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As for Assignment 1, we focus on classification on the MNIST Dataset but using deep Convolutional
Neural Networks (CNNs) and PyTorch (instead of shallow ANNs and manual implementation).

1 Convolutional Neural Networks (CNNs)?

CNNs are specific artificial neural networks composed of convolutional layers, maxpooling operations, and
fully connected layers.

� Convolutional layers are like typical layers except the weight matrix has a specific structure that
is relevant for signals and images. They take as input N images and produce as output C images
(called feature maps or channels). They are parameterized by a collection of coefficients that defines
a filter bank. Each filter performs a weighted average of its inputs within local sliding windows of
size K ×K (pixels) where K is a hyperparameter (a small odd number: 3, 5, 7, 9). As for classical
layers, each feature map is next processed by an activation function such as ReLU.

� Maxpooling operations reduce the dimensions of each feature map by picking the maximum value
within local but non-overlapping sliding windows of size L × L (pixels) where L is another hyper-
parameter (usually 2). Maxpooling does not introduce new parameters to be learned.

� Fully connected layers are standard layers where the weight matrix does not have a specific structure:
each of the N output units is connected to each of the M input units.

This was a very short description but CNNs will be studied more in depth during the class (Chapter 4).

2 PyTorch?

PyTorch is a Python based scientific computing package targeted at two sets of audiences:

� a replacement for NumPy to use the power of GPUs,

� a deep learning research platform that provides maximum flexibility and speed.

For more reading please visit http://pytorch.org/tutorials/beginner/deep_learning_60min_

blitz.html

3 Getting started

First of all, connect to PRP Nautilus Portal and start a pod

$ ./launch-pod.sh

Next connect to your Jupyter Notebook from your web browser (refer to Assignment 0 for more details).
Create a new notebook assignment2.ipynb and import
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import numpy as np

import torch

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

4 Tensors

Torch tensors are similar to NumPy ndarrays, with the addition being that they can also be used on a
GPU to accelerate computing. The documentation for tensors is available here http://pytorch.org/

docs/stable/tensors.html

1. Construct a 5× 3 tensor and print it with the following commands

x = torch.Tensor(5, 3)

print(x)

How was x initialized? What is the type of x?

2. Construct a randomly initialized matrix:

y = torch.rand(5, 3)

print(y)

How are the random values distributed? What is the type of y? What if we use instead y =

torch.randn(5, 3)?

3. Run the following

x = x.double()

y = y.double()

print(x)
print(y)

What is the type displayed when you print x and y?

4. We can also directly initialize tensors with prescribed values. Create the following two tensors:

x = torch.Tensor([[-0.1859, 1.3970, 0.5236],

[ 2.3854, 0.0707, 2.1970],

[-0.3587, 1.2359, 1.8951],

[-0.1189, -0.1376, 0.4647],

[-1.8968, 2.0164, 0.1092]])

y = torch.Tensor([[ 0.4838, 0.5822, 0.2755],

[ 1.0982, 0.4932, -0.6680],

[ 0.7915, 0.6580, -0.5819],

[ 0.3825, -1.1822, 1.5217],

[ 0.6042, -0.2280, 1.3210]])

What are their shapes?
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import numpy as np
import torch



x = torch.Tensor(5, 3)
print(x)



y = torch.rand(5, 3)
print(y)



x = x.double()
y = y.double()
print(x)
print(y)



x = torch.Tensor([[-0.1859,  1.3970,  0.5236],
                  [ 2.3854,  0.0707,  2.1970],
                  [-0.3587,  1.2359,  1.8951],
                  [-0.1189, -0.1376,  0.4647],
                  [-1.8968,  2.0164,  0.1092]])
y = torch.Tensor([[ 0.4838,  0.5822,  0.2755],
                  [ 1.0982,  0.4932, -0.6680],
                  [ 0.7915,  0.6580, -0.5819],
                  [ 0.3825, -1.1822,  1.5217],
                  [ 0.6042, -0.2280,  1.3210]])
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5. You can stack the two 2d tensors in a 3d tensor as

z = torch.stack((x, y))

What is the shape of z?
How does it compare to torch.cat((x, y), 0) and torch.cat((x, y), 1)?

6. Report the value of the element at the 5th row and 3rd column in the 2d tensor y, and try accessing
the same element in the 3d tensor z.

Hint: You can use standard NumPy-like indexing on all tensors.

7. Similarly print all the elements corresponding to the 5th row and 3rd column in z. How many
elements are there?

8. Adding two tensors is fairly straightforward. There are multiple syntaxes for this operation. Sum x

and y (from question 4) as follows

print(x + y)

print(torch.add(x, y))

print(x.add(y))
torch.add(x, y, out=x)

print(x)

Check whether the above instructions are printing the same output? Are they equivalent?

9. To reshape a tensor, you can use torch.view:

x = torch.randn(4, 4)

y = x.view(16)

z = x.view(-1, 8)

print(x.size(), y.size(), z.size())

Interpret the effect of each of these instructions. What does the -1 mean?

10. Generate 2 random tensors x and y of dimensions 10×10 and 2×100, respectively, resize them such
that the instruction torch.mm(x, y) performs a row vector by matrix multiplication resulting in a
row vector of dimensions 1× 2.

Go through the documentation and get familiar with other operations as well.

5 NumPy and PyTorch

Converting a Torch tensor to a NumPy array and vice versa is a breeze.

11. Run the below code snippet and report your observation

a = torch.ones(5)

print(a)
b = a.numpy()

print(b)

3


z = torch.stack((x, y))



print(x + y)
print(torch.add(x, y))
print(x.add(y))
torch.add(x, y, out=x)
print(x)



x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8)
print(x.size(), y.size(), z.size())




What are the types of a and b?

12. Let us add one to the first element of the tensor a from the previous question and report the new
values of a and b.

a[0] += 1

print(a)
print(b)

Do they match? Do they share their underlying memory locations?

13. Compare the effect of each of these three instructions separately:

a.add_(1)

a[:] += 1

a = a.add(1)

For each of them, report the new values of a and b. What are the similarities and differences?

14. Let us study the reverse operation, converting NumPy arrays to a Torch tensor. Run the following
code and examine the output.

a = np.ones(5)

b = torch.from_numpy(a)

np.add(a, 1, out=a)

print(a)
print(b)

All the Torch tensors on the CPU (except a CharTensor) support converting to NumPy and back.

15. Torch tensors can be moved onto GPU device’s memory using .to('cuda') or .cuda() and back
to CPU device with .to('cpu') or .cpu(). Alternatively, a tensor can be directly allocated into
the GPU using the device optional argument. Run the following script

device = 'cuda' if torch.cuda.is_available() else 'cpu'

print(device)
x = torch.randn(5, 3).to(device)

y = torch.randn(5, 3, device=device)

z = x + y

Interpret each of these instructions. Compare the two allocation instructions for x and y, which one
is the most efficient?

16. Run and interpret the result of the following two instructions

print(z.cpu().numpy())
print(z.numpy())

Note that moving data from CPU to GPU is slow, so try to do all the computations in GPU, and
transfer the data back to CPU once all computations have been performed.
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a = torch.ones(5)
print(a)
b = a.numpy()
print(b)



a[0] += 1
print(a)
print(b)



a.add_(1)
a[:] += 1
a = a.add(1)



a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)



device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
x = torch.randn(5, 3).to(device)
y = torch.randn(5, 3, device=device)
z = x + y



print(z.cpu().numpy())
print(z.numpy())




6 Autograd: automatic differentiation

A central feature in PyTorch is the autograd package. It provides tools performing automatic differenti-
ation for all operations based on Torch tensors. This means that the gradients of such operations will not
require to be explicitly programmed. It uses a define-by-run framework that computes these gradients
dynamically during runtime. This is really useful for backprop algorithm, since autograd will deduce
automatically from the succession of forward operations what are the corresponding backward updates.

A Torch tensor stores a flag requires grad. By default, this attribute is set to False. If you set it as
True, autograd starts to track all operations where this Tensor is involved. Any other tensor resulting from
operations involving this tensor will have its attribute requires grad set to True automatically. When
you finish your computation you can call .backward() and have the gradients computed automatically
for all these tensors. The gradient for these tensors will be accumulated into the .grad attribute.

17. Run the following script

x = torch.ones(2, 2, requires_grad=True)

print(x)
y = x + 2

print(y)

What is the requires grad attribute of y? What are the grad attributes of x and y?

18. Run the following script

z = y * y * 3

f = z.mean()

print(z, f)

Inspect the results and write the equation linking f with the four entries x1, x2, x3, x4 of x:

f = f(x1, x2, x3, x4)

19. Because the variable f contains a single scalar, we can now back-propagate the gradient of f with
respect to x into the variable x as

f.backward() # That's it!

Report what the gradient ∇x f(x) =
(
∂f(x)
∂x

)T
is.

Hint: read the introduction to this section to recall where the gradient for tensor x is stored.

20. Based on question 18, try to figure out mathematically if autograd produces the correct answer by
deriving, yourself, the partial derivatives for each xi:

(∇x f(x))i =
∂f(x1, x2, x3, x4)

∂xi
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x = torch.ones(2, 2, requires_grad=True)
print(x)
y = x + 2
print(y)



z = y * y * 3
f = z.mean()
print(z, f)



f.backward() # That's it!




7 MNIST Data preparation

21. Reuse the code from Assignment 1 to load and normalize MNIST testing and training data.

22. Torch expects that the input of a convolutional layer is stored in the following format

Batch size× Number of input channels× Image height× Image width

The number of input channels in our case is 1 because MNIST is composed of grayscale images. It
would have been 3 if the images were in RGB color. In deeper layers, the number of input channels
will be the number of input feature maps. Reorganise the tensors xtrain and xtest accordingly.

Hint: Reshape them first with shape (28, 28, 1, 60000) and (28, 28, 1, 10000) respectively
and then use np.moveaxis.

23. Check that your data are well reorganized by making sure that

MNISTtools.show(xtrain[42, 0, :, :])

display a digit that indeed corresponds to ltrain[42].

24. Finally wrap all the data into torch Tensor

xtrain = torch.from_numpy(xtrain)

ltrain = torch.from_numpy(ltrain)

xtest = torch.from_numpy(xtest)

ltest = torch.from_numpy(ltest)

8 Convolutional Neural Network (CNN) for MNIST classification

Neural networks can be constructed using the torch.nn package, which relies on autograd differentiation
tools. This package provides an implementation of CNNs (introduced in Section 1) as follows:

� Convolutional layers can be created as nn.Conv2d(N, C, K). For input images of size W ×H, the
output feature maps have size [W −K + 1]× [H −K + 1].

� In PyTorch, maxpooling is implemented like any other non-linear function (such as ReLU or
softmax). For input images of size W ×H, the output feature maps have size dW/Le × dH/Le.

� A fully connected layer can be created as nn.Linear(M, N).

25. Our LeNet network will be composed successively of

(a) a convolutional layer connecting the input image to 6 feature maps with 5 × 5 convolutions
(K = 5) and followed by ReLU and maxpooling (L = 2),

(b) a convolutional layer connecting the 6 input channels to 16 output channels with 5× 5 convo-
lutions and followed by ReLU and maxpooling (L = 2),

(c) a fully-connected layer connecting 16 feature maps to 120 output units and followed by ReLU,

(d) a fully-connected layer connecting 120 inputs to 84 output units and followed by ReLU,

(e) a final linear layer connecting 84 inputs to 10 linear outputs (one for each of our digits).
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MNISTtools.show(xtrain[42, 0, :, :])



xtrain = torch.from_numpy(xtrain)
ltrain = torch.from_numpy(ltrain)
xtest = torch.from_numpy(xtest)
ltest = torch.from_numpy(ltest)




Determine the size of the feature maps after each convolution and maxpooling operation. How many
input units does the third layer have?

26. Interpret and complete the following code initializing our LeNet network

import torch.nn as nn

import torch.nn.functional as F

# This is our neural networks class that inherits from nn.Module

class LeNet(nn.Module):

# Here we define our network structure

def __init__(self):

super(LeNet, self).__init__()

self.conv1 = nn.Conv2d(1, 6, 5)

self.conv2 = COMPLETE

self.fc1 = COMPLETE

self.fc2 = nn.Linear(120, 84)

self.fc3 = nn.Linear(84, 10)

# Here we define one forward pass through the network

def forward(self, x):

x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))

x = COMPLETE

x = x.view(-1, self.num_flat_features(x))

x = COMPLETE

x = F.relu(self.fc2(x))

x = self.fc3(x)

return x

# Determine the number of features in a batch of tensors

def num_flat_features(self, x ):

size = x.size()[1:]

return np.prod(size)

net = LeNet()

print(net)

Note that you just have to define the forward function, and the backward function (where gradients
are computed) will be automatically defined for you using autograd. You can use any of the Torch
tensor operations in the forward function. For more details, please refer to https://pytorch.org/

docs/stable/nn.html.

27. The learnable parameters of a model are returned by net.parameters(). Run the following and
interpret the results:

for name, param in net.named_parameters():

print(name, param.size(), param.requires_grad)

What are the learnable parameters? Are gradients going to be tracked by autograd for all param-
eters?
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import torch.nn as nn
import torch.nn.functional as F

# This is our neural networks class that inherits from nn.Module
class LeNet(nn.Module):

    # Here we define our network structure
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = COMPLETE
        self.fc1   = COMPLETE
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)

    # Here we define one forward pass through the network
    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = COMPLETE
        x = x.view(-1, self.num_flat_features(x))
        x = COMPLETE
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    # Determine the number of features in a batch of tensors
    def num_flat_features(self, x ):
        size = x.size()[1:]
        return np.prod(size)

net = LeNet()
print(net)



for name, param in net.named_parameters():
    print(name, param.size(), param.requires_grad)
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28. To run a forward pass of your initial network over your testing set, simply run:

with torch.no_grad():

yinit = net(xtest)

which is equivalent to yinit = net.forward(xtest). Note that with torch.no grad() is used
to avoid tracking for gradient during testing and then save some computation time (refer to https:

//pytorch.org/docs/stable/autograd.html#torch.autograd.no_grad). Run the following and
interpret the result

_, lpred = yinit.max(1)
print(100 * (ltest == lpred).float().mean())

29. We will use (Mini-Batch) Stochastic Gradient Descent (SGD) with cross-entropy and momentum.
Start implementing the following function:

def backprop_deep(xtrain, ltrain, net, T, B=100, gamma=.001, rho=.9):

N = xtrain.size()[0] # Training set size

NB = COMPLETE # Number of minibatches

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(net.parameters(), lr=COMPLETE, momentum=rho)

where T will be the number of epochs, B the minibatch size, gamma the step size, and rho

the momentum. For more details, refer to https://pytorch.org/docs/stable/nn.html and
https://pytorch.org/docs/stable/optim.html. Note that PyTorch’s CrossEntropyLoss is the
composition of a softmax activation with the standard cross-entropy loss.

30. We have everything ready now to train our model with SGD and backprop.
Finish implementing backprop deep by completing each part in the piece of code below

def backprop_deep(xtrain, ltrain, net, T, B=100, gamma=.001, rho=.9):

...

for epoch in range(T):
running_loss = 0.0

shuffled_indices = COMPLETE

for k in range(NB):
# Extract k-th minibatch from xtrain and ltrain

minibatch_indices = COMPLETE

inputs = xtrain[COMPLETE]

labels = ltrain[COMPLETE]

# Initialize the gradients to zero

optimizer.zero_grad()

# Forward propagation

outputs = net(inputs)

# Error evaluation

loss = criterion(outputs, labels)
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with torch.no_grad():
    yinit = net(xtest)



_, lpred = yinit.max(1)
print(100 * (ltest == lpred).float().mean())



def backprop_deep(xtrain, ltrain, net, T, B=100, gamma=.001, rho=.9):
    N = xtrain.size()[0]     # Training set size
    NB = COMPLETE            # Number of minibatches
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(net.parameters(), lr=COMPLETE, momentum=rho)


https://pytorch.org/docs/stable/autograd.html#torch.autograd.no_grad
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# Back propagation

COMPLETE

# Parameter update

optimizer.step()

# Print averaged loss per minibatch every 100 mini-batches

# Compute and print statistics

with torch.no_grad():

running_loss += loss.item()

if k % 100 == 99:

print('[%d, %5d] loss: %.3f' %

(epoch + 1, k + 1, running_loss / 100))

running_loss = 0.0

net = LeNet()

backprop_deep(xtrain, ltrain, net, T=3)

Again, refer to https://pytorch.org/docs/stable/nn.html and https://pytorch.org/docs/

stable/optim.html for more details. Run the function for 3 epochs, it may take several minutes.
The loss per minibatch should decay as 2.30, 2.29, 2.27, 2.24, 2.15, 1.82, 1.07, 0.65, . . . until 0.22 (these
are approximative values that slightly vary each time you reinitiate the network). If it does not,
you may have a bug, then you can interrupt it by pressing Esc+i+i. You may also interrupt it and
move to the next question if you are impatient. Note that the function updates the network net

given in argument, though you interrupt it.

31. Re-evaluate the predictions of your trained network on the testing dataset. By how much did the
accuracy improve compared to the initialization?

32. Move the training data to GPU. Reinitialize a new network and transfer it to GPU simply as

net = LeNet().to(device)

Rerun backprop deep for 10 epochs. The learning should run in less than a minute!

33. Re-evaluate the predictions of your trained network on the testing dataset. By how much did the
accuracy improve compared to 3 epochs?
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def backprop_deep(xtrain, ltrain, net, T, B=100, gamma=.001, rho=.9):
    ...
    for epoch in range(T):
        running_loss = 0.0
        shuffled_indices = COMPLETE
        for k in range(NB):
            # Extract k-th minibatch from xtrain and ltrain
            minibatch_indices = COMPLETE
            inputs = xtrain[COMPLETE]
            labels = ltrain[COMPLETE]

            # Initialize the gradients to zero
            optimizer.zero_grad()

            # Forward propagation
            outputs = net(inputs)

            # Error evaluation
            loss = criterion(outputs, labels)

            # Back propagation
            COMPLETE

            # Parameter update
            optimizer.step()

            # Print averaged loss per minibatch every 100 mini-batches
            # Compute and print statistics
            with torch.no_grad():
                running_loss += loss.item()
            if k % 100 == 99:
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, k + 1, running_loss / 100))
                running_loss = 0.0

net = LeNet()
backprop_deep(xtrain, ltrain, net, T=3)



net = LeNet().to(device)
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