
ECE 285

Machine Learning for Image Processing

Chapter VI – Generation, super-resolution and style transfer

Charles Deledalle

July 9, 2019

1



Image generation



Image generation, super-resolution and style transfer

Motivations – Image generation

• Goal: Generate images that look like the ones of your training set.

• What? Unsupervised learning.

• Why? Different reasons and applications:
• Can be used for simulation, e.g., to generate labeled datasets,
• Must capture all subtle patterns → provide good features,
• Can be used for other tasks: super-resolution, style transfer, . . .

2



Image generation

Image generation – Explicit density

1 Learn the distribution of images p(x) on a training set.

2 Generate samples from this distribution.

3



Image generation

Image generation – Gaussian model

• Consider a Gaussian model for the distribution of images x with n pixels:

x ∼ N (µ,Σ)

p(x) =
1√

2π
n|Σ|1/2

exp
[
(x− µ)TΣ−1(x− µ)

]

• µ: mean image,
• Σ: covariance matrix of images.

4



Image generation

Image generation – Gaussian model

• Take a training dataset T of images:

T = {x1, . . . ,xN}

=

 , , , , ,

×N

, . . .


• Estimate the mean

µ̂ =
1

N

∑
i

xi =

• Estimate the covariance matrix: Σ̂ = 1
N

∑
i(xi − µ̂)(xi − µ̂)

T = ÊΛ̂ÊT

Ê =

 , , , , ,

×N

, . . .

︸ ︷︷ ︸
eigenvectors of Σ̂, i.e., main variation axis

5



Image generation

Image generation – Gaussian model

You now have learned a generative model:

6



Image generation

Image generation – Gaussian model

How to generate samples from N (µ̂, Σ̂)?{
z ∼ N (0, Idn) ← Generate random latent variable

x = µ̂+ ÊΛ̂1/2z

The model does not generate realistic faces.

The Gaussian distribution assumption is too simplistic.

Each generated image is just a linear random combination of the eigenvectors.

The generator corresponds to a linear neural network (without non-linearities).
7



Image generation

Image generation – Beyond Gaussian models

But the concept is interesting: can we find a transformation such that each

random code can be mapped to a photo-realistic image?

We need to find a way to assess if an image is photo-realistic.

8



Image generation

Image generation – Beyond Gaussian models

9



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

• Goal: design a complex model with high capacity able to map latent

random noise vectors z to a realistic image x.

• Idea: Take a deep neural network

• What about the loss? Measure if the generated image is photo-realistic.

10



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

Define a loss measuring how much you can fool a classifier that has

learned to distinguish between real and fake images.

• Discriminator network: try to distinguish between real and fake images.

• Generator network: fool the discriminator by generating realistic images.

11



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

• Discriminator network: Consider two sets

• Treal: a dataset of n real images,
• Tfake: a dataset of m fake images.

• Goal: find the parameters θd of a binary classification network

x 7→ Dθd(x) meant to classify real and fake images.

Minimize the cross entropy, or maximize its negation

max
θd

1

n

∑
x∈Treal

logDθd(x)︸ ︷︷ ︸
force predicted labels to be 1

for real images

+
1

m

∑
x∈Tfake

log(1−Dθd(x))︸ ︷︷ ︸
force predicted labels to be 0

for fake images

• How: use gradient ascent with backprop (+SGD, batch-normalization. . . ).

12



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

• Generator network: Consider a given discriminative model x 7→ Dθd(x)

and consider Trand a set of m random latent vectors.

• Goal: find the parameters θg of a network x 7→ Gθg (z) generating images

from random vectors z such that it fools the discriminator

min
θg

1

m

∑
z∈Trand

log(1−Dθd(Gθg (z)))︸ ︷︷ ︸
force the discriminator to think that

our generated fake images are not fake (away from 0)

(1)

or alternatively (works better in practice)

max
θg

1

m

∑
z∈Trand

logDθd(Gθg (z)))︸ ︷︷ ︸
force the discriminator to think that

our generated fake images are real (close to 1)

(2)

• How: gradient descent for (1) or gradient ascent for (2) with backprop. . .
13



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

• Train both networks jointly.

• Minimax loss in a two player game (each player is a network):

min
θg

max
θd

1

n

∑
x∈Treal

logDθd(x) +
1

m

∑
z∈Trand

log(1−Dθd(Gθg (z)︸ ︷︷ ︸
fake

)

• Algorithm: repeat until convergence

1 Fix θg, update θd with one step of gradient ascent,

2 Fix θd, update θg with one step of gradient descent for (1),

(or one step of gradient ascent for (2).)

14



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

15



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

16



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

17



Image generation

Convolutional GAN
(Radford et al., 2016)

• Generator: upsampling network with fractionally strided convolutions,

• Discriminator: convolutional network with strided convolutions.

18



Image generation

Convolutional GAN
(Radford et al., 2016)

Generations of realistic bedrooms pictures,

from randomly generated latent variables.

19



Image generation

Convolutional GAN
(Radford et al., 2016)

Interpolation in between points in latent space.

20



Image generation

Convolutional GAN – Arithmetic
(Radford et al., 2016)

21



Image generation

Convolutional GAN – Arithmetic
(Radford et al., 2016)

22



Image generation

GAN Sub-classification

23



Image generation

2017: Year of the GAN

24



Super-resolution



Super-resolution

Super-resolution

︸︷︷︸
Low-resolution (LR) image

Super-resolution (SR)

−−−−−−−−−−−→

︸ ︷︷ ︸
High-resolution (HR) image

Goal: Create a high-resolution (HR) image from a low-resolution (LR) image.

25



Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation

Approach 1: Consider the SR problem as a 2d interpolation problem.

Look at the pixel values of the original LR image on its LR grid.

26



Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation

Approach 1: Consider the SR problem as a 2d interpolation problem.

Forget about the LR grid and consider each pixel as a 2d point.

26



Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation

Approach 1: Consider the SR problem as a 2d interpolation problem.

Inject the targeted HR grid.

26



Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation

Approach 1: Consider the SR problem as a 2d interpolation problem.

Deduce HR pixel values based on LR points.

26



Super-resolution – Approach 1 – Interpolation

Super-resolution – Nearest neighbor interpolation

Nearest neighbor: affect the pixel value of the closest LR point.

ISR(x, y) = ILR(xk? , yl?) where (k?, l?) = argmin
(k,l)

(xk − x)2 + (yl − y)2

27



Super-resolution – Approach 1 – Interpolation

Super-resolution – Nearest neighbor interpolation

Nearest neighbor: affect the pixel value of the closest LR point.

ISR(x, y) = ILR(xk? , yl?) where (k?, l?) = argmin
(k,l)

(xk − x)2 + (yl − y)2

27



Super-resolution – Approach 1 – Interpolation

Super-resolution – Nearest neighbor interpolation

︸︷︷︸
LR image

→

︸ ︷︷ ︸
Obtained HR image

v.s.

︸ ︷︷ ︸
Targeted HR image

Problem: pixels are independently copied into a juxtaposition of large

rectangular block of pixels.

28



Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear interpolation

Bi-linear: combine

pixel values of LR

points with respect to

their distance to the

HR point.

ISR(x, y) =
y2 − y
y2 − y1

(
x2 − x
x2 − x1

ILR(x1, y1) +
x− x1
x2 − x1

ILR(x2, y1)

)
︸ ︷︷ ︸

linear interp. for x with y = y1

+
y − y1
y2 − y1

(
x2 − x
x2 − x1

ILR(x1, y2) +
x− x1
x2 − x1

ILR(x2, y2)

)
︸ ︷︷ ︸

linear interp. for x with y = y2

29



Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear interpolation

Bi-linear: combine

pixel values of LR

points with respect to

their distance to the

HR point.

ISR(x, y) =
y2 − y
y2 − y1

(
x2 − x
x2 − x1

ILR(x1, y1) +
x− x1
x2 − x1

ILR(x2, y1)

)
︸ ︷︷ ︸

linear interp. for x with y = y1

+
y − y1
y2 − y1

(
x2 − x
x2 − x1

ILR(x1, y2) +
x− x1
x2 − x1

ILR(x2, y2)

)
︸ ︷︷ ︸

linear interp. for x with y = y2

29



Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear / Bi-cubic interpolation

Bi-linear interpolation

• Interpolate the 4 points by finding the coefficients a, b, c and d of

f(x, y) = ax+ by + cxy + d

• 4 unknowns and 4 (independent) equations ⇒ unique solution.

Bi-cubic interpolation

• Same but with 16 coefficients aij , 0 6 i, j 6 3, of

f(x, y) =

3∑
i=0

3∑
j=0

aijx
iyj

• 16 unknowns and 4 equations → infinite number of solutions,

• Interpolate the derivatives: 4 in x + 4 in y + 4 in xy → 16 equations.

• Closed-form solution obtained by inverting a 16× 16 matrix.

30



Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear / Bi-cubic interpolation

31



Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear / Bi-cubic interpolation

︸ ︷︷ ︸
Nearest neighbor

︸ ︷︷ ︸
Bi-linear

︸ ︷︷ ︸
Bi-cubic

Problem: bi-cubic interpolation is a bit better, but the image still appears

blurry/blobby, it is missing sharp content.

32



Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation + Sharpening

︸ ︷︷ ︸
Bi-cubic

+ α

︸ ︷︷ ︸
Details

=

︸ ︷︷ ︸
Sharpening

Naive sharpening:


• extract details (high-pass filter),

• amplify them by α > 0,

• add them to the original image.

More contrast but still blocky artifacts and lacking fine details.

33



Super-resolution – Approach 1 – Interpolation

Super-resolution – Image sharpening

• Sharpening: amplifies existing frequencies (visible details).

• Super-resolution: retrieves missing high-frequencies (lost details).

(Source: Taegyun Jeon)
34



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

Approach 2: Model SR as a linear inverse problem

• Linear model based on the characteristics of the camera

xLR = S︸︷︷︸
sub-sampling

B︸︷︷︸
blur

xHR = H︸︷︷︸
both

xHR, H = SB

• Blur: convolution with the point spread function of your digital camera,

• Sub-sampling: depends on the targeted HR and the intrinsic resolution of

your digital camera (number of photo receptors, cutting frequency, . . . )

︸ ︷︷ ︸
xLR

=

︸ ︷︷ ︸
Subsampling S

×

︸ ︷︷ ︸
Blur B

?

︸ ︷︷ ︸
xHR

35



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

• SR is then a problem of solving a linear system of equations

xLR =HxHR ⇔


h11x

HR
1 + h12x

HR
2 + . . .+ h1nx

HR
n = xLR

1

h21x
HR
1 + h22x

HR
2 + . . .+ h2nx

HR
n = xLR

2

...

hn1x
HR
1 + hn2x

HR
2 + . . .+ hnnx

HR
n = xLR

n

• Retrieving xHR ⇒ Inverting H.

• But, H = SB is not invertible → the problem is said to be ill-posed.

• There are more unknowns (#HR pixels) than equations (#LR pixels),

• Infinite number of solutions satisfying the normal equation:

xHR∗ ∈ argmin
xHR

||HxHR − xLR||22 ⇔ HT (HxHR∗ − xLR) = 0

36



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

• The solution of minimum norm is given by: xHR+ =H+xLR

where H+ is the Moore-Penrose pseudo-inverse.

• But, as the problem is ill-posed:

• small perturbations in xLR lead to large errors in xHR+,
• and unfortunately xLR is often corrupted by noise,
• or xLR is quantized/compressed/encoded with limited precision.

(a) HR image xHR

H−→

Noise:
wy
⊕ −→

(b) Noisy LR xHR

H+

−→

(c) Pinv xHT+

The pseudo-inverse solution is similar to image sharpening:

(over)amplifies existing frequencies but does not reconstruct missing ones.

37



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

Regularized inverse problems

• Idea: look for approximations instead of interpolations by penalizing

irregular solutions:

xHR-R ∈ argmin
xHR

||HxHR − xLR||22 + τR(xHR)

• R(xHR) regularization term penalizing large oscillations:

• Tikhonov regularization: R(x) = ||∇x||22 (1943)

→ convex optimization problem: closed-form expression.

→ remove unwanted oscillations, but blurry (similar to bi-cubic).

• Total-Variation: R(x) = ||∇x||1 (Rudin et al., 1992)

→ convex optimization problem: gradient descent like techniques.

→ smooth with sharp edges (recover some high frequencies).

• τ > 0 regularization parameter.

38



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

(a) LR image

(b) Tiny τ ∼ pinv (c) Small τ (d) Good τ (e) High τ (f) Huge τ

Tikhonov regularization for ×4 upsampling (16 times more pixels)

39



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

(a) LR image

(b) Tiny τ ∼ pinv (c) Small τ (d) Good τ (e) High τ (f) Huge τ

Total-Variation regularization for ×4 upsampling (16 times more pixels)

39



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

• Standard approach since 1949 (Wiener deconvolution) until 2015.

• Pros:

• Based on strong mathematical theory,
• Properties of solutions have been well studied,
• Convex optimization.

• Cons:

• Based on hand-crafted regularization priors,
• Unable to model correctly the subtle patterns of natural images,
• Results are often blobby and not photo-realistic,
• Require to model correctly the subsampling S and blur B,
• Slow and not available in standard image processing toolboxes.

• Still relevant for multi-frame super-resolution

(since with multiple frames the problem becomes well-posed).

40



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Single vs Multi-frame

Single-frame super-resolution (sub-sampling + convolution + noise)

︸ ︷︷ ︸
xLR

=

︸ ︷︷ ︸
Sub-sampling S

×

︸ ︷︷ ︸
Blur B

?

︸ ︷︷ ︸
xHR

+

︸ ︷︷ ︸
w

Multi-frame super-resolution (different sub-pixel shifts + noise)

︸ ︷︷ ︸
xLR
k

=

︸ ︷︷ ︸
Different sub-samplings Sk

×

︸ ︷︷ ︸
Blur B

?

︸ ︷︷ ︸
xHR

+

︸ ︷︷ ︸
wk

With several frames: more equations than unknowns.
41



Super-resolution – Approach 3 – CNN

Super-Resolution CNN (SRCNN) (Dong et al., 2016)

Approach 3: learn to map LR to HR images using a dataset of HR images.

• Training set: T = {(xLR
i ,x

HR
i )}1=1..N

HR images: xHR
i (labels)

LR versions: xLR
i =H(xHR

i ) (inputs generated from labels)

• Model:

• Loss: E =
N∑
i=1

||yi − xHR
i ||22 where yi = f(xLR

i ;W )

42



Super-resolution – Approach 3 – CNN

Super-Resolution CNN (SRCNN) (Dong et al., 2016)

Settings

• Trained on ≈400,000 images from ImageNet.

• LR images obtained by Gaussian blur + subsampling.

• Inputs are Interpolated LR images (ILR) obtained by bi-cubic interpolation.

• 3 convolution layers:


• f1 × f1 × n1 = 9× 9× 64

• f2 × f2 × n2 = 1× 1× 32

• f3 × f3 × n3 = 5× 5× 1

• No pooling layers.

• ReLU for hidden layer, linear for output layers.

Standard measure of performance in dB (the larger the better):

PSNR = 10 log10
2552

1
n
||y−xHR||2

43



Super-resolution

Super-Resolution CNN (SRCNN) (Dong et al., 2016)

• Training on RGB channels was better than training on YCbCr color space,
• Deeper did not always lead to better results,
• Though larger filters are better, they chose small filters to remain fast.

44



Super-resolution

Super-Resolution CNN (SRCNN) (Dong et al., 2016)

×3 upsampling (9 times more pixels)

45



Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

• Inspired from SRCNN:

• Inputs are Interpolated LR images (ILR),
• Fully convolutional (no pooling).

46



Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

• Inspired from VGG: deep cascade of 20 small filter banks.

• First hidden layer: 64 filters of size 3× 3,
• 18 other layers: 64 filters of size 3× 3× 64,
• Output layer: 1 filter of size 3× 3× 64,
• Receptive fields 41× 41 (vs 13× 13 for SRCNN)

47



Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

• Inspired from ResNet:

• Learn the difference between HR and ILR images.
• Inputs and outputs are highly correlated,
• Just learn the subtle difference (high frequency details),
• Allows using high learning rates (with gradient clipping).

48



Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

Single model for multiple scales

• Bottom: SRCNN trained for ×3 upscaling,
• Top: VDSR trained for ×2, 3 and 4 upscaling jointly.

49



Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

×3 upsampling (9× more pixels)
50



Super-resolution

Super-resolution – Fast SRCNN (FSRCNN) (Dong et al., 2016)

• Working in HR space is slow,

• Perform instead feature extraction in LR space,

→ shared features regardless of the upscaling factor!

• Use fractionally strided convolutions only at the end to go to HR space.

51



Super-resolution

Super-resolution – Fast SRCNN (FSRCNN) (Dong et al., 2016)

Compared to SRCNN

• Deeper: 8 hidden layers (compared to 3 for SRCNN),

• Faster: 40 times faster,

• Even superior restoration quality.

52



Super-resolution

Super-resolution – Fast SRCNN (FSRCNN) (Dong et al., 2016)

×3 upsampling (9× more pixels)

53



Super-resolution

Super-resolution – SRGAN (Twitter, Ledig et al., CVPR 2017)

For large upsampling factors > 4:

• It becomes unrealistic to expect localizing exactly the edges,

• The MSE highly penalizes misplaced edges (even for a few pixel shift),

• Blurry solutions have lower MSE than sharp ones with misplaced edges,

⇒ The system will never be able to reconstruct high frequency content.

Idea: use a perceptual loss based on

• content loss to force SR images to be perceptually similar to the HR ones,

• adversarial loss to force SR results to be photo-realistic.

Connection with GAN: Learn to fool a discriminator trained to distinguish

Super-Resolved images from HR photo-realistic ones.

54



Super-resolution

Super-resolution – SRGAN (Twitter, Ledig et al., CVPR 2017)

Adversarial loss: Same as GAN but replace the latent code by the LR image

min
θSR

max
θD

∑
logDθD (xHR) + log(1−DθD (xSR)) + λLcontent(x

SR,xHR)

where xSR = GθSR(x
LR) and xLR =H(xHR)

→ Lcontent ensures generating SR images corresponding to their HR version.

Content loss: Euclidean distance between the Lth feature tensors obtained

with VGG for the SR and HR images, respectively:

Lcontent(x
SR,xHR) = ||hSR − hHR||22 with


hSR = VGGL(xSR)

hHR = VGGL(xHR)

xSR = GθSR(x
LR)

• Force images to have similar high level feature tensors.

• Supposed to be closer to perceptual similarity.
55



Super-resolution

Super-resolution – SRGAN (Twitter, Ledig et al., CVPR 2017)

Both networks are trained by alternating their gradient based updates.

56



Super-resolution

Super-resolution – SRGAN (Twitter, Ledig et al., CVPR 2017)

• The SR problem is ill-posed → infinite number of solutions,

• MSE promotes a pixel-wise average of them → over-smooth,

• GAN drives reconstruction towards the “natural image manifold”.

57



Super-resolution

Super-resolution – SRGAN

×4 upsampling (16× more pixels)

• SRResNet: ResNet SR generator trained with MSE,
• SRGAN-MSE: generator and discriminator with MSE content loss,
• SRGAN-VGG22: generator and discriminator with VGG22 content loss,
• SRGAN-VGG54: generator and discriminator with VGG54 content loss.

58



Super-resolution

Super-resolution – SRGAN

×4 upsampling (16× more pixels)

Even though some details are lost, they are replaced by “fake” but

photo-realistic objects (instead of blurry ones).

Remark that SRResNet is blurrier but achieves better PSNR.

59



Style transfer



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• VGG feature maps are very good to capture relevant image features,

• A photo-realistic image y can be approximated by x minimizing

`lcontent(x;y) = ||VGGl(x)−VGGl(y)||22 (l: a chosen hidden layer)

• Non-convex optimization problem: can use GD with Adam, L-BFGS, . . .

61



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• VGG feature maps are very good to capture relevant image features,

• A photo-realistic image y can be approximated by x minimizing

`lcontent(x;y) = ||VGGl(x)−VGGl(y)||22 (l: a chosen hidden layer)

• Non-convex optimization problem: can use GD with Adam, L-BFGS, . . .

x = torch.rand(y.shape).cuda()

x = nn.Parameter(x, requires_grad=True)

hy = VGGfeatures(y)[l]

optimizer = torch.optim.Adam([x], lr =0.01)

f o r t i n range (0, T):

optimizer.zero_grad ()

hx = VGGfeatures(x)[l]

loss = ((hx - hy)**2).mean()

loss.backward(retain_graph=True)

optimizer.step()

62



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• VGG feature maps are very good to capture relevant image features,

• A photo-realistic image y can be approximated by x minimizing

`lcontent(x;y) = ||VGGl(x)−VGGl(y)||22 (l: a chosen hidden layer)

• Non-convex optimization problem: can use GD with Adam, L-BFGS, . . .

63



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• Texture/Style can be captured by looking at the covariances between all

VGG feature maps m and n of the same layer l.

• The matrix of all covariances is called Gram matrix:

Gl(x)m,n =
∑
i,j

VGGl(x)i,j,mVGGl(x)i,j,n

where (i, j) are pixel indices.

64



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• Texture/Style can be captured by looking at the covariances between all

VGG feature maps m and n of the same layer l.

• The matrix of all covariances is called Gram matrix:

Gl(x)m,n =
∑
i,j

VGGl(x)i,j,mVGGl(x)i,j,n

where (i, j) are pixel indices.

64



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• Texture/Style can be captured by looking at the covariances between all

VGG feature maps m and n of the same layer l.

• The matrix of all covariances is called Gram matrix:

Gl(x)m,n =
∑
i,j

VGGl(x)i,j,mVGGl(x)i,j,n

where (i, j) are pixel indices.

64



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• Textures y can be synthesized by x minimizing

`lstyle(x;y) = ||Gl(x)−Gl(y)||2F

• Again a non-convex optimization problem.

x = torch.rand(y.shape).cuda()

x = nn.Parameter(x, requires_grad=True)

hy = VGGfeatures(y)[l].view(C, W * H)

Gy = torch.mm(hy , hy.t())

f o r t i n range (0, T):

optimizer.zero_grad ()

hx = VGGfeatures(x)[l].view(C, W * H)

Gx = torch.mm(hx, hx.t())

loss = ((Gx - Gy) ** 2).sum()

loss.backward(retain_graph=True)

optimizer.step()

66



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• Textures y can be synthesized by x minimizing

`lstyle(x;y) = ||Gl(x)−Gl(y)||2F

• Again a non-convex optimization problem.

67



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

68



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

Style transfer: min
x

α`lcontent(x;yc)︸ ︷︷ ︸
match content at depth l

+ β
J∑
j=1

`jstyle(x;ys)︸ ︷︷ ︸
match texture from depth 1 to J

• Look for x such that

• its content corresponds to yc,

→ match VGG features at layer l (typically: l = 2, 3 or 4)

• its style corresponds to ys,

→ match VGG correlations at layers 1 to J (typically: J = 4 or 5)

• Again a non-convex optimization problem.

• Remark: no training data ⇒ not a ML algorithm,

→ this is just a simple CV technique relying on image features.

69



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

Style transfer: min
x

α`lcontent(x;yc)︸ ︷︷ ︸
match content at depth l

+ β
J∑
j=1

`jstyle(x;ys)︸ ︷︷ ︸
match texture from depth 1 to J

70



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α/β 71



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

Super easy to implement in PyTorch:

just sum all the losses with weights α and β!

But slow, about 15mins on DSMLP with GPU

for a 444× 295 image.

72



Style transfer

Style transfer (Johnson, Alahi, Fei-Fei, 2016)

Problem: Optimizing the input x of the VGG network is slow

(requires about 500 forward and backward passes through VGG during runtime).

Solution: train a network to predict x from yc using Gatys’ loss.

73



Style transfer

Style transfer (Johnson, Alahi, Fei-Fei, 2016)

Problem: Optimizing the input x of the VGG network is slow

(requires about 500 forward and backward passes through VGG during runtime).

Solution: train a network to predict x from yc using Gatys’ loss.

73



Style transfer

Style transfer (Johnson, Alahi, Fei-Fei, 2016)

min
θs

N∑
i=1

α`lcontent(x;y
i
c)+β

J∑
j=1

`jstyle(x;ys)+ γ||∇x||1︸ ︷︷ ︸
Total-Variation

where x = f(yic;θs)

• Add a Total-Variation term to encourage smoothness,

• Use a residual network with:

• 2 strided convolution to downsample,
• Several residual blocks (with shortcut connections),
• 2 fractionally strided convolutions to upsample.

• Trained on N = 80, 000 images of size 256× 256 from MS COCO,

• One network has to be trained for each single target style ys,

• At test time, requires only one forward pass of this new network,

• Unlike Gatys’ method, this one is a ML algorithm.

74



Style transfer

Style transfer (Johnson, Alahi, Fei-Fei, 2016)

75



Questions?

That’s all folks!

Sources, images courtesy and acknowledgment

• A. Horodniceanu

• T. Jeon

• J. Johnson

• F.-F. Li

• V. Veerabadran

• S. Yeung

• Wikipedia

• + all referenced articles

75


	Image generation
	Super-resolution
	Style transfer

