
ECE 285

Machine Learning for Image Processing

Chapter III – Introduction to deep learning

Charles Deledalle

July 9, 2019

1

Deep learning

Deep learning

(Source: Lucas Masuch & Vincent Lepetit)
2

Deep learning

Brief history

• Popularized by Hinton in 2006 with Restricted Boltzmann Machines

• Developed by different actors:

and many others...

3

Deep learning – Hype or reality?

Quotes

I have worked all my life in Machine Learning, and I’ve never seen one
algorithm knock over benchmarks like Deep Learning
– Andrew Ng (Stanford & Baidu)

Deep Learning is an algorithm which has no theoretical limitations
of what it can learn; the more data you give and the more
computational time you provide, the better it is – Geoffrey Hinton (Google)

Human-level artificial intelligence has the potential to help humanity
thrive more than any invention that has come before it – Dileep George
(Co-Founder Vicarious)

For a very long time it will be a complementary tool that human
scientists and human experts can use to help them with the things
that humans are not naturally good – Demis Hassabis (Co-Founder DeepMind)

(Source: Lucas Masuch) 4

Deep learning

Actors and applications

• Very active technology adopted by big actors

• Success story for many different academic problems

• Image processing

• Computer vision

• Speech recognition

• Natural language processing

• Translation

• etc

5

Deep learning – Hype or reality?

Deep learning at Google

6

Deep learning – Hype or reality?

NIPS (Computational Neuroscience Conference) Growth

7

Deep learning – Success stories

Success stories
AlexNet wins the ImageNet classification challenge (Krizhevsky, 2012)

Since, Deep Learning has been the standard and achieved remarkable results.

8

Deep learning – Success stories

Success stories
Google Brains’s image super-resolution (Dahl et al., 2017).

“Google’s neural networks have achieved the dream

of CSI viewers”, The Guardian.

9

Deep learning – Success stories

Success stories
Image captioning (Karpathy, Fei-Fei, CVPR, 2015).

“I had never thought AI would arrive at this stage that fast”, D. J. Lasiman.

10

Deep learning – Success stories

Success stories
Speech recognition

Same improvements in other fields: automatic translation, Go, . . .

11

Deep learning

(Source: Dan Page)

Deep learning

ANNs recap

• Interconnections of neurons (summations and activations),
• Feedforward architecture: input → hidden layer(s) → output,
• Parameterized by a collection of weights Wk (and biases),
• Backprop: parameters learned from a collection of labeled data.

12

Deep learning

What is deep learning?

• Representation learning using artificial neural networks

→ Learning good features automatically from raw data.

→ Exceptionally effective at learning patterns.

• Learning representations of data with multiple levels of abstraction

→ hierarchy of layers that mimic the neural networks of our brain,

→ cascade of non-linear transforms.

G
o

o
g

le
’s

d
et

ec
ti

o
n

N
N

• If you provide the system with tons of information, it begins to understand

it and responds in useful ways.

(Source: Caner Hazırbaş & Lucas Masuch)
13

Deep learning

How to teach a machine?

Good representations are often very complex to define.

(Source: Caner Hazırbaş)

14

Deep learning

Deep learning: No more feature engineering

Learn the latent factors/features behind the data generation

(Source: Lucas Masuch)

15

Deep learning

Inspired by the Brain

• The first hierarchy of neurons that receives information in the visual cortex

are sensitive to specific edges while brain regions further down the visual

pipeline are sensitive to more complex structures such as faces.

• Our brain has lots of neurons connected together and the strength of the

connections between neurons represents long term knowledge.

• One learning algorithm hypothesis: all significant mental algorithms are

learned except for the learning and reward machinery itself.

(Source: Lucas Masuch)

16

Deep learning

Deep learning: No more feature engineering

• The traditional model of pattern recognition (since the late 50’s)

• Fixed/engineered features (or fixed kernel) + trainable classifier

• End-to-end learning / Feature learning / Deep learning

• Trainable features (or kernel) + trainable classifier

(Source: Yann LeCun & Marc’Aurelio Ranzato)

17

Deep learning

Deep learning: No more feature engineering

• Non-deep learning architecture for pattern recognition

• Speech recognition: early 90’s – 2011

• Object Recognition: 2006 – 2012

(Source: Yann LeCun & Marc’Aurelio Ranzato)

18

Deep learning

Deep learning – Basic architecture

(Source: Lucas Masuch)
19

Deep learning

Trainable feature hierarchy

• Hierarchy of representations with increasing levels of abstraction.

• Each stage is a kind of trainable feature transform.

Image recognition

• Pixel → edge → texton → motif → part → object

Text

• Character → word → word group → clause → sentence → story

Speech

• Sample → spectral band → sound → ... → phone → phoneme → word

Deep Learning addresses the problem of

learning hierarchical representations.

(Source: Yann LeCun & Marc’Aurelio Ranzato)

20

Deep learning

Deep learning – Feature hierarchy

• It’s deep if it has more than one stage of non-linear feature transformation

Low-Level

Feature

Feature visualization of convolutional net

trained on ImageNet from (Zeiler & Fergus, 2013)

(Source: Yann LeCun & Marc’Aurelio Ranzato)
21

Deep learning

Deep learning – Feature hierarchy

Each layer progressively extracts higher level features of the input until the final

layer essentially makes a decision about what the input shows. The more layers

the network has, the higher level features it will learn.

(Source: Andrew Ng & Lucas Masuch & Caner Hazırbaş)

22

Deep learning

Deep learning – Feature hierarchy

• Mid- to high-level features are specific to the given task.

• Low-level representations contain less specific features.

(can be shared for many different applications)

23

Deep learning

Deep learning – Training

Today’s trend: make it deeper and deeper

• 2012: 8 layers (AlexNet – Krizhevsky et al., 2012)

• 2014: 19 layers (VGG Net – Simonyan & Zisserman, 2014)

• 2014: 22 layers (GoogLeNet – Szegedy et al., 2014)

• 2015: 152 layers (ResNet – He et al., 2015)

• 2016: 201 layers (DenseNet – Huang et al., 2017)

But remember, with back-propagation:

• We got stuck at local optima or saddle points

• The learning time does not scale well

• it is very slow for deep networks and can be unstable.

How did networks get so deep? First, why does backprop fail?

24

Deep learning

Deep learning – Gradient vanishing problems

Back-propagation and gradient vanishing problems

Update wi,j ← wi,j − γ
∂E(W)

∂wi,j
with

∂E(W)

∂wi,j
=

∑
(x,d)∈T

δihj

where δi = g′(ai)×

 yi − di if i is an output node∑
l

wl,iδl otherwise

• With deep networks, the gradient vanishes quickly.

• Unfortunately, this arises even though we are far from a solution.

• The updates become insignificant, which leads to slow training rates.

• This strongly depends on the shape of g′(a).

• The gradient may also explode leading to instabilities:

→ gradient exploding problem.

25

Deep learning

Deep learning – Gradient vanishing problem

As the network gets deeper, the landscape of E becomes:
• very hilly → lots of stationary points,

• with large plateaus → gradient vanishing problem,

• and delimited by cliffs → gradient exploding problem.

So, what has changed?

26

Unsupervised pretraining (Prehistory)

Depiction of aurochs, horses and deer (Lascaux, France)

Deep learning – Unsupervised pretraining (Prehistory)

(Greedy layer-wise) Unsupervised pretraining

Idea: Training a shallow network is easier than training a deep one.

1 Pretraining: Train several successive layers in an unsupervised way,

2 Stacking: Stack them, stick a classifier at the last layer, and

3 Fine tuning: do classical back propagation.

• Originally proposed by Hinton 2006 to learn Deep Belief Networks (DBN),

→ Considered as deep learning renaissance.

• Greedy because each layer is optimized independently,

• Regularization: decreases test error without decreasing training error.

How to train layers/networks in an unsupervised way?

For DBN, Hinton proposed using restricted Boltzmann machine.

But here, we will consider auto-encoders (Bengio et al., 2007).

27

Deep learning – Unsupervised pretraining – Auto-encoders

Auto-encoders (AEs)

• Unsupervised learning: unlabeled training data T = {x1,x2, . . . ,xN}
• Applications: Dimensionality reduction, denoising, feature extraction, . . .

• Model: feed-forward NNs trained to reproduce the inputs at the outputs,

• Early attempts date back to auto-associative memories (Kohonen 80s),

• Renewed interest since 2006.

Trained with backprop, using the x’s both as

inputs and desired outputs, e.g.:

E(W) =

N∑
i=1

||xi − yi||2 where yi = f(xi;W)

The hidden layer h learns features relevant for the

given dataset. Also called representation layer.

28

Deep learning – Unsupervised pretraining – Auto-encoders

Auto-encoders (AEs)

• Will try to reproduce the input, i.e., to learn the identity function.

• In order to avoid this trivial solution: constrain the hidden layer.

Undercomplete representations

• Classical constraint is to use less hidden units than in the input layer,

(like on the previous illustration)

• Dimensionality reduction: learn a compressed representation h of the data

by exploiting the correlation among the features,

• If all units are linear and the loss is the MSE: performs a transformation

similar to PCA, i.e., it learns a projection that maximizes the variance of

the data (without the orthogonal property).

29

Deep learning – Unsupervised pretraining – Auto-encoders

Auto-encoders (AEs)

Overcomplete representations (1/3)

• Hidden layer may be larger than the input layer.

• Add a penalization into the loss function to avoid the identity solution:

E(W) =
N∑
i=1

||xi − yi||2 + Ω(hi)

• The penalty prevents hidden units from being

freely independent, and h to take arbitrary

configurations.

• This requires adapting the backprop algorithm.

30

Deep learning – Unsupervised pretraining – Auto-encoders

Auto-encoders (AEs)

Overcomplete representations (2/3)

• Sparse autoencoders: `1 penalty: Ω(h) = λ||h||1 = λ
∑
|hk|

• promote sparsity: tends to drive some entries of h to be exactly zero,
• responds differently to different stimuli x (different non-zero coeffs),
• hidden units are specialized,
• learns local mappings (union of subspaces/manifold learning).

31

Deep learning – Unsupervised pretraining – Auto-encoders

Auto-encoders (AEs)

Overcomplete representations (2/3)

• Sparse autoencoders: `1 penalty: Ω(h) = λ||h||1 = λ
∑
|hk|

• promote sparsity: tends to drive some entries of h to be exactly zero,
• responds differently to different stimuli x (different non-zero coeffs),
• hidden units are specialized,
• learns local mappings (union of subspaces/manifold learning).

31

Deep learning – Unsupervised pretraining – Auto-encoders

Auto-encoders (AEs)

Overcomplete representations (2/3)

• Sparse autoencoders: `1 penalty: Ω(h) = λ||h||1 = λ
∑
|hk|

• promote sparsity: tends to drive some entries of h to be exactly zero,
• responds differently to different stimuli x (different non-zero coeffs),
• hidden units are specialized,
• learns local mappings (union of subspaces/manifold learning).

31

Deep learning – Unsupervised pretraining – Auto-encoders

Auto-encoders (AEs)

Overcomplete representations (3/3)

• Contractive autoencoders:

Ω(h) = λ||∂h
∂x
||2F = λ

∑
k

∑
l

(
∂hk
∂xl

)2

• Encourage ∂h
∂x

to be close to 0,
• Insensitive to variations in x except in meaningful directions.

• Prior on the distribution of hidden units

• Under a probabilistic interpretation of the NN,

priors can play the role of penalties (Bayesian framework).

• Ex: Ω(h) = λ||h||1 = − log p(h) + cst. under a Laplacian prior p.

32

Deep learning – Unsupervised pretraining – Auto-encoders

Denoising auto-encoders (DAEs) (Vincent et al., 2008)

• Train the AE to reconstruct the input from a corrupted version of it:
• Some inputs randomly set to 0: x̃i = xi with proba P , 0 otherwise,
• Or Gaussian additive noise: x̃i = xi + wi, wi ∼ N (0, σ2).

• Force the hidden layer to discover more robust features,

• Sort of regularization: prevents from simply learning the identity.

33

Deep learning – Unsupervised pretraining – Auto-encoders

Auto-encoders (AEs) – Visualizing hidden units activities

One way to understand what a hidden unit (or any unit) is doing,

is to look at its weight vector.

• Sparse AE trained on a small set of 10×10 images,

• 100 hidden units (hidden layer size = input layer size),

• Each square represents an input image maximizing the

response of one of the hidden units,

• Each hidden unit has learned a feature detector,

• Mostly edge detectors at different angles and positions

→ Low-level features.
(Source: Andrew Ng)

How to get higher level features?

34

Deep learning – Unsupervised pretraining – Auto-encoders

Stacked auto-encoders (Bengio et al., 2007)

• Idea: Train successive layers of AEs to learn more complex features.

• Strategy: (greedy layer-wise training)

• Each AE is trained using the representation layer of a previous AE,

• The encoders and decoders are next stacked together,

• Fine tuning can be performed to tweak the deep AE.

35

Deep learning – Unsupervised pretraining – Auto-encoders

Stacked auto-encoders (Bengio et al., 2007)

• Idea: Train successive layers of AEs to learn more complex features.

• Strategy: (greedy layer-wise training)

• Each AE is trained using the representation layer of a previous AE,
• The encoders and decoders are next stacked together,

• Fine tuning can be performed to tweak the deep AE.

35

Deep learning – Unsupervised pretraining – Auto-encoders

Stacked auto-encoders (Bengio et al., 2007)

• Idea: Train successive layers of AEs to learn more complex features.

• Strategy: (greedy layer-wise training)

• Each AE is trained using the representation layer of a previous AE,
• The encoders and decoders are next stacked together,

• Fine tuning can be performed to tweak the deep AE.

35

Deep learning – Unsupervised pretraining – Auto-encoders

Deep auto-encoders
Learning High Level Representations in Videos – Google (Le et al. 2012)

• 10 million images from YouTube videos,

• Images are 200× 200 pixels,

• Sparse deep auto-encoder with 109 connections,

• Show test images to the network (e.g., faces),

• Look for neurons with maximum response,

• Some neurons respond to high level characteristics

→ Faces, cats, silhouettes, . . .

• Major breakthrough in machine learning.

Remark: in fact this deep auto-encoder has not been trained using

unsupervised pretraining, but with techniques that will be introduced later.
36

Deep learning – Unsupervised pretraining – Auto-encoders

Combining deep auto-encoders with a classifier

Idea:

• The learned features can be used as inputs to any other system,

• Instead of using the input features x use h obtained at the deepest layer

of the encoder.

Strategy:

1 Given a training set {(x1, d1), . . . , (xN , dN)},

2 Unsupervisedly train an auto-encoder from {x1, . . . ,xN},

3 Get the feature codes {h1, . . . ,hN} (from the deepest layer),

4 Use these codes to train a classifier on {(h1, d1), . . . , (hN , dN)},

5 Plug the encoder and the classifier together,

6 Perform fine tuning (end-to-end training with backprop).

37

Deep learning – Unsupervised pretraining – Auto-encoders

Combining deep auto-encoders with a classifier

1 Train auto-encoder:

2 Plug classifier:

38

Deep learning – Unsupervised pretraining – Auto-encoders

Combining deep auto-encoders with a classifier

1 Train auto-encoder:

2 Plug classifier:

38

Deep learning – Unsupervised pretraining – Auto-encoders

Combining deep auto-encoders with a classifier

1 Train auto-encoder:

2 Plug classifier:

38

Deep learning

Unsupervised pretraining – Overview

Why not learn all the layers at once?

• The gradients propagated backwards diminish rapidly in magnitude so that

the first layers will not learn much (vanishing gradient problem),
• Non convex form of the loss function: many local minima.

Why use auto-encoders?

• Unsupervised learning
• Often easy to get unlabeled data,
• Extract “meaningful” features,
• Can be used as preprocessing for other datasets (transfer learning).

• Supervised fine tuning
• Can be used when labels are available for other tasks.

Today, there exist procedures for training deep NN architectures from

scratch, but the unsupervised pretraining approach

was the first method to succeed.

39

Modern deep learning – Recipes

Modern deep learning

What has changed again?

Modern deep learning makes use of several tools and heuristics for training

large architectures: type of units, normalization, optimization. . .

1 Fight vanishing/exploding gradients

−→ Rectifiers, Gradient clipping.

2 Improve accuracy by using tons of data thanks to

• Stochastic gradient descent (and variants),
• GPUs, parallelization, distributed computing, . . .

3 Fight poor solutions (saddle points) and over-fitting

−→ Early stopping, Dropout, Batch normalization, Regularization, . . .

4 Multitude of open source solutions.

40

Modern deep learning – Tools and recipes

Disclaimers

The field evolves so quickly that parts of what follows

are possibly already outdated.

And if they are not outdated yet, they will be in the next few months.

Many recent tools, sometimes less than a year old, become the new standard

just because they work better.

Why do they work better? The answer is usually based on intuition, and

rigorous answers are often lacking.

41

Modern deep learning – Tools and recipes

Rectifier (Glorot, Bordes and Bengio, 2011)

• Goal: Avoid the gradient vanishing problem.

• How: make sure g′(aj) is not close to zero for all training points,

this was often arising with hyperbolic tangents or sigmoids.

• Rectifier linear unit (ReLU):

g(a) = max(a, 0)

• Softplus: g(a) = log (1 + exp a)

• Leaky ReLU: g(a) = max(a, 0.1a)

Jump

• Exponential LU (ELU): g(a) =

{
a if a > 0

α(ea − 1) otherwise

In a randomly initialized network, about 50% of hidden units are activated.

It also promotes sparsity of hidden units (structured/organized features).

42

Modern deep learning – Tools and recipes

Gradient clipping (Mikolov, 2012; Pascanu et al., 2012)

• Goal: Avoid the gradient exploding problem.

• How: make sure ∇E(W) does not get too large.

• Cliffs cause the learning process to overshoot a desirable minimum.

• Preserve the direction but prevent extreme values:

If ||∇E(W t)|| 6 τ : W t+1 ←W t − γ∇E(W t)

Else: W t+1 ←W t − γτ ∇E(W t)

||∇E(W t)||

• Pick threshold τ by averaging the norm over a large number of updates.

• New solution W t+1 stays in a ball of radius τ around the current solution.

43

Modern deep learning – Tools and recipes

Stochastic gradient descent

Reminder: (Batch) gradient descent with backprop

1 For each training sample

• Perform backprop,
• Sum their gradients.

2 Update the weights (based on the gradient over the whole batch). G
o
to

S
te
p

1
−−
−−
−−
−→

→ Convergence to a stationary point under some technical assumptions.

• Requires the loading of the whole dataset into memory (big data sets),

• Can’t be efficiently parallelized or used online,

• Scanning the whole training set is slow (epoch),

• Epoch: a scan in which each training sample has been visited at least once.

• After 10 epochs, the weights have been updated only 10 times,

• Designed to fall into local minima.

44

Modern deep learning – Tools and recipes

Stochastic gradient descent

Stochastic gradient descent (SGD) (Robbins and Monro, 1951)

1 For each training sample (shuffled randomly – thus “stochastic”)

• Perform backprop,
• Evaluate its gradient,
• Update the weights (based only on that sample). G

o
to

S
te
p

1
−−
−−
−−
−→

→ Convergence under technical assumptions with high probability.

• After 10 epochs, the weights have been updated 10×N times

(N size of the training set),
• Faster if the gradient of each sample is a good proxy for the total gradient,
• Can get out of local minima as it explores the space in a random fashion,
• It allows online learning,
• But it is noisy, unstable and can still get trapped into local minima.

• Origin: ADALINE (Widrow & Hoff, 1960).

45

Modern deep learning – Tools and recipes

Stochastic gradient descent

Mini-batch gradient descent

1 Shuffle: create a random partition of subsets of size b (mini-batches)

2 For each mini-batch

• Perform backprop and accumulate the gradients,
• Update the weights (based on the gradient of the mini-batch) G

o
to

S
te
p

1
−−
−−
−−
−→

→ Convergence under technical assumptions with high probability.

• Usually, a mini-batch contains around 50 to 256 data points,
• After 10 epochs, the weights have been updated 10×N/b times
• Smoothes the noise, then provides a better proxy for the total gradient,
• Can still get out of some local minima,
• Trade-off between batch GD and SGD (stability vs. speed)
• Enjoys highly optimized matrix manipulation tools.

Remark: Nowadays, SGD often referred to as mini-batch gradient descent.

46

Modern deep learning – Tools and recipes

Stochastic gradient descent

Mini-batch gradient descent:

{ • Not only faster,

• Usually finds better solutions.

Because randomness helps explore new configurations,

and mini-batches favor more relevant configurations.

But make sure to adjust the learning rates.

47

Modern deep learning – Tools and recipes

Learning rate (reminder)

W t+1 ←W t − γ∇E(W t)

48

Modern deep learning – Tools and recipes

Learning rate schedules

Learning rate schedules: reduce γ at each epoch t

W t+1 ←W t − γt∇E(W t) with lim
t→∞

γt = 0

• Time-based decay: γt = 1
1+κt

γ0, κ > 0 (aka, search-then-converge)

• Step decay: γt = κtγ0, 0 < κ < 1 (aka, drop decay)

• Exponential decay: γt = exp(−κt)γ0, κ > 0

• Guaranteed to converge (avoid SGD from oscillating forever),

• But may stop too early (too fast),

• Connections with simulated annealing (γt seen as temperature),

→ Hence, often referred to as annealing.
• Large γt: explore the space (allows uphill jump),
• Small γt: move downhill towards the best local solution.

• Variant: restart schedule from the best iterate (achieving smaller loss).

49

Modern deep learning – Tools and recipes

Adaptive learning rates

Adaptive learning rates: adapt γ during the iteration t independently for

each connection wij

wt+1
ij ← wtij − γtij

∂E(W t)

∂wti,j

AdaGrad (Duchi et al., 2011): γti,j =
γ0√√√√ t∑

k=1

∣∣∣∣∣∂E(W k)

∂wki,j

∣∣∣∣∣
2

+ ε

Use larger rates for directions that remain flat, smaller if they keep changing.

Other strategies: RMSProp (Hinton, 2012) and Adam (Kingma & Ba, 2015)︸ ︷︷ ︸
new standard

.

Main advantage: Less sensitive to the initial choice of γ0 > 0.

Further reading: http://ruder.io/optimizing-gradient-descent/
50

http://ruder.io/optimizing-gradient-descent/

Modern deep learning – Tools and recipes

Momentum and Nesterov accelerated gradient (NAG)

Idea: denoise gradients (in SGD) by using inertia, memory of velocity

(Stochastic) gradient descent (for each mini-batch)

W t+1 ←W t − γ∇E(W t)

Momentum – introduce velocity V t (parameter ρ ≈ .9)

W t+1 ←W t −
(
γ∇E(W t) + ρV t)︸ ︷︷ ︸

=V t+1

Nesterov acceleration (1983) (in deep community: Sutskever et al., 2013)

W t+1 ←W t −
(
γ∇E(W t − ρV t) + ρV t)︸ ︷︷ ︸

=V t+1

Nice illustrations: https://distill.pub/2017/momentum/
51

https://distill.pub/2017/momentum/

Modern deep learning – Tools and recipes

Momentum and Nesterov accelerated gradient (NAG)

W t+1 ←W t −
(
γ∇E(W t)+ρV t

)︸ ︷︷ ︸
=V t+1

W t+1 ←W t −
(
γ∇E(W t−ρV t) + ρV t

)︸ ︷︷ ︸
=V t+1

(Correction of the gradient) (Correction of the momentum)

In convex and batch settings, NAG decays in O(1/t2) instead of O(1/t).

For deep learning, dramatic acceleration observed in practice.

It also improves regularity of SGD.

52

Modern deep learning – Tools and recipes

Weight decay

Goal: prevent from exploding weights, limit the freedom, avoid over-fitting.

Weight decay:

W t+1 ←W t − γ(∇E(W t) + κW t)

It corresponds to adding an `2 penalty to the loss

min
W

E(W) +
κ

2
||W ||2F

and has the effect of shrinking the weights towards zero.

53

Modern deep learning – Tools and recipes

Gradient noise (Neelakantan, 2015)

If a little bit of noise is good, what about adding noise to the gradient?

W t+1 ←W t − γ(∇E(W t) +N (0, σ2
t)) with σt =

σ0

(1 + t)κ

Works surprisingly great in many situations!

All together

Nesterov + Adaptive learning rates + Weight decay + Gradient noise:

W t+1 ←W t −
(
γt(∇E(W t − ρV t) + κ(W t − ρV t) +N (0, σt

2)) + ρV t)︸ ︷︷ ︸
=V t+1

Good luck to tune all the parameters jointly!

Luckily, many toolboxes offer good default settings.

54

Modern deep learning – Tools and recipes

Early stopping (Girosi, Jones and Poggio, 1995)

• Goal: Reduce over-fitting.

• How: Stop the iterations of gradient descent before convergence.

1 Split the training set into a training subset and a validation subset,

2 Train only on the training subset,

3 Evaluate the error on the validation subset every few epochs,

4 Stop training as soon as the error on the validation starts increasing.

55

Modern deep learning – Tools and recipes

Normalized initialization

Idea: A good weight initialization should be random

wij ∼ N (0, σ2)︸ ︷︷ ︸
Gaussian

or wij ∼ U
(
−
√

3σ,
√

3σ
)

︸ ︷︷ ︸
Uniform

with standard deviation σ chosen such that all (hidden) outputs hj have unit

variance (during the first step of backprop).

Var[hj] = Var

[
g

(∑
i

wijhi

)]
= 1

Randomness:

prevents units from learning the same thing.

Normalization: preserves dynamic of the

outputs and gradients at each layer:

→ all units get updated with similar speed.
56

Modern deep learning – Tools and recipes

Normalized initialization

1 Normalize the inputs with about zero-mean and unit variance,

2 Initialize all the biases to zero,

3 For the weights wij of a unit j with N inputs and activation g:

• Xavier initialization (Glorot & Bengio, 2010): for g(a) = a

Var

[
g

(∑
i

wijhi

)]
=
∑
i

σ2 Var [hi]︸ ︷︷ ︸
=1

= 1 ⇒ σ =
1√
N

(Works also for g(a) = tanh(a).)

• He initialization (He et al., 2015): for ReLU → σ =

√
2

N
(First time, a machine surpasses humans on ImageNet.)

• Kumar initialization (Kumar, 2017): for any g differentiable at 0:

σ2 =
1

Ng′(0)2(1 + g(0)2)
57

Modern deep learning – Tools and recipes

Normalized initialization

Alternatives:

• Force weights of different units to be orthogonal (Saxe et a., 2014)

• Choose W as one of the orthonormal matrices obtained by taking the

SVD of a matrix with random elements: M = USV T .
• It promotes units to be specialized for different features.

• Mix orthogonality and equal variance principles (Mishkin & Matas, 2016)

• Choose W as a random orthonormal matrix,
• Normalize each unit by its variance estimated on mini-batches,
• It forces units to be specialized in different tasks,
• It makes sure the gradients do not vanish in some layers.

58

Modern deep learning – Tools and recipes

Dropout (Hinton et al., 2012)

• Goal: Reduce over-fitting.

• How: Train smaller networks.

• Build a sub-network for each training sample,

• Drop nodes with probability 1− p or keep them with probability p,

(in practice use a random binary mask to disable entries of W).

• Usually, p = .5 for hidden layers, and p ≈ 1 for the input.

59

Modern deep learning – Tools and recipes

Dropout (Hinton et al., 2012)

• Use back-propagation for each data point and its sub-network,

• Note that each sub-network within a mini-batch shares common weights,

• At test time, dropout is disabled and unit outputs are multiplied by their

corresponding p such that all units behave as if trained without dropout.

• Prevents units from co-adapting too much (depend on each other),

• Allows the network to learn more robust and specific features,

• Converges faster, and each epoch costs less.

60

Modern deep learning – Tools and recipes

Batch normalization (Ioffe and Szegedy, 2015)

• Goal: Learn faster, learn better.

• How: Normalize inputs of each hidden layer.

Internal Covariate Shift

• With backprop, the distribution of the inputs h of a (deep) hidden layer

keeps changing during the iterations.

• This is painful as the layers need to continuously adapt to it, then

• Requires low learning rates,
• Careful parameter initialization,
• Proper choices of activation functions,
• Leads to slow convergence, and poor solutions.

61

Modern deep learning – Tools and recipes

Batch normalization (Ioffe and Szegedy, 2015)

• Ultimately, transform a (recall, a = Wh + b) to satisfy

• Zero-mean: remove arbitrary shift of your data,

• Unit variance: remove arbitrary spread of your data,

• White: force decorrelation/independence

(non-linearities are often applied entry-wise),

• Gaussian: force entries to be Gaussian distributed,

→ remove extreme values.

• Dates back to classical ML with hand-crafted features,

(see, standardizing, PCA, feature warping, histogram specification, . . .)

• but here we also normalize the inputs of each (hidden) layer at each epoch.

• To avoid reducing speed: only do zero-mean and unit variance.

62

Modern deep learning – Tools and recipes

Batch normalization (Ioffe and Szegedy, 2015)

Idea: perform for each unit i of a given hidden layer

aBNi ← βi + αi
ai − µi√
σ2
i + ε︸ ︷︷ ︸

standardized input

• µi, σi: mean and standard deviation of ai over the current mini-batch,

(obtained during the forward step)

• αi, βi: scalar parameters learned by backprop,

(updated during the backward step)

• ε > 0: regularization to avoid instabilities.

αi and βi introduced to preserve the network capacity.

(to make use of non-linearities, otherwise sigmoid ≈ linear)

During testing, replace µi and σi by an average of the last estimates obtained

over mini-batches during training.
63

Modern deep learning – Tools and recipes

Batch normalization (Ioffe and Szegedy, 2015)

• αi and βi encode the range of inputs given to the activation function,

(can be seen as parameters of the activation function)

• each layer learns a little bit more by itself independently from other layers,

• allows higher learning rates (larger gradient descent step size γ),

• reduce over-fitting – slight regularization effects.

64

Modern deep learning – Tools and recipes

Batch normalization – variant

• Some implementations normalized hi instead of ai,

• In this case αi and βi perform a kind of preconditioning,

• What strategy is best is still under debate.

65

Modern deep learning – Tools and recipes

Residual Networks (ResNets) (Microsoft – He et al., 2015).

Up to 2015, deep was about ≈ 20 layers, and using more was harmful.

Goal: Get deeper and deeper while improving accuracy.

Idea: Learn f : x→ d− x︸ ︷︷ ︸
residual

instead of h : x→ d (assuming same size),

then give your prediction of d as y = f(x) + x

• Tough to learn a mapping close to the identity with non-linear layers:

• Consider a 1 ReLU unit:

1 y = max(0, wx+ b)︸ ︷︷ ︸

h(x)

2 y = max(0, wx+ b)︸ ︷︷ ︸
f(x)

+x.

• Learn y = x: trivial for 2 , impossible for 1 .
• Of course, possible with more units but less trivial.

• Simpler to learn what the fluctuations around x should be.

66

Modern deep learning – Tools and recipes

Residual Networks (ResNets)

Example (Denoising x = d + n with d the desired clean image)

• The residual is (minus) the noise component: d− x = −n,

• subtle difference between the input x = d + n and output d

→ harder to learn.

• large difference between the input x = d + n and the residual −n
→ easier to learn.

︸ ︷︷ ︸
x

×−→

︸ ︷︷ ︸
d

︸ ︷︷ ︸
x

√
−→

︸ ︷︷ ︸
−n

But why does it help me to be deeper?

67

Modern deep learning – Tools and recipes

Residual Networks (ResNets)

• Don’t necessarily use this concept only for the input and output layers,

• Instead, use successions of hidden layers with same size,

• Use it every two hidden layers:

ak+1 = W khk

hk+1 = g(ak+1)

ak+2 = W k+1hk+1

hk+2 = g(ak+2 + hk)

• Use shortcut connections:

• It does not require extra parameters,

• Does not add computational overhead,

• Acts as a kind of preconditioning

−→ allowing for huge accelerations,

• Led to a 152 deep NN that won the 2015 ImageNet competition,

−→ we will return to this next class.

68

Modern deep learning – Tools and recipes

Regularization

• Goal: Avoid over-fitting.

• How: Use prior knowledge.

Early stopping, dropout, batch normalization, etc., implicitly promote some

regularity. But we can also introduce regularity explicitly given prior knowledge

on the problem/application context.

Remember: autoencoders extract relevant features by making use of
• Undercomplete representation (remove nodes):

information can be compressed/encoded with a small dictionary,

• Overcomplete/sparse representation (penalize node’s outputs):

information can be encoded with a few atoms of a large dictionary.

In both cases, we have used prior knowledge that

information must be structured/organized.

69

Modern deep learning – Tools and recipes

Regularization

In general, there exists a lot more of intrinsic regularity in the data that should

be injected in the model (all the more for images).

For instance, as for the nodes, depending on the application, some connections

can be removed (non-fully connected layer), or their weights can be penalized

by adding a regularization term Ω in the loss function:

• Ω = `1 to promote sparsity (sparse layer),

• Ω = `2 to promote small coefficients (weight decay),

• . . .

As we will see next class, Convolution Neural Networks (CNN) are a kind of

highly constrained architecture very relevant for images.

Regularity is probably the most important ingredient allowing for deep learning.

70

Modern deep learning – Tools and recipes

Data augmentation

Idea: generate artificially more data points from the training set itself.

Others: rotations, zooms (rescalings), brightness, noise, . . .

(Source: Ken Chatfield)
71

Modern deep learning – Tools and recipes

Curriculum learning (Bengio et al, 2009)

• Convex criteria: the order of presentation of samples should not matter

to the convergence point, but could influence convergence speed.

• Non-convex criteria: the order and selection of samples could yield a

better solution.

1 Integers

2 Real numbers

3 Complex numbers

4 eiπ = −1

(Inspiration: Pawan Kumar)

• Start learning on easy samples, and increase the difficulty step by step.

• Improves but requires to sort the training samples by difficulty.

• When you cannot or do not know how, shuffling randomly is safer.

72

Modern deep learning – Tools and recipes

Multitask learning (Caruana, 1997)

• Learning jointly how to solve several tasks improves performance,
• Effect of regularization (avoid over-fitting),
• Useful in context of insufficiently labeled data.

Share first hidden

layers, use specific

ones last.

dummy

Related to:

• unsupervised pretraining (Hinton, 2006): train first in an unsupervised

way, fine-tune to solve a given task.
• transfer learning (Pratt, 1993, 1997): train first on a given large dataset

(detect red cars), fine-tune to a smaller one (detect tumors).

73

Modern deep learning – Tools and recipes

Open source solutions

Most popular

• TensorFlow – Google Brain – Python, C/C++

• Torch – Facebook – Lua, Python

• Theano – University of Montreal – Python (ended Nov 2017)

• Keras high level interface for TensorFlow, Theano

• Caffe – Berkeley Vision and Learning Center - Python, MATLAB

• MxNet – Apache – Python, Matlab, Julia, C++, . . .

• MatConvNet – University of Oxford – Matlab

Main features

• Implementations of most classical DL models, tools, recipes...

• Pretrained models,

• GPU/CUDA support,

• Flexible interfaces,

• Automatic differentiation.

74

Modern deep learning – Tools and recipes

(Multi) GPUs architectures

• Neural Networks are inherently parallel,

• GPUs are good at matrix/tensor operations,

• Much faster than CPU, lower power, lower cost,

• New architectures are optimized for deep learning:

NVIDIA Tesla V100: World’s first

GPU to break the 100 teraflops

barrier of deep learning performance.

New feature: 640 tensor cores.

Relatively cheap (≈ $8,000).

Released June 2017.

• Relatively easy to manipulate thanks to CUDA,

• Many deep learning toolboxes have GPU support,

• Can be integrated in clusters/datacenters for distributed computing.

75

Modern deep learning – Tools and recipes

Best practices

• Check/clean your data: remove corrupted ones, perform normalization, . . .

• Shuffle the training samples,

• Split your data into training (70%) and testing (30%),

• Use early stopping: take another 30% of training for validation,

• Never train on test data,

• Start with an existing network and adapt it to your problem,

• Start smallish, keep adding layers and nodes until you overfit too much,

• Check that you can achieve zero loss on a tiny subset (20 examples),

• Track the loss during training,

• Track the first-layer features,

• Try the successive rates: γ = 0.3, 0.1, 0.03, 0.01, 0.003, 0.001.

Recommended reading:

https://karpathy.github.io/2019/04/25/recipe/

76

https://karpathy.github.io/2019/04/25/recipe/

Weaknesses and criticisms

Weaknesses and criticisms

Differences from the brain

• The way artificial neurons fire is fundamentally different than biological

neurons.

• A human brain has 100 billion neurons and 100 trillion connections

(synapses) and operates on 20 watts (enough to run a dim light bulb) - in

comparison the 2012 Google Brain project had 10 million neurons and 1

billion connections on 16,000 CPUs (about 3 million watts).

• The brain is limited to 5 types of input data from the 5 senses.

• Children do not learn what a cow is by reviewing 100,000 pictures labeled

“cow” and “not cow”, but this is how deep learning works.

(Source: Devin Didericksen)

77

Weaknesses and Criticisms

Deep neural networks are easily fooled (Nguyen, CVPR, et al, 2014)

• Images are unrecognizable

by humans,

• System has 99.1% certainty

that the image is that

type of thing,

• Unclear what it learns, clearly

it does not organize concepts

as we do.

78

Weaknesses and Criticisms

Intriguing properties of neural networks (Szegedy et al., 2013)

For each sample, there exists a small (non random) perturbation that can

completely fool the network, even though humans are not fooled.

79

Weaknesses and criticisms

Universal Adversarial Perturbations (Moosavi-Dezfooli et al., ICCV, 2017)

Look for a small perturbation r such that

argmin
r

||r||2 subject to ∀(x, d) ∈ T , y = f(x + r) 6= d

Worst, it can be the same perturbation for all training samples.

−→ raises serious security issues in critical applications.
80

Weaknesses and criticisms

Humans can be fooled too

Which square is darker? A or B?

81

Overview

Deep learning – Overview

Pros & Cons

• Best performing method in many

Computer Vision tasks,

• No need for hand-crafted features,

• Robustness to natural variations in the

data is automatically learned,

• Can be reused for many different

applications and data types,

• Applicable to large-scale problems,

e.g., classification with 1000 classes,

• Performance improves with more data,

• Easy parallelization on GPUs.

• Need of huge amount of training data,

• Hard to design and tune,

• Difficult to analyze and understand:

many features are not really

human-understandable,

• Other methods like SVMs are easily

deployed even by novices and can

usually get you good results,

• Tend to learn everything. It’s better to

encode prior knowledge about

structure of images (or audio or text)

if large datasets are not available.

(Source: Caner Hazırbaş)

82

Deep learning – Overview

When to use Deep Learning?

• You have a large amount of data with good quality,

• You are modeling image/audio/language/time-series data,

• Your data contains high-level abstractions:

Excels in tasks where the basic unit (pixel, word) has very little

meaning in itself, but their combination has a useful meaning.

• You need a model that is less reliant on handmade features, and instead

can learn important features from the data.

(Source: Lucas Masuch, Andrew Ng)
83

Questions?

Next class: Image classification and CNNs

Sources, images courtesy and acknowledgment

• K. Chatfield

• P. Gallinari,

• C. Hazırbaş

• A. Horodniceanu

• Y. LeCun

• V. Lepetit

• L. Masuch

• A. Ng

• M. Ranzato

83

	Deep learning
	Unsupervised pretraining (Prehistory)
	Modern deep learning – Recipes
	Weaknesses and criticisms
	Overview

