/a (Gaussian)

x is real⇔ X(ε) = X(−ε)∗ (Real ↔ Hermitian)

Properties with convolutions

(x ? y)(t) =

∫ ∞

−∞
x(s)y(t− s) ds (Convolution)

F [x ? y] = F [x]F [y] (Convolution theorem)

Multidimensional Fourier Transform

Fourier transform is separable over the different d
dimensions, hence can be defined recursively as

F [x] = (F1 ◦ F2 ◦ . . . ◦ Fd)[x]

where Fk[x](t1 . . . , εk, . . . , td) =

F [tk 7→ x(t1, . . . , tk, . . . , td)](εk)

and inherits from above properties (same for DFT).

Discrete Fourier Transform (DFT)

Xu = F [x]u =
n−1∑

t=0

xte
−i2πut/n

xt = F−1[X]t =
1

n

n−1∑

u=0

Xke
i2πut/n

Or in a matrix-vector form X = Fx and x = F−1X
where Fu,k = e−i2πuk/n. We have

F ∗ = nF−1 and U = n−1/2F is unitary

Properties of discrete FT

F [ax+ by] = aF [x] + bF [y] (Linearity)

F [xt−a] = e−i2πau/nF [x] (Shift)

F [x∗]u = F [x]∗n−u mod n (Conjugation)

F [x]0 =
n−1∑

t=0

xt (Integration)

||x||22 =
1

n
||X||22 (Parseval)

||x||1 6 ||X||1 6 n||x||1
||X||∞ 6 ||x||1 and ||x||∞ 6 1

n
||X||1

x is real⇔ Xu = X∗n−u mod n (Real ↔ Hermitian)

Discrete circular convolution

(x ∗ y)t =
n∑

s=1

xsy(t−s mod n)+1 or x ∗ y = Φyx

where (Φy)t,s = y(t−s mod n)+1 is a circulant matrix
diagonalizable in the discrete Fourier basis, thus

F [x ∗ y]u = F [x]uF [y]u

Fast Fourier Transform (FFT)

The matrix-by-vector product Fx can be computed
in O(n log n) operations (much faster than the
general matrix-by-vector product that required O(n2)
operations). Same for F−1 and same for
multi-dimensional signals.

Cookbook for data scientists
Charles Deledalle

Linear algebra II
Eigenvalues / eigenvectors

If λ ∈ C and e ∈ Cn(6= 0) satisfy

Ae = λe

λ is called the eigenvalue associated to the
eigenvector e of A. There are at most n distinct
eigenvalues λi and at least n linearly independent
eigenvectors ei (with norm 1). The set λi of n (non
necessarily distinct) eigenvalues is called the
spectrum of A (for a proper definition see
characteristic polynomial, multiplicity, eigenspace).
This set has exactly r = rankA non zero values.

Eigendecomposition (m = n)

If it exists E ∈ Cn×n, and a diagonal matrix
Λ ∈ Cn×n st

A = EΛE−1

A is said diagonalizable and the columns of E are
the n eigenvectors ei of A with corresponding
eigenvalues Λi,i = λi.

Properties of eigendecomposition (m = n)

• If, for all i, Λi,i 6= 0, then A is invertible and

A−1 = EΛ−1E−1 with Λ−1i,i = (Λi,i)
−1

• If A is Hermitian (A = A∗), such decomposition
always exists, the eigenvectors of E can be chosen
orthonormal such that E is unitary (E−1 = E∗), and
λi are real.
• If A is Hermitian (A = A∗) and λi > 0, A is said
positive definite, and for all x 6= 0, xAx∗ > 0.

Singular value decomposition (SVD)

For all matrices A there exists two unitary matrices
U ∈ Cm×m and V ∈ Cn×n, and a real non-negative
diagonal matrix Σ ∈ Rm×n st

A = UΣV ∗ and A =
r∑

k=1

σkukv
∗
k

with r = rankA non zero singular values Σk,k=σk.

Eigendecomposition and SVD

• If A is Hermitian, the two decompositions coincide
with V = U = E and Σ = Λ.
• Let A = UΣV ∗ be the SVD of A, then the
eigendecomposition of AA∗ is E = U and Λ = Σ2.

SVD, image and kernel

Let A = UΣV ∗ be the SVD of A, and assume Σi,i

are ordered in decreasing order then

Im[A] = Span({ui ∈ Rm \ i ∈ (1 . . . r)})
Ker[A] = Span({vi ∈ Rn \ i ∈ (r + 1 . . . n)})

Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse reads

A+ = V Σ+U∗ with Σ+
i,i =

{
(Σi,i)

−1 if Σii > 0,
0 otherwise

and is the unique matrix satisfying A+AA+ = A+

and AA+A = A with A+A and AA+ Hermitian.
If A is invertible, A+ = A−1.

Matrix norms

||A||p = sup
x;||x||p=1

||Ax||p, ||A||2 = max
k

σk, ||A||∗ =
∑

k

σk,

||A||2F =
∑

i,j

|ai,j|2 = trA∗A =
∑

k

σ2k

Cookbook for data scientists
Charles Deledalle

Linear algebra I

Notations

x, y, z, . . . : vectors of Cn
a, b, c, . . . : scalars of C
A, B, C : matrices of Cm×n
Id : identity matrix
i = 1, . . . ,m and j = 1, . . . , n

Matrix vector product

(Ax)i =
n∑

k=1

Ai,kxk

(AB)i,j =
n∑

k=1

Ai,kBk,j

Basic properties

A(ax+ by) = aAx+ bAy

AId = IdA = A

Inverse (m = n)

A is said invertible, if it exists B st

AB = BA = Id.

B is unique and called inverse of A.
We write B = A−1.

Adjoint and transpose

(At)j,i = Ai,j, At ∈ Cm×n

(A∗)j,i = (Ai,j)
∗, A∗ ∈ Cm×n

〈Ax, y〉 = 〈x, A∗y〉

Trace and determinant (m = n)

trA=
n∑

i=1

Ai,i=
n∑

i=1

λi

detA =
n∏

i=1

λi

trA = trA∗

trAB = trBA

detA∗ = detA

detA−1 = (detA)−1

detAB = detA detB

A is invertible⇔ detA 6= 0⇔ λi 6= 0,∀i

Scalar products, angles and norms

〈x, y〉 = x · y = x∗y =
n∑

k=1

xkyk (dot product)

||x||2 = 〈x, x〉 =
n∑

k=1

x2k (`2 norm)

|〈x, y〉| 6 ||x||||y|| (Cauchy-Schwartz inequality)

cos(∠(x, y)) =
〈x, y〉
||x||||y|| (angle and cosine)

||x+ y||2 = ||x||2 + ||y||2 + 2〈x, y〉 (law of cosines)

||x||pp =
n∑

k=1

|xk|p, p > 1 (`p norm)

||x+ y||p 6 ||x||p + ||y||p (triangular inequality)

Orthogonality, vector space, basis, dimension

x⊥y ⇔ 〈x, y〉 = 0 (Orthogonality)

x⊥y ⇔ ||x+ y||2 = ||x||2 + ||y||2 (Pythagorean)

Let d vectors xi be st xi⊥xj, ||xi|| = 1. Define

V = Span({xi}) =
{
y \ ∃α ∈ Cd, y =

d∑

i=1

αixi

}

V is a vector space, {xi} is an orthonormal basis of V and

∀y ∈ V, y =
d∑

i=1

〈y, xi〉xi

and d = dimV is called the dimensionality of V . We have

dim(V ∪W) = dimV + dimW − dim(V ∩W)

Column/Range/Image and Kernel/Null spaces

Im[A] = {y ∈ Rm \ ∃x ∈ Rn such that y = Ax} (image)

Ker[A] = {x ∈ Rn \ Ax = 0} (kernel)

Im[A] and Ker[A] are vector spaces satisfying

Im[A] = Ker[A∗]⊥ and Ker[A] = Im[A∗]⊥

rankA+ dim(Ker[A]) = n (rank-nullity theorem)

where rankA = dim(Im[A]) (matrix rank)

Note also rankA = rankA∗

rankA+ dim(Ker[A∗]) = m

www.charles-deledalle.fr/pages/teaching/

19

www.charles-deledalle.fr/pages/teaching/

How?

How? – Piazza
https://piazza.com/ucsd/spring2019/ece285mlip

If you cannot get access to it contact me asap

at cdeledalle@ucsd.edu

(title: “[ECE285-MLIP][Piazza] Access issues”).

20

https://piazza.com/ucsd/spring2019/ece285mlip
cdeledalle@ucsd.edu

Misc

Misc

Programming environment: Python/PyTorch/Jupyter

• We will use UCSD’s DSMLP cluster with GPU/CUDA. Great but busy.

• We recommend you to install Conda/Python 3/Jupyter on your laptop.

• Please refer to additional documentations on Piazza.

Communication:

• All your emails must have a title starting with “[ECE285-MLIP]”

→ or it will end up in my spam/trash.

Note: “[ECE 285-MLIP]”, “[ece285 MLIP]”, “(ECE285MLIP)” are invalid!

• But avoid emails, use Piazza to communicate instead.

• For questions that may interest everyone else, post on Piazza forums.

21

Some references

Reference books

C. Bishop

Pattern recognition and Machine Learning

Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Springer, 2009

http://web.stanford.edu/~hastie/ElemStatLearn/

D. Barber

Bayesian Reasoning and Machine Learning

Cambridge University Press, 2012

http://www.cs.ucl.ac.uk/staff/d.barber/brml/

I. Goodfellow, Y. Bengio and A. Courville.

Deep Learning

MIT Press book, 2017

http://www.deeplearningbook.org/

22

http://web.stanford.edu/~hastie/ElemStatLearn/
http://www.cs.ucl.ac.uk/staff/d.barber/brml/
http://www.deeplearningbook.org/

Some references

Reference online classes

Fei-Fei Li, Justin Johnson and Serena Yeung, 2017 (Stanford)

CS231n: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu

Giró et al, 2017 (Catalonia)

Deep Learning for Artificial Intelligence

https://telecombcn-dl.github.io/2017-dlai/

Leonardo Araujo dos Santos.

Artificial Intelligence

https://www.gitbook.com/@leonardoaraujosantos

23

http://cs231n.stanford.edu
https://telecombcn-dl.github.io/2017-dlai/
https://www.gitbook.com/@leonardoaraujosantos

Image sciences

Imaging sciences – Overview

Image sciences

• Imaging:

Modeling the image formation process

• Computer graphics:

Rendering images/videos from symbolic representation

24

Imaging sciences – Overview

Image sciences

• Imaging:

Modeling the image formation process

• Computer graphics:

Rendering images/videos from symbolic representation

24

Imaging sciences – Overview

Image sciences

• Computer vision:

Extracting information from images/videos

• Image/Video processing:

Producing new images/videos from input images/videos

25

Imaging sciences – Overview

Image sciences

• Computer vision:

Extracting information from images/videos

• Image/Video processing:

Producing new images/videos from input images/videos

25

Imaging sciences – Image processing and computer vision

Spectrum from image processing to computer vision

26

Imaging sciences – Image processing

Image processing

(Source: Iasonas Kokkinos)

• Image processing: define a new image from an existing one

• Video processing: same problems + motion information

27

Imaging sciences – Image processing

Image processing

(Source: Iasonas Kokkinos)

• Image processing: define a new image from an existing one

• Video processing: same problems + motion information

27

Imaging sciences – Computer vision

Computer vision

Definition (The British Machine Vision Association)

Computer vision (CV) is concerned with the automatic extraction, analysis

and understanding of useful information from a single image or a sequence of

images.

CV is a subfield of Artificial Intelligence.

28

Imaging sciences – Computer vision

Computer vision – Artificial Intelligence (AI)

Definition (Collins dictionary)

artificial intelligence, noun: type of computer technology which is concerned

with making machines work in an intelligent way, similar to the way that the

human mind works.

Definition (Oxford dictionary)

artificial intelligence, noun: the theory and development of computer systems

able to perform tasks normally requiring human intelligence, such as visual

perception, speech recognition, decision-making, and translation.

Remark:

CV is a subfield of AI,

CV’s new very best friend is machine learning (ML),

ML is also a subfield of AI,

but not all computer vision algorithms are ML.

29

Imaging sciences – Computer vision – Image classification

Computer vision – Image classification

Goal: to assign a given image into one of the predefined classes.

30

Imaging sciences – Computer vision – Object detection

Computer vision – Object detection

(Source: Joseph Redmon)

Goal: to detect instances of objects of a certain class (such as human).

31

Imaging sciences – Computer vision – Image segmentation

Computer vision – Image segmentation

(Source: Abhijit Kundu)

Goal: to partition an image into multiple segments such that pixels in a same

segment share certain characteristics (color, texture or semantic).

32

Imaging sciences – Computer vision – Image captioning

Computer vision – Image captioning

(Karpathy, Fei-Fei, CVPR, 2015)

Goal: to write a sentence that describes what is happening.
33

Imaging sciences – Computer vision – Depth estimation

Computer vision – Depth estimation

→ →

(Stereo-vision: from two images acquired with different views.)

Goal: to estimate a depth map from one, two or several frames.

34

Imaging sciences – IP ∩ CV – Image colorization

Image colorization

(Source: Richard Zhang, Phillip Isola and Alexei A. Efros, 2016)

Goal: to add color to grayscale photographs.

35

Imaging sciences – IP ∩ CV – Image generation

Image generation

Generated images of bedrooms (Source: Alec Radford, Luke Metz, Soumith Chintala, 2015)

Goal: to automatically create realistic pictures of a given category.

36

Imaging sciences – IP ∩ CV – Image generation

Image generation – DeepDream

(Source: Google Deep Dream, Mordvintsev et al., 2016)

Goal: to generate arbitrary photo-realistic artistic images,

Goal:

and understand/visualizing deep networks.

37

Imaging sciences – IP ∩ CV – Image stylization

Image stylization

(Source: Neural Doodle, Champandard, 2016)

Goal: to create stylized images from rough sketches.

38

Imaging sciences – IP ∩ CV – Style transfer

Style transfer

(Source: Gatys, Ecker and Bethge, 2015)

Goal: transfer the style of an image into another one.

39

Machine learning

Machine learning

What is learning?

Herbert Simon (Psychologist, 1916–2001):

Learning is any process by which

a system improves performance from

experience.
Pavlov’s dog (Mark Stivers, 2003)

Tom Mitchell (Computer Scientist):

A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E.

40

Machine learning

Machine learning (ML)

Definition

machine learning, noun: type of Artificial Intelligence that provides computers

with the ability to learn without being explicitly programmed.

(Source: Pedro Domingos)

41

Machine learning

Machine learning (ML)

Provides various techniques that can learn from and make predictions on data.

Most of them follow the same general structure:

(Source: Lucas Masuch)

42

Machine learning – Learning from examples

Learning from examples

3 main ingredients

1 Training set / examples:

{x1,x2, . . . ,xN}

2 Machine or model:

x→ f(x; θ)︸ ︷︷ ︸
function / algorithm

→ y︸︷︷︸
prediction

θ: parameters of the model

3 Loss, cost, objective function / energy:

argmin
θ

E(θ;x1,x2, . . . ,xN)

43

Machine learning – Learning from examples

Learning from examples

Tools:

{
Data ↔ Statistics

Loss ↔ Optimization

Goal: to extract information from the training set

• relevant for the given task,

• relevant for other data of the same kind.

Can we learn everything? i.e., to be relevant for all problems?

44

Machine learning – Terminology

Terminology

Sample (Observation or Data): item to process (e.g., classify). Example: an

individual, a document, a picture, a sound, a video. . .

Features (Input): set of distinct traits that can be used to describe each

sample in a quantitative manner. Represented as a multi-dimensional vector

usually denoted by x. Example: size, weight, citizenship, . . .

Training set: Set of data used to discover potentially predictive relationships.

Validation set: Set used to adjust the model hyperparameters.

Testing set: Set used to assess the performance of a model.

Label (Output): The class or outcome assigned to a sample. The actual

prediction is often denoted by y and the desired/targeted class by d or t.

Example: man/woman, wealth, education level, . . .

45

Machine learning – Learning approaches

Learning approaches

Unsupervised learning: Discovering patterns in unlabeled

data. Example: cluster similar documents based on the

text content.

Supervised learning: Learning with a labeled training set.

Example: email spam detector with training set of already

labeled emails.

Semisupervised learning: Learning with a small amount of

labeled data and a large amount of unlabeled data.

Example: web content and protein sequence classifications.

Reinforcement learning: Learning based on feedback or

reward. Example: learn to play chess by winning or losing.

(Source: Jason Brownlee and Lucas Masuch)
46

Machine learning – Workflow

Machine learning workflow

(Source: Michael Walker)

47

Machine learning – Problem types

Problem types

(Source: Lucas Masuch)

48

Machine learning – Unsupervised learning

Unsupervised learning

Unsupervised learning

• Training set: X = (x1,x2, . . . ,xN) where xi ∈ Rd.

• Goal: to find interesting structures in the data X.

Examples:

• clustering,

• quantile estimation,

• outlier detection,

• dimensionality reduction.

Statistical point of view

To estimate a density p which is likely to have generated X, i.e., such that

x1,x2, . . . ,xN
i.i.d∼ p

(i.i.d = identically and independently distributed).

49

Machine learning – Clustering

Clustering

Clustering: group observations into “meaningful” groups.

(Source: Kasun Ranga Wijeweera)

• Task of grouping a set of objects in such a way that objects in the same

group (called a cluster) are more similar to each other.

• Popular ones are K-means clustering and Hierarchical clustering.

50

Machine learning – Clustering – K-means

Clustering – K-means

F
ea

tu
re

#
2

(S
o

u
rc

e:
N

a
ft

a
li

H
ar

ri
s)

Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.

51

Machine learning – Clustering – K-means

Clustering – K-means

F
ea

tu
re

#
2

(S
o

u
rc

e:
N

a
ft

a
li

H
ar

ri
s)

Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.

51

Machine learning – Clustering – K-means

Clustering – K-means

F
ea

tu
re

#
2

(S
o

u
rc

e:
N

a
ft

a
li

H
ar

ri
s)

Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.

51

Machine learning – Clustering – K-means

Clustering – K-means

F
ea

tu
re

#
2

(S
o

u
rc

e:
N

a
ft

a
li

H
ar

ri
s)

Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.

51

Machine learning – Clustering – K-means

Clustering – K-means

F
ea

tu
re

#
2

(S
o

u
rc

e:
N

a
ft

a
li

H
ar

ri
s)

Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.
51

Machine learning – Clustering – K-means

Clustering – K-means

F
ea

tu
re

#
2

(S
o

u
rc

e:
N

a
ft

a
li

H
ar

ri
s)

Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.
51

Machine learning – Clustering – K-means

Clustering – K-means

F
ea

tu
re

#
2

(S
o

u
rc

e:
N

a
ft

a
li

H
ar

ri
s)

Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.
51

Machine learning – Clustering – K-means

Clustering – K-means

F
ea

tu
re

#
2

(S
o

u
rc

e:
N

a
ft

a
li

H
ar

ri
s)

Feature #1

1 Consider data in R2 spread on three different clusters,

2 Pick randomly K = 3 data points as cluster centroids,

3 Assign each data point to the class with closest centroid,

4 Update the centroids by taking the means within the clusters,

5 Go back to 3 until no more changes.
51

Machine learning – Clustering – K-means

Clustering – K-means

• Optimal in terms of inter- and extra-class variability (loss),

• In practice, it requires much more iterations,

• Solutions strongly depend on the initialization,

→ Good initializations can be obtained by K-means++ strategy.

• The number of class K is often unknown:

• usually found by trial and error,
• or by cross-validation, AIC, BIC, . . .
• K too small/large ⇒ under/overfitting. (we will come back to this)

• The data dimension d is often much larger than 2,

→ subject to the curse of dimensionality. (we will also come back to this)

• Vector quantization (VQ): the centroid substitutes all vectors of its class.

52

Machine learning – Supervised learning

Supervised learning

Supervised learning

• A training labeled set: (x1, d1), (x2, d2), . . . , (xN , dN).

• Goal: to learn a relevant mapping f st

yi = f(xi; θ) ≈ di

Examples:

• classification (d is a categorical variable a),

• regression (d is a real variable),

a. can take one of a limited, and usually fixed, number of possible values.

Statistical point of view

• Discriminative models: to estimate the posterior distribution p(d|x).

• Generative models: to estimate the likelihood p(x|d),

or the joint distribution p(x, d).

53

Machine learning – Supervised learning

Supervised learning – Bayesian inference

Bayes rule

In the case of a categorical variable d and a real vector x

P(d|x) =
p(x, d)

p(x)
=
p(x|d)P(d)

p(x)
=

p(x|d)P(d)∑
d p(x|d)P(d)

• P(d|x): probability that x is of class d,

• p(x|d): distribution of x within class d,

• P(d): frequency of class d.

Example of final classifier: f(x; θ) = argmax
d

P(d|x)

Generative models carry more information:

Learning p(x|d) and P(d) allows to deduce P(d|x).

But they often require many more parameters and more training data.

Discriminative models are usually easier to learn and thus more accurate.

53

Machine learning – Classification

Classification

Classification: predict class d from observation x.

(Source: Philip Martin)

• Classify a document into a predefined category.

• Documents can be text, images, videos. . .

• Popular ones are Support Vector Machines and Artificial Neural Networks.

54

Machine learning – Regression

Regression

Regression (prediction): predict value(s) from observation.

• Statistical process for estimating the relationships among variables.

• Regression means to predict the output value using training data.

→ related to interpolation and extrapolation.

• Popular ones are linear least square and Artificial Neural Networks.

55

Machine learning – Classification vs Regression

Classification vs Regression

Classification

• Assign to a class

• Ex: a type of tumor is harmful or not

• Output is discrete/categorical

v.s

Regression

• Predict one or several output values

• Ex: what will be the house price?

• Output is a real number/continuous

(Source: Ali Reza Kohani)

Quiz, which one is which?

denoising, identification, verification, approximation.

56

Machine learning – Polynomial curve fitting

Polynomial curve fitting

• Consider N individuals answering a survey asking for

• their wealth: xi
• level of happiness: di

• We want to learn how to predict di (the desired output) from xi as

di ≈ yi = f(xi; θ)

where f is the predictor and yi denotes the predicted output.

Quiz

Supervised or unsupervised?

Classification or regression?

57

Machine learning – Polynomial curve fitting

Polynomial curve fitting

• We assume that the relation is M -order polynomial

yi = f(xi;w) = w0 + w1xi + w2x
2
i + . . .+ wMx

M
i =

M∑
j=0

wjx
j
i

where w = (w0, w1, . . . , wM)T are the polynomial coefficients.

• The (multi-dimensional) parameter θ is the vector w.

58

Machine learning – Polynomial curve fitting

Polynomial curve fitting

• Let y = (y1, y2, . . . , yN)T and X =

1 x1 x21 . . . xM1
1 x2 x22 . . . xM2
...

...

1 xN x2N . . . xMN

, then

y = Xw with w = (w0, w1, . . . , wM)T

• Polynomial curve fitting is linear regression.

linear regression = linear relation between y and θ, even though f is non-linear.

• Standard procedures involve minimizing the sum of square errors (SSE)

E(w) =

N∑
i=1

(yi − di)2 = ||y − d||22 = ||Xw − d||22
also called sum of square differences (SSD), or

mean square error (MSE, when divided by N).

Linear regression + SSE −→ Linear least square regression
59

Machine learning – Polynomial curve fitting

Polynomial curve fitting

Recall: E(w) = ||Xw − d||22 = (Xw − d)T (Xw − d)

Note that: ∇wTAw = (A+AT)w and ∇bTw = b

• The solution is obtained by canceling the gradient

∇E(w) = 0 ⇒ XT (Xw − d) = 0︸ ︷︷ ︸
normal equation

• As soon as we have N >M + 1 distinct xi, the solution is unique

w∗ =
(
XTX

)−1

XTd

• Otherwise, there is an infinite number of solutions.

60

Machine learning – Polynomial curve fitting

Polynomial curve fitting

• Training data: answers to the survey

• Model: polynomial function of degree M

• Loss: sum of square errors

• Machine learning algorithm: linear least square regression

The methodology for Deep Learning will be the exact same one.

The only difference is that the relation between

y and θ will be (extremely) non-linear.

61

Machine learning – Polynomial curve fitting

Polynomial curve fitting

As M increases, unwanted oscillations appear (Runge’s phenomenon),

even though N >M + 1.

How to choose the degree M?

62

Machine learning – Overfitting and Generalization

Difficulty of learning

• Fit: to explain the training samples,

→ requires some flexibility of the model.

• Generalization: to be accurate for samples outside the training dataset.

→ requires some rigidity of the model.

63

Machine learning – Overfitting and Generalization

Difficulty of learning

Complexity: number of parameters, degrees of freedom, capacity, richness,

flexibility, see also Vapnik–Chervonenkis (VC) dimension.

64

Machine learning – Overfitting and Generalization

Difficulty of learning

Tradeoff: Underfitting/Overfitting Bias/Variance Data fit/Complexity

Variance: how much the

predictions of my model on unseen

data fluctuate if trained over

different but similar training sets.

Bias: how off is the average of

these predictions.

MSE = Bias2 + Variance

The tradeoff depends on several factors

• Intrinsic complexity of the phenomenon to be predicted,

• Size of the training set: the larger the better,

• Size of the feature vectors: larger or smaller?

65

Machine learning – Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

No perfect separation No perfect separation Linearly separable case

Looks like the more features we have, the better it is. But. . .

(Source: Vincent Spruyt)
66

Machine learning – Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

Yes, but overfitting No, but better on unseen data

Why is that?

(Source: Vincent Spruyt)

67

Machine learning – Overfitting and Generalization

Curse of dimensionality

Is there a (hyper)plane that perfectly separates dogs from cats?

Yes, but overfitting No, but better on unseen data

Why is that?

(Source: Vincent Spruyt)

67

Machine learning – Overfitting and Generalization

Curse of dimensionality

The amount of training data needed to cover 20% of the feature range grows

exponentially with the number of dimensions.

⇒ Reducing the feature dimension is often favorable.

“Many algorithms that work fine in low dimensions become intractable when the input

is high-dimensional.” Bellman, 1961.

(Source: Vincent Spruyt)
68

Machine learning – Feature engineering

Feature engineering

• Feature selection: choice of distinct traits used to describe each sample

in a quantitative manner.

Ex: fruit → acidity, bitterness, size, weight, number of seeds, . . .

Correlations between features: weight vs size, seeds vs bitterness,

⇒ Information is redundant and can be summarized with less but

more relevant features.

• Feature extraction: extract/generate new features from the initial set of

features intended to be informative, non-redundant and facilitating the

subsequent task.

⇒ Common procedure: Principal Component Analysis (PCA)

69

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

In most applications examples are not spread uniformly throughout the example

space, but are concentrated on or near a low-dimensional subspace/manifold.

No correlations

⇒ Both features are informative,

⇒ No dimensionality reductions.

Strong correlation

⇒ Features “influence” each other,

⇒ Dimensionality reductions possible.

70

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes (eigenvectors of the covariance matrix),
• Keep the ones with largest variations (largest eigenvalues),
• Project the data on this low-dimensional space,
• Change system of coordinate to reduce data dimension.

71

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes (eigenvectors of the covariance matrix),

• Keep the ones with largest variations (largest eigenvalues),
• Project the data on this low-dimensional space,
• Change system of coordinate to reduce data dimension.

71

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes (eigenvectors of the covariance matrix),
• Keep the ones with largest variations (largest eigenvalues),

• Project the data on this low-dimensional space,
• Change system of coordinate to reduce data dimension.

71

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes (eigenvectors of the covariance matrix),
• Keep the ones with largest variations (largest eigenvalues),
• Project the data on this low-dimensional space,

• Change system of coordinate to reduce data dimension.

71

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes (eigenvectors of the covariance matrix),
• Keep the ones with largest variations (largest eigenvalues),
• Project the data on this low-dimensional space,

• Change system of coordinate to reduce data dimension.

71

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes (eigenvectors of the covariance matrix),
• Keep the ones with largest variations (largest eigenvalues),
• Project the data on this low-dimensional space,
• Change system of coordinate to reduce data dimension.

71

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes (eigenvectors of the covariance matrix),
• Keep the ones with largest variations (largest eigenvalues),
• Project the data on this low-dimensional space,
• Change system of coordinate to reduce data dimension.

71

Machine learning – Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Find the principal axes of variations of x1, . . . ,xN ∈ Rd:

µ =
1

N

N∑
i=1

xi︸ ︷︷ ︸
mean (vector)

, Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)T︸ ︷︷ ︸
covariance (matrix)

, Σ = V TΛV︸ ︷︷ ︸
eigen decomposition

(V V T=V TV =Idd)

V = (v1, . . . ,vd︸ ︷︷ ︸
eigenvectors

), Λ = diag(λ1, . . . , λd︸ ︷︷ ︸
eigenvalues

) and λ1 > · · · > λd

• Keep the K < d first dimensions: VK = (v1, . . . ,vK) ∈ Rd×K

• Project the data on this low-dimensional space:

x̃i = µ+

K∑
k=1

〈vk, xi − µ〉vk = µ+ VKV
T
K (xi − µ) ∈ Rd

• Change system of coordinate to reduce data dimension:

hi = V T
K (x̃i − µ) = V T

K (xi − µ) ∈ RK

72

Machine learning – Clustering – K-means

Principal Component Analysis (PCA)

• Typically: from hundreds to a few (one to ten) dimensions,

• Number K of dimensions often chosen to cover 95% of the variability:

K = min

{
K \

∑K
k=1 λk∑d
k=1 λk

> .95

}

• PCA is done on training data, not on testing data!:
• First, learn the low-dimensional subspace on training data only,
• Then, project both the training and testing samples on this subspace,
• It’s an affine transform (translation, rotation, projection, rescaling):

h = Wx+ b (with W = V T
K and b = −V T

K µ)

Deep learning does something similar but in an (extremely) non-linear way.

73

Machine learning – Feature extraction

What features for an image?

(Source: Michael Walker)
74

Image representation

La Trahison des images, René Magritte, 1928
(Los Angeles County Museum of Art)

Image representation

How do we represent images?

A two dimensional function

• Think of an image as a two dimensional function x.

• x(s1, s2) gives the intensity at location (s1, s2).

(Source: Steven Seitz)

Convention: larger values correspond to brighter content.

A color image is defined similarly as a 3 component vector-valued function:

x(s1, s2) =

r(s1, s2)

g(s1, s2)

b(s1, s2)

 .

75

Image representation

How do we represent images?

A two dimensional function

• Think of an image as a two dimensional function x.

• x(s1, s2) gives the intensity at location (s1, s2).

(Source: Steven Seitz)

Convention: larger values correspond to brighter content.

A color image is defined similarly as a 3 component vector-valued function:

x(s1, s2) =

r(s1, s2)

g(s1, s2)

b(s1, s2)

 .

75

Image representation – Types of images – Digital imagery

Digital imagery

Raster images

• Sampling: reduce the 2d continuous space to a discrete grid Ω ⊆ Z2

• Gray level image: Ω→ R (discrete position to gray level)

• Color image: Ω→ R3 (discrete position to RGB)

76

Image representation – Types of images – Digital imagery

Bitmap image

• Quantization: map each value to a discrete set [0, L− 1] of L values

(e.g., round to nearest integer)

• Often L = 28 = 256 (8bit images ≡ unsigned char)

• Gray level image: Ω→ [0, 255] (255 = 28 − 1)
• Color image: Ω→ [0, 255]3

• Optional: assign instead an index to each pixel pointing to a color palette

(format: .png, .bmp)

77

Image representation – Types of images – Digital imagery

Digital imagery

• Digital images: sampling + quantization:

−→ 8bit images can be seen as a matrix of integer values

We will refer to an element s ∈ Ω as a pixel location, x(s) as a pixel value,

and the pair (s, x(s)) as a pixel (“picture element”).

78

Image representation – Types of images – Digital imagery

Functional representation: x : Ω ⊆ Zd → RK

• d: dimension (d = 2 for pictures, d = 3 for videos, . . .)

• K: number of channels (K = 1 monochrome, 3 colors, . . .)

• s = (i, j): pixel position in Ω

• x(s) = x(i, j) : pixel value(s) in RK

Array representation (d = 2): x ∈ (RK)n1×n2

• n1 × n2: n1: image height, and n2: width

• xi,j ∈ RK : pixel value(s) at position s = (i, j): xi,j = x(i, j)

79

Image representation – Types of images – Digital imagery

Functional representation: x : Ω ⊆ Zd → RK

• d: dimension (d = 2 for pictures, d = 3 for videos, . . .)

• K: number of channels (K = 1 monochrome, 3 colors, . . .)

• s = (i, j): pixel position in Ω

• x(s) = x(i, j) : pixel value(s) in RK

Array representation (d = 2): x ∈ (RK)n1×n2

• n1 × n2: n1: image height, and n2: width

• xi,j ∈ RK : pixel value(s) at position s = (i, j): xi,j = x(i, j)

79

Image representation – Types of images – Digital imagery

For d > 2, we speak of multidimensional arrays: x ∈ (RK)n1×...×nd

• d is called dimension, rank or order,

• In the deep learning community: they are referred to as tensors

(not to be confused with tensor fields or tensor imagery).

80

Image representation – Types of images – Digital imagery

Vector representation: x ∈ (RK)n

• n = n1 × n2: image size (number of pixels)

• xk ∈ RK : value(s) of the k-th pixel at position sk: xk = x(sk)

81

Image representation – Types of images – Digital imagery

Color 2d image: Ω ⊆ Z2 → [0, 255]3

• Red, Green, Blue (RGB), K = 3

• RGB: Usual colorspace for acquisition and display

• There exist other colorspaces for different purposes:

HSV (Hue, Saturation, Value), YUV, YCbCr. . .

82

Image representation – Types of images – Digital imagery

Spectral image: Ω ⊆ Z2 → RK

• Each of the K channels is a wavelength band

• For K ≈ 10: multi-spectral imagery

• For K ≈ 200: hyper-spectral imagery

• Used in astronomy, surveillance, mineralogy, agriculture, chemistry

83

Image representation – Types of images – Digital imagery

The Horse in Motion (1878, Eadweard Muybridge)

Gray level video: Ω ⊆ Z3 → R

• 2 dimensions for space

• 1 dimension for time

84

Image representation – Types of images – Digital imagery

MRI slices at different depths

3d brain scan: Ω ⊆ Z3 → C

• 3 dimensions for space

• 3d pixels are called voxels (“volume elements”)

85

Image representation – Semantic gap

Semantic gap in CV tasks

Gap between tensor representation and its semantic content.

86

Image representation – Feature extraction

Old school computer vision

Semantic gap: initial representation of the data is too low-level,

Curse of dimensionality: reducing dimension is necessary for limited datasets,

Instead of considering images as a collection of pixel values (tensor),

we may consider other features/descriptors:

Designed from prior knowledge

• Image edges,

• Color histogram,

• Local frequencies,

• High-level descriptor (SIFT).

Or learned by unsupervised learning

• Dimensionality reduction (PCA),

• Parameters of density distributions,

• Clustering of image regions,

• Membership to classes (GMM-EM).

Goal: Extract informative features, remove redundancy, reduce

dimensionality, facilitating the subsequent learning task.

87

Image representation – Feature extraction

Example of a classical CV pipeline

1 Identify “interesting” key points,

2 Extract “descriptors” from the interesting points,

3 Collect the descriptors to “describe” an image.

88

Image representation – Feature extraction – Key point detector

Key point detector

• Goal: to detect interesting points (without describing them).
• Method: to measure intensity changes in local sliding windows.
• Constraint: to be invariant to illumination, rotation, scale, viewpoint.

• Famous ones: Harris, Canny, DoG, LoG, DoH, . . .
89

Image representation – Feature extraction – Descriptors

Scale-invariant feature transform (SIFT) (Lowe, 1999)

(S
o

u
rc

e:
R

a
vi

m
a

l
B

a
n

d
ar

a
)

• Goal: to provide a quantitative description at a given image location.
• Based on multi-scale analysis and histograms of local gradients.
• Robust to changes of scales, rotations, viewpoints, illuminations.
• Fast, efficient, very popular in the 2000s.

• Other famous descriptors: HoG, SURF, LBP, ORB, BRIEF, . . .

90

Image representation – Feature extraction – Descriptors

SIFT – Example: Object matching

91

Image representation – Feature extraction – Bag of words

Bags of words

(Source: Rob Fergus & Svetlana Lazebnik)

Bag of words: vector of occurrence count of visual descriptors

(often obtained after vector quantization).

Before deep learning: most computer vision tasks were relying

on feature engineering and bags of words.

92

Image representation – Deep learning

Modern computer vision – Deep learning

Deep learning is about learning the feature extraction,

instead of designing it yourself.

Deep learning requires a lot of data and hacks to fight the curse of

dimensionality (i.e., reduce complexity and overfitting).

93

Quick overview of ML algorithms

Quick overview of ML algorithms

What about algorithms?

(Source: Michael Walker)

94

Machine learning – Quick overview of ML algorithms

Quick overview of ML algorithms

In fact, most of statistical tools are machine learning algorithms.

Dimensionality reduction / Manifold learning

• Principal Component Analysis (PCA) / Factor analysis

• Dictionary learning / Matrix factorization

• Kernel-PCA / Self organizing map / Auto-encoders

Linear regression / Variable selection

• Least square regression / Ridge regression / Least absolute deviations

• LASSO / Sparse regression / Matching pursuit / Compressive sensing

Classification and non-linear regression

• K-nearest neighbors

• Naive Bayes / Decision tree / Random forest

• Artificial neural networks / Support vector machines

Quiz: Supervised or unsupervised?

95

Machine learning – Quick overview of ML algorithms

Quick overview of ML algorithms

Clustering
• K-Means / Mixture models

• Hidden Markov Model

• Non-negative matrix factorization

Recommendation
• Association rules

• Low-rank approximation

• Metric learning

Density estimation
• Maximum likelihood / a posteriori

• Parzen windows / Mean shift

• Expectation-Maximization

Simulation / Sampling / Generation
• Variational auto-encoders

• Deep Belief Network

• Generative adversarial network

Often based on tools from optimization, sampling or operations research:

• Gradient descent / Quasi-Newton / Proximal methods / Duality

• Simulated annealing / Genetic algorithms

• Gibbs sampling / Metropolis-hasting / MCMC

96

Questions?

Next class: Preliminaries to deep learning

Sources, images courtesy and acknowledgment

• L. Condat

• R. Fergus

• P. Gallinari

• N. Harris

• A. Horodniceanu

• J. Johnson

• A. Karpathy

• S. Lazebnik

• F.-F. Li

• A. Newson

• S. Parameswaran

• D. C. Pearson

• S. Seitz

• V. Spruyt

• V. Tong Ta

• R. Wendell

• Wikipedia

96

	Image sciences
	Machine learning
	Image representation
	Quick overview of ML algorithms

