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Image generation



Image generation, super-resolution and style transfer

Motivations – Image generation

• Goal: Generate images that look like the ones of your training set.

• What? Unsupervised learning.

• Why? Different reasons and applications:
• Can be used for simulation, e.g., to generate labeled datasets,
• Must capture all subtle patterns → provide good features,
• Can be used for other tasks: super-resolution, style transfer, . . .
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Image generation

Image generation – Explicit density

1 Learn the distribution of images p(x) on a training set.

2 Generate samples from this distribution.
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Image generation

Image generation – Gaussian model

• Consider a Gaussian model for the distribution of images x with n pixels:

x ∼ N (µ,Σ)

p(x) =
1√

2π
n|Σ|1/2

exp
[
(x− µ)TΣ−1(x− µ)

]

• µ: mean image,
• Σ: covariance matrix of images.
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Image generation

Image generation – Gaussian model

• Take a training dataset T of images:

T = {x1, . . . ,xN}

=

 , , , , ,

×N

, . . .


• Estimate the mean

µ̂ =
1

N

∑
i

xi =

• Estimate the covariance matrix: Σ̂ = 1
N

∑
i(xi − µ̂)(xi − µ̂)

T = ÊΛ̂ÊT

Ê =

 , , , , ,

×N

, . . .

︸ ︷︷ ︸
eigenvectors of Σ̂, i.e., main variation axis
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Image generation

Image generation – Gaussian model

You now have learned a generative model:
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Image generation

Image generation – Gaussian model

How to generate samples from N (µ̂, Σ̂)?{
z ∼ N (0, Idn) ← Generate random latent variable

x = µ̂+ ÊΛ̂1/2z

The model does not generate realistic faces.

The Gaussian distribution assumption is too simplistic.

Each generated image is just a linear random combination of the eigenvectors.

The generator corresponds to a linear neural network (without non-linearities).
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Image generation

Image generation – Beyond Gaussian models

But the concept is interesting: can we find a transformation such that each

random code can be mapped to a photo-realistic image?

We need to find a way to assess if an image is photo-realistic.
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Image generation

Image generation – Beyond Gaussian models

9



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

• Goal: design a complex model with high capacity able to map latent

random noise vectors z to a realistic image x.

• Idea: Take a deep neural network

• What about the loss? Measure if the generated image is photo-realistic.
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Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

Define a loss measuring how much you can fool a classifier that has

learned to distinguish between real and fake images.

• Discriminator network: try to distinguish between real and fake images.

• Generator network: fool the discriminator by generating realistic images.
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Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

• Discriminator network: Consider two sets

• Treal: a dataset of n real images,
• Tfake: a dataset of m fake images.

• Goal: find the parameters θd of a binary classification network

x 7→ Dθd(x) meant to classify real and fake images.

Minimize the cross entropy, or maximize its negation

max
θd

1

n

∑
x∈Treal

logDθd(x)︸ ︷︷ ︸
force predicted labels to be 1

for real images

+
1

m

∑
x∈Tfake

log(1−Dθd(x))︸ ︷︷ ︸
force predicted labels to be 0

for fake images

• How: use gradient ascent with backprop (+SGD, batch-normalization. . . ).
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Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

• Generator network: Consider a given discriminative model x 7→ Dθd(x)

and consider Trand a set of m random latent vectors.

• Goal: find the parameters θg of a network x 7→ Gθg (z) generating images

from random vectors z such that it fools the discriminator

min
θg

1

m

∑
z∈Trand

log(1−Dθd(Gθg (z)))︸ ︷︷ ︸
force the discriminator to think that

our generated fake images are not fake (away from 0)

(1)

or alternatively (works better in practice)

max
θg

1

m

∑
z∈Trand

logDθd(Gθg (z)))︸ ︷︷ ︸
force the discriminator to think that

our generated fake images are real (close to 1)

(2)

• How: gradient descent for (1) or gradient ascent for (2) with backprop. . .
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Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

• Train both networks jointly.

• Minimax loss in a two player game (each player is a network):

min
θg

max
θd

1

n

∑
x∈Treal

logDθd(x) +
1

m

∑
z∈Trand

log(1−Dθd(Gθg (z)︸ ︷︷ ︸
fake

)

• Algorithm: repeat until convergence

1 Fix θg, update θd with one step of gradient ascent,

2 Fix θd, update θg with one step of gradient descent for (1),

(or one step of gradient ascent for (2).)
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Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)
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Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)

16



Image generation

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014)
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Image generation

Convolutional GAN
(Radford et al., 2016)

• Generator: upsampling network with fractionally strided convolutions,

• Discriminator: convolutional network with strided convolutions.
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Image generation

Convolutional GAN
(Radford et al., 2016)

Generations of realistic bedrooms pictures,

from randomly generated latent variables.
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Image generation

Convolutional GAN
(Radford et al., 2016)

Interpolation in between points in latent space.
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Image generation

Convolutional GAN – Arithmetic
(Radford et al., 2016)
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Image generation

Convolutional GAN – Arithmetic
(Radford et al., 2016)
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Image generation

GAN Sub-classification
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Image generation

2017: Year of the GAN
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Super-resolution

Super-resolution

︸︷︷︸
Low-resolution (LR) image

Super-resolution (SR)

−−−−−−−−−−−→

︸ ︷︷ ︸
High-resolution (HR) image

Goal: Create a high-resolution (HR) image from a low-resolution (LR) image.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation

Approach 1: Consider the SR problem as a 2d interpolation problem.

Look at the pixel values of the original LR image on its LR grid.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation

Approach 1: Consider the SR problem as a 2d interpolation problem.

Forget about the LR grid and consider each pixel as a 2d point.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation

Approach 1: Consider the SR problem as a 2d interpolation problem.

Inject the targeted HR grid.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation

Approach 1: Consider the SR problem as a 2d interpolation problem.

Deduce HR pixel values based on LR points.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Nearest neighbor interpolation

Nearest neighbor: affect the pixel value of the closest LR point.

ISR(x, y) = ILR(xk? , yl?) where (k?, l?) = argmin
(k,l)

(xk − x)2 + (yl − y)2
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Nearest neighbor interpolation

︸︷︷︸
LR image

→

︸ ︷︷ ︸
Obtained HR image

v.s.

︸ ︷︷ ︸
Targeted HR image

Problem: pixels are independently copied into a juxtaposition of large

rectangular block of pixels.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear interpolation

Bi-linear: combine

pixel values of LR

points with respect to

their distance to the

HR point.

ISR(x, y) =
y2 − y
y2 − y1

(
x2 − x
x2 − x1

ILR(x1, y1) +
x− x1
x2 − x1

ILR(x2, y1)

)
︸ ︷︷ ︸

linear interp. for x with y = y1

+
y − y1
y2 − y1

(
x2 − x
x2 − x1

ILR(x1, y2) +
x− x1
x2 − x1

ILR(x2, y2)

)
︸ ︷︷ ︸

linear interp. for x with y = y2
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear interpolation

Bi-linear: combine

pixel values of LR

points with respect to

their distance to the

HR point.

ISR(x, y) =
y2 − y
y2 − y1

(
x2 − x
x2 − x1

ILR(x1, y1) +
x− x1
x2 − x1

ILR(x2, y1)

)
︸ ︷︷ ︸

linear interp. for x with y = y1

+
y − y1
y2 − y1

(
x2 − x
x2 − x1

ILR(x1, y2) +
x− x1
x2 − x1

ILR(x2, y2)

)
︸ ︷︷ ︸

linear interp. for x with y = y2
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear / Bi-cubic interpolation

Bi-linear interpolation

• Interpolate the 4 points by finding the coefficients a, b, c and d of

f(x, y) = ax+ by + cxy + d

• 4 unknowns and 4 (independent) equations ⇒ unique solution.

Bi-cubic interpolation

• Same but with 16 coefficients aij , 0 6 i, j 6 3, of

f(x, y) =

3∑
i=0

3∑
j=0

aijx
iyj

• 16 unknowns and 4 equations → infinite number of solutions,

• Interpolate the derivatives: 4 in x + 4 in y + 4 in xy → 16 equations.

• Closed-form solution obtained by inverting a 16× 16 matrix.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear / Bi-cubic interpolation
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Bi-linear / Bi-cubic interpolation

︸ ︷︷ ︸
Nearest neighbor

︸ ︷︷ ︸
Bi-linear

︸ ︷︷ ︸
Bi-cubic

Problem: bi-cubic interpolation is a bit better, but the image still appears

blurry/blobby, it is missing sharp content.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Interpolation + Sharpening

︸ ︷︷ ︸
Bi-cubic

+ α

︸ ︷︷ ︸
Details

=

︸ ︷︷ ︸
Sharpening

Naive sharpening:


• extract details (high-pass filter),

• amplify them by α > 0,

• add them to the original image.

More contrast but still blocky artifacts and lacking fine details.
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Super-resolution – Approach 1 – Interpolation

Super-resolution – Image sharpening

• Sharpening: amplifies existing frequencies (visible details).

• Super-resolution: retrieves missing high-frequencies (lost details).

(Source: Taegyun Jeon)
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Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

Approach 2: Model SR as a linear inverse problem

• Linear model based on the characteristics of the camera

xLR = S︸︷︷︸
sub-sampling

B︸︷︷︸
blur

xHR = H︸︷︷︸
both

xHR, H = SB

• Blur: convolution with the point spread function of your digital camera,

• Sub-sampling: depends on the targeted HR and the intrinsic resolution of

your digital camera (number of photo receptors, cutting frequency, . . . )

︸ ︷︷ ︸
xLR

=

︸ ︷︷ ︸
Subsampling S

×

︸ ︷︷ ︸
Blur B

?

︸ ︷︷ ︸
xHR
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Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

• SR is then a problem of solving a linear system of equations

xLR =HxHR ⇔


h11x

HR
1 + h12x

HR
2 + . . .+ h1nx

HR
n = xLR

1

h21x
HR
1 + h22x

HR
2 + . . .+ h2nx

HR
n = xLR

2

...

hn1x
HR
1 + hn2x

HR
2 + . . .+ hnnx

HR
n = xLR

n

• Retrieving xHR ⇒ Inverting H.

• But, H = SB is not invertible → the problem is said to be ill-posed.

• There are more unknowns (#HR pixels) than equations (#LR pixels),

• Infinite number of solutions satisfying the normal equation:

xHR∗ ∈ argmin
xHR

||HxHR − xLR||22 ⇔ HT (HxHR∗ − xLR) = 0

36



Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

• The solution of minimum norm is given by: xHR+ =H+xLR

where H+ is the Moore-Penrose pseudo-inverse.

• But, as the problem is ill-posed:

• small perturbations in xLR lead to large errors in xHR+,
• and unfortunately xLR is often corrupted by noise,
• or xLR is quantized/compressed/encoded with limited precision.

(a) HR image xHR

H−→

Noise:
wy
⊕ −→

(b) Noisy LR xHR

H+

−→

(c) Pinv xHT+

The pseudo-inverse solution is similar to image sharpening:

(over)amplifies existing frequencies but does not reconstruct missing ones.
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Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

Regularized inverse problems

• Idea: look for approximations instead of interpolations by penalizing

irregular solutions:

xHR-R ∈ argmin
xHR

||HxHR − xLR||22 + τR(xHR)

• R(xHR) regularization term penalizing large oscillations:

• Tikhonov regularization: R(x) = ||∇x||22 (1943)

→ convex optimization problem: closed-form expression.

→ remove unwanted oscillations, but blurry (similar to bi-cubic).

• Total-Variation: R(x) = ||∇x||1 (Rudin et al., 1992)

→ convex optimization problem: gradient descent like techniques.

→ smooth with sharp edges (recover some high frequencies).

• τ > 0 regularization parameter.
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Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

(a) LR image

(b) Tiny τ ∼ pinv (c) Small τ (d) Good τ (e) High τ (f) Huge τ

Tikhonov regularization for ×4 upsampling (16 times more pixels)
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Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

(a) LR image

(b) Tiny τ ∼ pinv (c) Small τ (d) Good τ (e) High τ (f) Huge τ

Total-Variation regularization for ×4 upsampling (16 times more pixels)
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Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Linear inverse problem

• Standard approach since 1949 (Wiener deconvolution) until 2015.

• Pros:

• Based on strong mathematical theory,
• Properties of solutions have been well studied,
• Convex optimization.

• Cons:

• Based on hand-crafted regularization priors,
• Unable to model correctly the subtle patterns of natural images,
• Results are often blobby and not photo-realistic,
• Require to model correctly the subsampling S and blur B,
• Slow and not available in standard image processing toolboxes.

• Still relevant for multi-frame super-resolution

(since with multiple frames the problem becomes well-posed).
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Super-resolution – Approach 2 – Linear inverse problem

Super-resolution – Single vs Multi-frame

Single-frame super-resolution (sub-sampling + convolution + noise)

︸ ︷︷ ︸
xLR

=

︸ ︷︷ ︸
Sub-sampling S

×

︸ ︷︷ ︸
Blur B

?

︸ ︷︷ ︸
xHR

+

︸ ︷︷ ︸
w

Multi-frame super-resolution (different sub-pixel shifts + noise)

︸ ︷︷ ︸
xLR
k

=

︸ ︷︷ ︸
Different sub-samplings Sk

×

︸ ︷︷ ︸
Blur B

?

︸ ︷︷ ︸
xHR

+

︸ ︷︷ ︸
wk

With several frames: more equations than unknowns.
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Super-resolution – Approach 3 – CNN

Super-Resolution CNN (SRCNN) (Dong et al., 2016)

Approach 3: learn to map LR to HR images using a dataset of HR images.

• Training set: T = {(xLR
i ,x

HR
i )}1=1..N

HR images: xHR
i (labels)

LR versions: xLR
i =H(xHR

i ) (inputs generated from labels)

• Model:

• Loss: E =
N∑
i=1

||yi − xHR
i ||22 where yi = f(xLR

i ;W )
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Super-resolution – Approach 3 – CNN

Super-Resolution CNN (SRCNN) (Dong et al., 2016)

Settings

• Trained on ≈400,000 images from ImageNet.

• LR images obtained by Gaussian blur + subsampling.

• Inputs are Interpolated LR images (ILR) obtained by bi-cubic interpolation.

• 3 convolution layers:


• f1 × f1 × n1 = 9× 9× 64

• f2 × f2 × n2 = 1× 1× 32

• f3 × f3 × n3 = 5× 5× 1

• No pooling layers.

• ReLU for hidden layer, linear for output layers.

Standard measure of performance in dB (the larger the better):

PSNR = 10 log10
2552

1
n
||y−xHR||2
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Super-resolution

Super-Resolution CNN (SRCNN) (Dong et al., 2016)

• Training on RGB channels was better than training on YCbCr color space,
• Deeper did not always lead to better results,
• Though larger filters are better, they chose small filters to remain fast.
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Super-resolution

Super-Resolution CNN (SRCNN) (Dong et al., 2016)

×3 upsampling (9 times more pixels)
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Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

• Inspired from SRCNN:

• Inputs are Interpolated LR images (ILR),
• Fully convolutional (no pooling).
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Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

• Inspired from VGG: deep cascade of 20 small filter banks.

• First hidden layer: 64 filters of size 3× 3,
• 18 other layers: 64 filters of size 3× 3× 64,
• Output layer: 1 filter of size 3× 3× 64,
• Receptive fields 41× 41 (vs 13× 13 for SRCNN)
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Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

• Inspired from ResNet:

• Learn the difference between HR and ILR images.
• Inputs and outputs are highly correlated,
• Just learn the subtle difference (high frequency details),
• Allows using high learning rates (with gradient clipping).
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Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

Single model for multiple scales

• Bottom: SRCNN trained for ×3 upscaling,
• Top: VDSR trained for ×2, 3 and 4 upscaling jointly.
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Super-resolution

Super-resolution – VDSR (Kim et al., 2016)

×3 upsampling (9× more pixels)
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Super-resolution

Super-resolution – Fast SRCNN (FSRCNN) (Dong et al., 2016)

• Working in HR space is slow,

• Perform instead feature extraction in LR space,

→ shared features regardless of the upscaling factor!

• Use fractionally strided convolutions only at the end to go to HR space.

51



Super-resolution

Super-resolution – Fast SRCNN (FSRCNN) (Dong et al., 2016)

Compared to SRCNN

• Deeper: 8 hidden layers (compared to 3 for SRCNN),

• Faster: 40 times faster,

• Even superior restoration quality.

52



Super-resolution

Super-resolution – Fast SRCNN (FSRCNN) (Dong et al., 2016)

×3 upsampling (9× more pixels)
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Super-resolution

Super-resolution – SRGAN (Twitter, Ledig et al., CVPR 2017)

For large upsampling factors > 4:

• It becomes unrealistic to expect localizing exactly the edges,

• The MSE highly penalizes misplaced edges (even for a few pixel shift),

• Blurry solutions have lower MSE than sharp ones with misplaced edges,

⇒ The system will never be able to reconstruct high frequency content.

Idea: use a perceptual loss based on

• content loss to force SR images to be perceptually similar to the HR ones,

• adversarial loss to force SR results to be photo-realistic.

Connection with GAN: Learn to fool a discriminator trained to distinguish

Super-Resolved images from HR photo-realistic ones.
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Super-resolution

Super-resolution – SRGAN (Twitter, Ledig et al., CVPR 2017)

Adversarial loss: Same as GAN but replace the latent code by the LR image

min
θSR

max
θD

∑
logDθD (xHR) + log(1−DθD (xSR)) + λLcontent(x

SR,xHR)

where xSR = GθSR(x
LR) and xLR =H(xHR)

→ Lcontent ensures generating SR images corresponding to their HR version.

Content loss: Euclidean distance between the Lth feature tensors obtained

with VGG for the SR and HR images, respectively:

Lcontent(x
SR,xHR) = ||hSR − hHR||22 with


hSR = VGGL(xSR)

hHR = VGGL(xHR)

xSR = GθSR(x
LR)

• Force images to have similar high level feature tensors.

• Supposed to be closer to perceptual similarity.
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Super-resolution

Super-resolution – SRGAN (Twitter, Ledig et al., CVPR 2017)

Both networks are trained by alternating their gradient based updates.
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Super-resolution

Super-resolution – SRGAN (Twitter, Ledig et al., CVPR 2017)

• The SR problem is ill-posed → infinite number of solutions,

• MSE promotes a pixel-wise average of them → over-smooth,

• GAN drives reconstruction towards the “natural image manifold”.
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Super-resolution

Super-resolution – SRGAN

×4 upsampling (16× more pixels)

• SRResNet: ResNet SR generator trained with MSE,
• SRGAN-MSE: generator and discriminator with MSE content loss,
• SRGAN-VGG22: generator and discriminator with VGG22 content loss,
• SRGAN-VGG54: generator and discriminator with VGG54 content loss.
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Super-resolution

Super-resolution – SRGAN

×4 upsampling (16× more pixels)

Even though some details are lost, they are replaced by “fake” but

photo-realistic objects (instead of blurry ones).

Remark that SRResNet is blurrier but achieves better PSNR.
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• VGG feature maps are very good to capture relevant image features,

• A photo-realistic image y can be approximated by x minimizing

`lcontent(x;y) = ||VGGl(x)−VGGl(y)||22 (l: a chosen hidden layer)

• Non-convex optimization problem: can use GD with Adam, L-BFGS, . . .
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• VGG feature maps are very good to capture relevant image features,

• A photo-realistic image y can be approximated by x minimizing

`lcontent(x;y) = ||VGGl(x)−VGGl(y)||22 (l: a chosen hidden layer)

• Non-convex optimization problem: can use GD with Adam, L-BFGS, . . .

x = torch.rand(y.shape).cuda()

x = nn.Parameter(x, requires_grad=True)

hy = VGGfeatures(y)[l]

optimizer = torch.optim.Adam([x], lr =0.01)

f o r t i n range (0, T):

optimizer.zero_grad ()

hx = VGGfeatures(x)[l]

loss = ((hx - hy)**2).mean()

loss.backward(retain_graph=True)

optimizer.step()
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• VGG feature maps are very good to capture relevant image features,

• A photo-realistic image y can be approximated by x minimizing

`lcontent(x;y) = ||VGGl(x)−VGGl(y)||22 (l: a chosen hidden layer)

• Non-convex optimization problem: can use GD with Adam, L-BFGS, . . .
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• Texture/Style can be captured by looking at the covariances between all

VGG feature maps m and n of the same layer l.

• The matrix of all covariances is called Gram matrix:

Gl(x)m,n =
∑
i,j

VGGl(x)i,j,mVGGl(x)i,j,n

where (i, j) are pixel indices.
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Style transfer
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• Textures y can be synthesized by x minimizing

`lstyle(x;y) = ||Gl(x)−Gl(y)||2F

• Again a non-convex optimization problem.

x = torch.rand(y.shape).cuda()

x = nn.Parameter(x, requires_grad=True)

hy = VGGfeatures(y)[l].view(C, W * H)

Gy = torch.mm(hy , hy.t())

f o r t i n range (0, T):

optimizer.zero_grad ()

hx = VGGfeatures(x)[l].view(C, W * H)

Gx = torch.mm(hx, hx.t())

loss = ((Gx - Gy) ** 2).sum()

loss.backward(retain_graph=True)

optimizer.step()
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

• Textures y can be synthesized by x minimizing

`lstyle(x;y) = ||Gl(x)−Gl(y)||2F

• Again a non-convex optimization problem.
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

Style transfer: min
x

α`lcontent(x;yc)︸ ︷︷ ︸
match content at depth l

+ β
J∑
j=1

`jstyle(x;ys)︸ ︷︷ ︸
match texture from depth 1 to J

• Look for x such that

• its content corresponds to yc,

→ match VGG features at layer l (typically: l = 2, 3 or 4)

• its style corresponds to ys,

→ match VGG correlations at layers 1 to J (typically: J = 4 or 5)

• Again a non-convex optimization problem.

• Remark: no training data ⇒ not a ML algorithm,

→ this is just a simple CV technique relying on image features.
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

Style transfer: min
x

α`lcontent(x;yc)︸ ︷︷ ︸
match content at depth l

+ β
J∑
j=1

`jstyle(x;ys)︸ ︷︷ ︸
match texture from depth 1 to J
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Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α/β 71



Style transfer

Style transfer (Gatys, Ecker and Bethge, 2015)

Super easy to implement in PyTorch:

just sum all the losses with weights α and β!

But slow, about 15mins on DSMLP with GPU

for a 444× 295 image.
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Style transfer

Style transfer (Johnson, Alahi, Fei-Fei, 2016)

Problem: Optimizing the input x of the VGG network is slow

(requires about 500 forward and backward passes through VGG during runtime).

Solution: train a network to predict x from yc using Gatys’ loss.
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Style transfer

Style transfer (Johnson, Alahi, Fei-Fei, 2016)

min
θs

N∑
i=1

α`lcontent(x;y
i
c)+β

J∑
j=1

`jstyle(x;ys)+ γ||∇x||1︸ ︷︷ ︸
Total-Variation

where x = f(yic;θs)

• Add a Total-Variation term to encourage smoothness,

• Use a residual network with:

• 2 strided convolution to downsample,
• Several residual blocks (with shortcut connections),
• 2 fractionally strided convolutions to upsample.

• Trained on N = 80, 000 images of size 256× 256 from MS COCO,

• One network has to be trained for each single target style ys,

• At test time, requires only one forward pass of this new network,

• Unlike Gatys’ method, this one is a ML algorithm.
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Style transfer

Style transfer (Johnson, Alahi, Fei-Fei, 2016)
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Questions?

That’s all folks!

Sources, images courtesy and acknowledgment

• A. Horodniceanu

• T. Jeon

• J. Johnson

• F.-F. Li

• V. Veerabadran

• S. Yeung

• Wikipedia

• + all referenced articles

75


	Image generation
	Super-resolution
	Style transfer

