Université Bordeaux

Exercices: Feuille 2

- **1**) Soit (e_1, e_2) une base de \mathbb{R}^2 .
 - 1. Justifier que l'application linéaire A définie de \mathbb{R}^2 dans \mathbb{R}^2 définie par $Ae_1 = e_1 + e_2$ et $Ae_2 = e_1$ est un changement de bases de \mathbb{R}^2 .
 - 2. Donner le changement de base inverse.
 - 3. Soit u le vecteur dont les coordonnées dans la base (e_1, e_2) est (2,3). Quelles sont ses coordonnées dans la nouvelle base ?
 - 4. Soit v le vecteur dont les coordonnées sont (-1,2) dans la seconde base. Quelles sont les coordonnées de v dans la base originale (e_1,e_2) ?
- **2**) Soit (e_1, e_2, e_3, e_4) une base de \mathbb{R}^4 .
 - 1. Justifier que la matrice $\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ est celle d'un changements de bases et expliciter le changement de bases inverse.
- **3**) On condidère la base canonique de $R_2[X]$. Soit P_1 le polynôme défini par $P_1(X) = X(X-1)$, P_2 le polynôme défini par $P_2(X) = X(X+1)$ et P_3 le polynôme défini par $P_3(X) = (X-1)(X+1)$.
 - 1. Montrer que l'application linéaire qui à la base canonique associe (P_1, P_2, P_3) est un changement de bases.
 - 2. Expliciter le changement de bases inverse.
 - 3. Donner les coordonnées de $X^2 + 1$ dans la base (P_1, P_2, P_3) .
- 4) Soit E l'ensemble des fonctions f définies sur [0,1] telles qu'il existe a et b réels tels que

$$f(t) = \begin{cases} a & \text{si } t \in [0, \frac{1}{2}[\\ b & \text{si } t \in [\frac{1}{2}, 1] \end{cases}$$

- 1. Donner deux bases de E et le changement de bases associé.
- 2. Donner les coordonées de la fonction ci dessus (dépendant de *a* et de *b*) dans chacune des deux bases.
- **5**) Déterminer si les applications suivantes Φ sont des normes sur E

1.
$$E = \mathbb{R}^2$$
, $\Phi(x_1, x_2) = \sqrt{x_1^2 + 2x_2^2}$.

2.
$$E = \mathbb{R}^2$$
, $\Phi(x_1, x_2) = \sqrt{x_1^2 - x_2^2}$.

3.
$$E = \mathbb{R}^2$$
, $\Phi(x_1x_2) = |x_1| + |x_2|$.

4.
$$E = \mathbb{R}^3$$
, $\Phi(x_1, x_2, x_3) = max(|x_1|, |x_2|, |x_3|)$

- 5. E est l'espace des fonctions continues sur [0,1] et $\Phi(f) = \max_{x \in [0,1]} |f(x)|$.
- 6. E est l'espace des fonctions continues sur [0,1] et $\Phi(f)=\sqrt{\int_0^1|f(t)|^2dt}$.
- **6**) On considère l'espace vectoriel F des polynômes sur [0,1] et $(P_n)_{n\in\mathbb{N}}$ la suite définie par

$$P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$
. Soit f la fonction exponentielle définie sur $[0,1]$ par $f(x) = exp(x) = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$.

- 1. Montrer que $\lim_{n\to\infty} ||P_n f||_{\infty} = 0$
- 2. Si on munit l'espace vectoriel E des fonctions réelles définies sur [0,1] de la norme ℓ_{∞} , l'espace vectoriel F est-il un sous-espace fermé de E?
- 3. Existe il un polynôme réalisant le minimum de la distance avec f (au sens défini par la norme infinie)?
- 4. Reprendre les deux dernières questions pour la norme quadratique c'est à dire définie par $||f||_2 = \sqrt{\int_0^1 |f(t)|^2 dt}$.

7)

- 1. Proposer un vecteur orthogonal à (1,1) dans \mathbb{R}^2 pour le produit scalaire usuel.
- 2. Proposer un vecteur orthogonal à (1,1,1) dans \mathbb{R}^3 pour le produit sclaire usuel.
- 3. Proposer une fonction orthogonale à la fonction f définie sur [0,1] par $f(x)=1, \forall x \in [0,1]$ pour le produit scalaire (réel) canonique sur [0,1] c'est à dire défini par $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$.
- 4. Même question pour la fonction qui à *t* associe *t*.