Analyse fonctionnelle TD 2

C. Dossal

Janvier 2012.

1 Densité des polynômes trigonométriques dans l'ensemble des fonctions continues 2π —périodiques.

On considère l'ensemble E des fonctions continues 2π -périodiques à valeurs complexes, le but de cet exercice est de construire une suite d'approximants pour la norme uniforme sous la forme de polynômes trigonométriques.

On considère l'espace F des fonctions continues à valeurs complexes définit sur \mathbb{U} , le cercle unité de \mathbb{C} : $\mathbb{U} = \{z \in \mathbb{C} \text{ tels que } |z| = 1\}.$

- 1. Enoncer les propriétés que doit vérifier une famille de fonctions pour pouvoir appliquer le théorème de Stone Weierstrass dans le cas complexe.
- 2. Vérifier que l'espace vectoriel engendré par les fonctions $(z^n)_{n\in\mathbb{Z}}$ vérifie les hypothèse du théorème de Stone Weierstrass dans l'espace F.
- 3. En déduire que pour toute fonction $g \in F$, et pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ et une suite α_n telle que pour tout $z \in \mathbb{U}$, $|g(z) \sum_{n=-N}^{n} \alpha_n z^n| \le \varepsilon$, c'est à dire que pour tout $t \in \mathbb{R}$, $|g(e^{it}) \sum_{n=-N}^{n} \alpha_n e^{int}| \le \varepsilon$.
- 4. Soit θ la fonction définie par $\begin{array}{ccc} \mathbb{U} & \longrightarrow & [0,2\pi[\\ z & \mapsto & t \text{ tel que } z=e^{it} \end{array}$. A toute fonction f définie sur $[0,2\pi[$ on associe la fonction $g=f\circ\theta$. Montrer que si f est continue sur $[0,2\pi[$, $g=f\circ\theta$ est continue sur $\mathbb{U}\setminus\{1\}$.
- 5. En calculant les deux limites suivantes :

$$\lim_{u \to 1, Im(u) \geqslant 0} g(u) \quad \text{ et } \quad \lim_{u \to 1, Im(u) < 0} g(u)$$

montrer que si $f \in E$ alors g est continue en 1 et que $g \in F$.

- 6. En déduire que pour tout $f \in E$ et pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ et une suite α_n telle que pour tout $t \in [0, 2\pi[, |f(t) \sum_{n=-N}^{n} \alpha_n e^{int}| \leq \varepsilon$.
- 7. En déduire que les polynômes trigonométriques sont denses dans E.

Nous verrons que le noyau de Fejer permet une construction explicite d'une suite approximante de polynômes trigonométriques.

2 Complétude de l'espace $\ell_p(\mathbb{N})$

Le but de cet exercice est de montrer que l'espace de suites $\ell_p(\mathbb{N})$ est complet. Pour cela on considère une suite $(u^n)_{n\in\mathbb{N}}$ de Cauchy d'éléments de $\ell_p(\mathbb{N})$.

- 1. Montrer que la suite $(\|u^n\|_p)_{n\in\mathbb{N}}$ est bornée. On note u_k^n le kième terme de la suite u^n .
- 2. Montrer que pour tout $k \in \mathbb{N}$, la suite $(u_k^n)_{n \in \mathbb{N}}$ est une suite de Cauchy. En déduire que pour tout $k \in \mathbb{N}$, la suite $(u_k^n)_{n \in \mathbb{N}}$ converge vers une valeur u_k . Dans la suite on note u la suite dont le kième terme est u_k .
- 3. Montrer qu'il existe M tel que pour tout $q \in \mathbb{N}$ et pour tout $N \in \mathbb{N}$,

$$\sum_{k=1}^{N} |u_k^q|^p \leqslant M$$

- 4. En déduire que la suite $(u_k)_{k \in \mathbb{N}} \in \ell_p(\mathbb{N})$.
- 5. Montrer que pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que si $q > n_0$, pour tout $N \in \mathbb{N}$ on a

$$\sum_{k=1}^N |u_k^q - u_k|^p \leqslant \varepsilon^p.$$

6. En déduire que pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que si $q > n_0$, $||u^q - u||_p \leqslant \varepsilon$. Conclure.

3 Fonctions continues

1. Pour $k \in \mathbb{R}^{+*}$, soit H_k le sous-espace de C([0,1]) défini par :

$$H_k = \{ f \in C([0,1]) / |f(x) - f(y)| \le k|x - y| \}$$

On pose $H = \bigcup_{k \in \mathbb{R}^{+*}} H_k$.

- (a) Montrer que $C^1([0,1]) \subset H$ mais que $\sqrt{x} \notin H$.
- (b) Montrer que, pour tout k, H_k est un espace de Banach pour la norme $\|.\|_{\infty}$.
- (c) Montrer qu'il existe une suite de fonctions de H qui converge uniformément sur [0,1] vers \sqrt{x} . En déduire que H n'est pas complet pour la norme uniforme.
- (d) On pose $||f|| = \sup_{x \neq y} \frac{|f(x) f(y)|}{|x y|} + |f(0)|.$

Montrer que cette application est une norme sur H et que H est complet pour cette norme.

- 2. Soit *E* l'espace des séries convergentes dans \mathbb{R} ; on pose : $||u|| = \sup_{n \geq 0} |\sum_{k=1}^n u_k|$.
 - (a) Montrer que $\|.\|$ est une norme sur E et que E est complet pour cette norme.
 - (b) L'espace l_1 des séries absolument convergentes est un sous-espace de E; montrer que les normes $\|.\|$ et $\|.\|_1$ ne sont pas équivalentes (on pourra considérer la suite de terme général $u_k = \frac{(-1)^k}{k}$, $u_k \in E$.
- 3. Soit E un compact et (f_n) une suite de fonctions de C(E,E) qui converge uniformément vers une fonction f.
 - (a) Montrer que si (x_n) est une suite de points qui converge vers x, la suite $(f_n(x_n))$ converge vers f(x).
 - (b) On suppose que pour tout n, f_n admet un point fixe. Montrer que f a un point fixe.
 - (c) Soit K un compact convexe de \mathbb{R}^n et f une application de K dans K tellle que : $\forall x,y \in K$, $\|f(x)-f(y)\| \leq \|x-y\|$: En considérant les fonctions f_n définies sur K par $f_n(x) = \frac{1}{n}f(x_0) + \left(1-\frac{1}{n}\right)f(x)$, $x_0 \in K$, montrer que f a un point fixe.
- 4. Soit $E = C([0,1],\mathbb{R})$ et $f \in E$ telle que $\int_0^1 f(x)x^n dx = 0$, $\forall n \ge 0$. Montrer que f = 0. On pourra utiliser une suite de polynômes qui converge vers f pour une norme adéquate.
- 5. Soit f une application continue de E dans \mathbb{R} telle qu'il existe n telle que f^n soit contractante. On note x_0 le point fixe de f^n .
 - (a) Montrer que tout point fixe de f est un point fixe de f^n .
 - (b) Montrer que si x est un point fixe de f^n , il en est de même de f(x);
 - (c) En déduire que x_0 est l'unique point fixe de f.