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Summary. From the Navier-Stokes/Brinkman model, a penalization
method has been derived by several authors to compute incompressible
Navier-Stokes equations around obstacles. In this paper, convergence the-
orems and error estimates are derived for two kinds of penalization. The
first one corresponds to& penalization inducing a Darcy equation in the
solid body, the second one corresponds fé'apenalization and induces a
Brinkman equation in the body. Numerical tests are performed to confirm
the efficiency and accuracy of the method.
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1. Introduction and setting of the problem

About fifteen years ago, there were several attempts to penalize the no-slip
boundary condition on the surface of an obstacle surrounded by a fluid.
The aim was to avoid body-fitted unstructured meshes in order to use fast
and efficient spectral, finite differences or finite volumes approximations
on cartesian meshes. A way to do that is to add a penalized velocity term
in the momentum equation of the incompressible Navier-Stokes equations.
Following the former work of Peskin [12], [13], several authors (for instance
[9]) add both a time integral of the velocity and a velocity penalization term
only at the points defining the surface of the obstacle. It appears that the
penalization has to be extended to the volume of the body to give correct
physical solutions at high Reynolds numbers [14]. In independent works,
Arquis and Caltagirone [4] add a penalization term on the velocity defined
on the volume of a porous body. This corresponds to a Brinkman type
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model with variable permeability where the fluid domain has a very large
permeability in front of the one of the porous medium. This model was
generalized later in [1] [2] to deal with fluid-porous-solid systems. In a
more recent work [8], it is suggested that this model allows to compute the
drag and lift coefficients by integrating the penalization term inside the solid
body. Various works use the same methodology to compute incompressible
flows around a cylinder or behind a step [3], [5], [6], [10].

The aim of this paper is to establish rigourous estimates of the error in-
duced by such penalizations and to show numerically the efficiency of the
method. In Sect. 3, we give the formal asymptotic expansion of the approx-
imate solution with respect to the penalization coefficient. Then Sects. 4
and 5 are devoted to the analysis of the propasednd H' penalization
respectively. The.? penalization consists in adding a damping term on the
velocity in the momentum equation whereas fiié penalization includes
in addition a perturbation of both the time derivative and the viscous term.
The numerical tests to validate the mathematical modelling are presented in
the last section.

2. Preliminaries and notations

Let {2 be a regular bounded connected open setinwrR assume tha®
contains/ regular obstacle€? , 1 <i < I (see Fig. 1).
We set

1

Q=J02, 2=0\0
=1

Ti=00L, I'=00

where (2 is the incompressible fluid domain in which the Navier-Stokes
equations are prescribed. In the physical case, the motion is given by impos-
ing a non homogeneous Dirichlet boundary condition/grwhereas, for
sake of simplicity in the mathematical study we assume that the motion, is
imposed by an external source term. Consequently, we take an homogeneous
Dirichlet boundary condition for the velocity ah.

Sowe are looking for the solution of the following initial boundary value
problem:

1 :
atuf_EAUf—FUf'VUf—Ffo:f In R+><Qf
(2.1) div ug =0 in RT x (%
ug(0,-) = uyo in (2
uf =0 onof.
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Fig. 1. Domain

The first equation can be written in terms of the stress teagorp) =
71 (Vu + Vul) — pl) as:

Opug + ug - Vug — div o(ug, pr) = f in RT x £

div ug =0 inR™ x £
(2:2) ug(0,-) = uyo in £2
usr =0 onof.

This form is used in Sect. 3 for thé! penalization.
Now, let us introduce the following functional spaces:

L*(2) = (L*(12))?

H'(2) ={ue L*(); VU2€ (L*(£2))*}

HA(0) = {u e LX) 50t e 1) 1<i<j<2)
HY(0Q) = {uc H'(2); u=00nd2)
H={uecL?;divu=0; un=00ndN}
V ={uec H{(R); divu=0}.

at last, we denote,_ the function:
1o.(z) =1 if 2 € 0
1o, (x) =0 if x € £
3. Two models to penalize the Navier-Stokes equations
Instead of solving the problem (2.1) &5, we solve an equivalent problem

onthe whole domairv by penalizing the obstacles. The linear case is studied
in [3]
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3.1. TheL? penalization

The first idea is to force the velocity to be smallfiy by solving:

1 1 .
Optiyy — 4o Aty + - Vg + Elns“n +Vpy=f INRTx 0

(3.1) div u, =0 iNnR™ x 2
un(0,-) = ug in £
uy =0 onlI.

We setu,, = u + nu andp, = p + np to derive formally the equations
satisfied byu, p anda, p. Then we get from the first equation in (3.1) by
identifying the terms of same order:

(3.2) 1ou=0
(3.3) &gu—éAu—&—u-Vu—i—leﬁ—i—Vp:f
(3.4) Ot — - Au+u-Vi+a-Vu+ Vp=0.

Thus by (3.2)u vanishes inf2;. Consequently: satisfies equation (2.1) in
{2 anda checks:

s + Vps = 0 in £

(3.5) diva=0 in (2
and
(3.6) Oy — éAﬁf +ug - Vg + 4 - Vug + Vpr =0 in £

div @ = 0 in (.

Let us remark that, % andp, p are continuous on each!. Henceps is
given by:

Aps=0in21<i<I

ps =pr ON Z;

which yieldsi in £25 by (3.5).
Thenu, is completly determined by adding:

Uf = s onXi1<i<I
and
ag(0, ) =0

to (3.6).

Remark 3.1In (%, @ verifies a Darcy type law associated to a Neumann
boundary condition on the pressure. Thus the obstacles are associated to
porous media.
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3.2. TheH! penalization

In this section we choose to penalize in addition the whole linear part of the
Navier-Stokes equations. So according to (2.2) we set:

1
(1 + 5198>8tu77 + uyy - Vuy,

_div ((1 + %195)0(un,p7])> +gu, = finRT x 2

3.7)
div u, =0 inRT x 2
un(0,-) = ug in 2
uy =0 onl’

From the expansion form of,, andp,,, u,, = v + na andp,, = p + np, we
get by identification of the terms of same order:

(3.8) Lo, 0iu — div (1g,0(u,p)) + 1o,u =0,

Oru 4+ uVu — div o(u,p) + 1o 0t
(3.9) —div (Lo,0(u,p)) +1ou = f,

(3.10) ot ~+u-Vi+a-Vu—div o(a,p) = 0.
Closing equation (3.8) ifi; with the natural boundary condition
o(us,ps) -ni=00nX 1 <i<T

wheren! denotes the unit normal vector pointing inside(2jf we find that
us = 0 on {25 thanks to the damping term. Then by (3uQatisfies equation
(2.2) in£2; and by (3.9) and (3.1Q) cheks:

Optis — div o (s, Ps) + s = 0 in RT x (X

(3.11)
divag =0 in R™ x £
and
Ostis + ug - Vg + Ug - Vug — div O’(ﬁf,ﬁf) =0 inR" x 2
(3.12)
div g =0 in R™ x £

Now, as in the previous subsection, the continuity®fi) and (p, p) on
eachX! allows to close the problem by adding:

o(ts, Ps) - nt = o (ug,pr) -né oNRT x X1 1<i<]T

as(oa ) — 0 |n ‘QS
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to (3.11) and

to (3.12).

Remark 3.2In (2, @ satisfies a Brinkman type equation associated to a
Neumann type condition for the stress tensor. Once again the obstacles can
be viewed as sparse porous media.

Remark 3.3Instead of (3.7) we study a similar problem given by :

1 1 1
<1 + 7]195> Oguyy — Edlv <(1 + leS)Vun>

1 .
+un~Vun+%lgsun+Vpn:f inRT x 2
(3.13)
div u, =0 inR™ x 2
uy(0,-) = ug in 2
uy =0 onI.

The mathematical analysis of (3.7) can be achieved through a mixed formu-
lation as in [7]

4. The L? penalization

In this section we study the behaviour of the solutignof problem (3.1)
whenn goes to zero.

1 1 .
Oy — EAUW +uy - Vg + ;195“77 +Vpy=f InRT x 0

4Dy u, = 0 in R* x 2
un(0,-) = ug in 2
uy, =0 onl’

wheref is a given function inL>*(R™; L2(2)) which support is included
in £2%. As it is well known, forp given there exists an unique solutiop of
(4.1) satisfying:

u, € CO(RY; H)N L}

loc

(R*;V)

ékun e L? (R+; V/)

loc
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Remark 4.1Note that this solution cannot be more regular in spackas
is a discontinuous function.

As the results of this section are derived from energy estimates, we recall
the weak formulation of (4.1), forany € V

1
(Oruy , )y v + / Vu, - Vods + / uy - Vuypdzs
1 Re o)
4.2 +- / 1ouypdx = | fodz.
nJo ¢
un(ov ) =0
Remark 4.2lt is allowed to extend (4.1) to test functiopsn W where:

W ={peL*(0,T; V); dp € L*(0,T; V') ; o(T) =0}

4.1. Convergence result

In order to get a convergence result we need the followipgori estimates:

Lemma 4.1l
Re?
(4.3) sup |Un’2 < ’U0|2 + N sup ”f”2—1
teR™ L eR*
t
(4.4) / |qu7(7')|2d7' < \uo|2 + Re? sup HfHQ_lt
0 teR™

where||f||_; denotes the norm il —*(2).
Proof. From (4.2) withy = u,, we get:

1d 1 1
5 il OF + 7 Va0 + 1 [ Lo @t e < 21T 0],

S0,
d g, 1 5 2 / )
— — = |1
g1 P+ oV (OF + - | Lo, (@)ui(t,2)de
1
4.5 < —1fl?
45 <l
that gives after elementary computations (4.3), (4.4).

From (4.5) we deduce directly:
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Corollary 4.1

2 t
(4.6) / / 10, (2)u2 (7, 2)dzdr < Jugl® + Re sup [|£(£)]% 1.
nJo Jo cR*

As we are not able to derive an estimatedn,, in V', we choose to
evaluate a fractional derivative in time of to obtain compactness.

Lemma 4.2 There exists a generic functigrin C°(R™) independent of
such that:

(4.7) 0] un () 200,600 < g(t), ¥y <

|

Sketch of proof: As the terrifllgsw7 is a damping term, the ideas developed
in [11] , [16] can be applieg (seealso [7]).

Following the idea of [7], we introduce the Hilbert space:
W ={pe L*(0,T;V); dup € L*(0,T; V') ; o(T) = 0}

to obtain:

Lemma 4.3 There exists a generic functigrin C°(R™) depending on the
data such that:

(4.8) /0 t /9 Lo (@)un (7, 2) (7, ) dad

1
el < gt

; < g(®) lellw

Proof. Integrating by part in time the first term of (4.2) we get foe W:

1 T T
n/lm@MNwM@@Mﬁ=/<%®ﬂwwvﬁ
0 0

1 T
_}{@/O /Q Vun(t, x) . V@(tyl')dl‘dt

[ ] s Bt 20,0yt
+/(]T/Qf(t’x)‘p(t’x)d$dt+/QUO(OU)QO(O,x)dQ:,

The estimate (4.8) comes from straightforward majorations using (4.3) and
(4.4). O

Finally, to show that the limit, of the sequencéu,), is solution of
homogeneous Navier-Stokes equation&jrwe need the last result:
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Lemma 4.4 There exists a generic functigrin C°(R™) depending on the
data such that

F .
(4.9) ’un‘LQ((),t;LQ(gg)) <gt)ns, vil<i<I

Proof. As u, belongs tal.?(0, T'; V') the trace ofu, is well defined on each
boundaryX’! and we have the following inequality wherelenotes always
a generic constant.

1 1
(420)  fuy(D]izgay < elun(®)Zaggn lun ()] F1

We first bound théd! norm onf2! by the H' norm ons? ; then using (4.3)
and (4.4) we get:

t t
|ty < o0) [ o)y

1
t 2
<90 { [ o )Baquyr
which gives with (4.10) and (4.6)

t
1
/0 ’un(T)’%2(2;:)dT <g(tnz, Vte RT,
whereg is a generic function. O

Therefore we can show:

Theorem 4.1 Whem, goes to zero, the sequengs, ), converges to a limit
u which satisfies:

u|Qs = 07
andu o, is the unique weak solution of Navier-Stokes equatiafain
Moreover there exists € W’ such that:

1 .
—1p.uy, — hin W’ weakly
n

and

- /0 (u(T), Op(T))v vrdT + /O /Q Vu(r, z) - Vo(r, z)dedr
@10 + [ [ utra)- Vulrapplr.a)dadr + (. chwe

:/Ot/gf(T,x)go(T,m)dxdT—i—/ng(x)cp(O,ac)dx
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Proof. From (4.3), (4.4) and (4.7) we get by a compactness result [16],

for a subsequence still denotéd,),, .
Moreover from (4.8) we have

1
—1p.u, = hin W'
n
At last, from (4.9)
u=0on R" x 2.
As h is the weak limit Of%lgsun, one has for anyy in W such that

suppy(t,-) C £
(h,p) = 0.

Then (4.11) is straightforward and from the remark abows the weak
solution of Navier-Stokes equation{g:. Finally, from Corollary 4.2, = 0
in {2 and by uniqueness of ,, the whole sequende,; , ), converges. O

4.2. Error estimate

Now assuming that the solutian of Navier-Stokes equations i is reg-
ular enough, we can derive an error estimate.

So, forug € L®(0, T, H}(£2)) N L?(0, T; H?(§2%)) (which is true as
soon asuyo € H{(52)), let us defines by:

U = us in_Qf
u=0 in {X%.

It is obvious that:
u € L®(0,T; Hy($2)) N L*(0,T; {H? () N H*(£2,)})

and that
divu =0in RT x 0.

So, we get forp € V,

1
0:/ <8tu—Au—|—u-Vu+Vp—f><pdm,
2 Re
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and after integration by parts

1
O:/ <8tug0+Vu-Vg0+u-Vu<p—fap>dfc
2 Re

I
4.12) =S /Z o (u, p)nipdy
i=1 7 %s

wheren! is the outward unit normal vector @; on X.

Inaddition, asthe 2D weak solution of Navier-Stokes equationsis unique,
the weak limitu obtained in the previous theorem is identicalton (2 as
soon asy o, belongs toH 3 (£2;) and is divergence free ift.

Theorem 4.2 Let
ug € L0, T; HY () N L*(0,T; H* (1))
be the solution of Navier-Stokes equationsinand v defined as:

U = Uuf ian
w=0 in{.

Then there exists, bounded inL>°(0,7; H) N L*(0,T; V') such that:
1
Uy = U+ Nivy.

Moreover there exists a generic functigin C°(R™) such that:

N[

|U77|L2(O,t;L2(Qs)) < g(t)nz.

Proof. To get the error estimate above we seglon the followinga priori
form u, = u + nw, and get from (4.2) asp,u = 0,forp € V.

1
/ (&wp + —Vu-Vo+u-Vup — fgo) dx + / 1o wypdx
7 Re 0
1
—1—77/ (atwngo + Ean Vo +u- Vw,p + wy, - Vu«p) dx
19

-1—772/ wy - Vwypdr = 0.
Q



508 P. Angot et al.

According to (4.12) this reduce, after dividing bhyto:

1
/ <8tw7,<p + ——Vwy, - Vo +u - Vwyp +w, - Vugo) dx
0 Re

1
(4.13) +n/91!25wn90d33+77/9wn-ancpdx

1< .
=- Z/ o(u,p) - njwydy.
iz /i

For fixedn , w, is regular enough to take = w, in (4.13). So we get the
following energy estimate:

1
2 24 2
—I—— 1 dx
3 t| ,]| |an| 77/ Q.W;,

o(u,p) nfwnd'y

' / wy - Vuwydz

<15

< HZ |wyl L2y + ¢ lwy| [V
=1
I

c 1 1
; Z ‘wn‘z2(gsi) \an‘zz(gsi) + ¢ wy| [V |
i=1

IN

as in the proof of Lemma 4.4.
Then, using Young inequality to absorb the gradient terms, one gets:

d 2 1 2 2/ 2
wy? + o= |V 2 + = | 1gwid

2 1 3 3
<clwy|” +e Ele’LQ(QS) )

and absorbing agaifw,|2(¢,) by the third term of the left hand side, one
has:

d 2, 1 2 2/ 2
— —1|V — 1 d
dt|wn| +Re| (e —1-77 . o.w,dx
2 _3
<clwy|”+en 2

Then, by Gronwalllemma, we get far, (0) = 0 as we choose,, (0) = u(0)
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N|w

wy(t)]* < g(t)n~2,

N|w

and
1 t 9 1 [t 2
— YVw, (T d7'+//1533w T,z)dzdT < g(t)n~ 2,
Re/0| ?7()| nJo Jo Q()n( ) ()77

whereg is a generic continuous function on"RThis gives the result for
_ UuTun
wy = —~. O

4.3. Interpretation oh

For weak solutions given by (4.11), we are not able to give a rigorous in-
terpretation of the weak limit of (%195%),7. Nevertheless, for regular
solution in time, we can derive an explicit formula.

Following [15], we can show, under the compatibility condition:

1
" Re
+Vp,(0) — £(0) is bounded inL?(£2)

1
(4.14) Auy(0) 4+ uy(0) - Vuy(0) + Elgsun(())
and under the regularity assumption:
(4.15) of € L°(RT; L*(02))

thatd,u,, is bounded inL>(0,T; H) N L?(0,T; V).
Thush belongs taL>°(0,T; V).

Remark 4.3The condition (4.14) is fulfilled as soon ag(0),;, = 0 and
u,(0) € H?(2) which is physically relevant.

In this case, instead of (4.11) the limitsatisfies:

1
/ Orupdr + / Vu-Vp
17 Re Jq
(4.16) +/ u - Vupdz + (h(t), o(t)) v, v :/ fodx.
Q 2

Theorem 4.3 Under compatibility condition (4.14) and regularity condi-
tion (4.15)A is uniquely determined by

I
@17) (1O oy ==Y [ olupinipdy Vo V.
i=1 /%%
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Proof. The result follows from (4.12) and (4.16) 0

Remark 4.4From (4.17) we can write
I ‘ )
Z/ o(u,p)ngedy = — lim — 1o, uypd.
=17 %% =01 Ja,
Wheny € V is such thatp = 1in 2¢ andp = 0in ! , j # i, we get

. 1
o(u,p)nidy = — lim — 1piu,dz.
Lg(p)fv i 5 J, Loitm

This last equation gives an explicit way to compute the lift and drag coeffi-
cients through an integration over the volume of the obstacle [3], [8].

5. The H! penalization

We study in this section the behaviour of the solutjop),, of the penalized
problem (3.7) presented in Sect. 3 whggoes to zero.

1 1 1
<1 + 7]195> Oguyy — Edlv <(1 + leS)Vun>

1 .
+unoVun+%lgsun+Vpn:f inR™ x 2
(5.2)
div u, =0 inR™ x 2
uy(0,-) = ug in 2
uy, =0 onI.

As the aim of this section is to derive a better error estimate, we work directly
with regular solution in time, and so we take by example

(5.2) fe€ L®(R";L*2))suchthat;f € L®(R"; L*(12)),
and we assume that the following compatibility solution is fulfilled.

—édiv <(1+ 117195)%"(0))
(5.3) uy (0) - Vg (0) + 717195%(0) Vi (0) — £(0)

is bounded inL.2(£2).
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Remark 5.1The condition (5.3) is satisfied as soon as
un(0) € H*(£2) uy(0)0, =0, div uy(0) =0

By usual techniques, we can show that (5.1) has a unique solution under
the compatibility condition (5.3) and under the regularity assumption (5.2)
which checks

(uy)y is bounded irC°(0,T; V')
(Dyuy)y is bouded inL> (0, T; H) N L*(0,T; V).

The variational formulation of (5.1) is, for anye V'

1 1 1
/ <1+1gs> 8tundx+/ <1+1gs> Vu, - Vedz
19 U Re Jo 7

1
-4 +/ un-Vungodx—i—/ 1qungodx:/ fodx
0 nJe 2

un(0> ) = uo-
As pointed out in Sect. 3, we introduaeand in C%(0, T'; V') solution of:

U‘_QS =0

55
53 U|y = Uf,

whereu; is the solution of Navier-Stokes equations( with u¢ = 0 on
I' U X andu defined as:

), = us where
Ohits — f= Altg + @is + Vs = 0 in RT x £

(5.6) div ug =0 in R™ x £2
us(0) =0 ‘ ' in _QS‘
U(asvﬁs)né = *O’(Uf,pf)né onXil<i<I
), = U Where
Ol — éﬂﬂf + g - Vug
+us - Vg +Vpr =0 in RT x (2
(5.7) divag =0 in R" x (2
ae(0) = 0 in ¢
Uf = Ug onX!1<i<]
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Remark 5.2If the penalization is suppressed in the time derivative in (5.1),
the resulting Brinkman equation in the solid (5.7) becomes a steady equation.

Remark 5.3The existence and the regularity@fis classical as

/ dsndy =0, 1 <i < T
X

7
s

The existence ai; can be derived from [7] where such boundary conditions
are studied.

The regularityii, € C°(0,T; V) N L?(0,T; H?(£2,)) can be obtained by
the translation method of Nirenberg.

Then we set,, = u + nu + nw, and we establish energy estimates on
wn.

Theorem 5.1 Letw and @ be defined by (5.5), (5.6) and (5.7), Then there
exists(v, ), bounded inL>(0,¢; H) N L?(0, ¢; V) such that:

3
Uy = U+ NU + 12 Vy.

Moreover there exists a generics functipin C°(R™) such that:

g(t)n?

[0l oo 0,7, 22(02,)) = 1
<g(t)n2

|vv?7‘L°°(O,T;L2(QS))

Proof. Replacingu,, in (5.4) by its expression, we get ag, = 0:
1
/ 10, <8tu90 4+ —Vu-Vo+u-Vup — fcp) dx
0N Re
. 1. -
+/ 10, <8tug0 + —Vu-Vep+ u<p> dz
N Re

1
+77/ 1o, (8,:12@4— —Vu-Vo+u-Vup+u- Vdgp) dx
.8 Jo Re

1 1
+77/ ((1 + —10,)(Oiwyp + 5—Vwy, - Vo) +u - Vwyp
0 n Re

1
+=1owyp +wy - Vuyp | dx
n

—1-772/ (@- Vi +wy,-Vi+a- Vw, +w, - Vw,) pde =0 .
2
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Using (5.5) , (5.6) and (5.7) the first three integrals reduce, after integrating
by parts, to:

I
—nZLﬂ o (i, pr)niedy.
=1 s
Then (5.8) becomes when dividing by

L

R Vw, Vo) +u - Vwyp

1
+/ ((14—195)(8,511)77(,04-
n n )
+;1gswngo+wn : Vucp) dx
—i-n/ (G- Vi+wy, - Vi+a- Vw, +w, - Vwy) pdx
Q

I
= Z/ o (@i, pr)nipdy.
i—1 7
Settingy = w, we get by sobolev embeddings the following inequality:

1d 1 ) 1 1 )
2 (1421 d 1+ =10 ) [V, |2d
2 dt g<+nﬂs>w’7x+Re n<+ngs>|w"| !

1
—I—/ lgsw%dx
nJje

~ 1 3 1 1
< ¢ (IVul + n|Val) [y [Veoy| + ¢ [l [Via]? [wy|? [V, |2
I
e (Z |a<af,zaf|Lz(2;->) (120, wy| + 10, V)
=1

as
|w77|L2(2gj) <ec (llggwﬂ + ‘IQQan’) .

wherec always denotes a generic constant.
Then, from the regularity of and, and from Young inequalities we have
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forn < 1:

d 1 1 1
- 1+-1 200 + — 1+ -1, 2q
dt/9<+7793>w"$+Re/Q<+nns>ww”‘ x
1 2
+— | lowdx
nJo

<c (IVuP + 2 [VaP) fuw,|?

1
+en (W Vil + \U(ﬂf,ﬁf\%z(xg)>

=1

which gives from Gronwall lemma as,, (0) = 0:

1
2 2
‘wn(t” + 5 |1stn(t)‘ < ng(t)

and . .
/ <|an<f>|2 4 |1stn<r>\2) dr < ng(t).

whereg denotes a generic function @’ (R™*). O

6. Numerical validation

To validate the penalization we choose a numerical test easy to implement
and for which the geometry is well fitted in order to avoid an additional
error. So we compute the two-dimensional flow around a square cylinder in
a channel, i.e. with a no-slip boundary condition on the horizontal walls of
I, as shown on Fig. 2.

We use a cartesian mesh wii0 x 80 cells on the whole domaif? =
2 U s = (0,4) x (0,1), in such a way that’; corresponds to mesh
lines. To get the reference solutioms;, we approximate the Navier-Stokes
equations inf2; associated to homogeneous Dirichlet boundary conditions
on . Then we can compare for various valueg tfie penalized solutions
to these reference solutions.

6.1. TheL? penalization
First, we investigate a steady case at the Reynolds nufber 40 where

Re = UL with U = 1 defines the mean velocity of the Poiseuille flow at
the entrance sectiol) the size of the square amdhe cinematic viscosity.
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Fig. 2. Computational domain

Table 1. Numerical measurement of the error estimat®at= 40

n HunHLQ(QS) aforO(m®)  |luy —UrefHL2(rzf) a for O(n*)
102  3.8110° 9.691072
10~ 5.801073 0.82 1.651072 0.77
107*  6.39107* 0.96 1.821073 0.96
107°  6.46107° 0.99 2.0110~4 0.96
107%  6.4710°° 1.00 9.5910~° 0.32

The isolines of pressure and vorticity are plotted on Fig. 3 for both the exact
Dirichlet boundary condition and thg? penalization respectively. We can
observe that the pressure is continuous through the obstacle with?the
penalization.

Table 1 shows that the numerical error estimate variéx(@$in (2; and
aboutO(n) in £2:. When the penalty parametgis going to zero, the error
of the solution in the fluid domain is still decreasing as shown on Table 1.
However the gain in accuracy, which is () for a range ofy values
not too small, becomes in fact limited by the discretization error as soon
asn is taken below a certain threshold. This is confirmed by the fact that
the latter threshold is decreasing when the mesh step is smaller. Hence, the
theoretical error estimate given in Theorem 4.2 might not be optimal as it
yieldsO(7*/4) in 2, andO(n'/*) in 2.
Then we compute unsteady solutiongiat= 80 to be sure that propagation
effects are not spoiled by the penalization method. We see on Fig. 4 and 5
that a large value af induces a delay of the convection. Consequently, the
Strouhal numbef; = %, wheref is the frequency of the vortex shedding
in the wake, is under estimated (Table 2). Let us note that the value of the
Strouhal number for this internal flow does not correspond to the well-known
value for such a Reynolds number in an open flow.
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Fig. 3. Comparison of the solution computed with Dirichlet boundary condition Ahd
penalization withy = 10~3 (pressure and vorticity fields &e = 40)

Table 2. Strouhal number ake = 80

g n=10"° pn=10"° »p=10" n=10"
S:  0.2390 0.2390 0.2390 0.2387 0.2349




Obstacles in incompressible viscous flows 517

Fig. 4. Comparison of the solutions computed with Dirichlet boundary conditionZzhd
penalization witly = 10~% andn = 1072 at Re = 80 (pressure field)

For small values of), we clearly observe on Figs. 4 and 5 that there is
no difference between,.; andu, whenn = 1078. This means that the
error induced by the penalization method is much lower than the error of
approximation.

These numerical tests show the efficiency of fitepenalization that
gives the same resultthan Dirichlet boundary condition as soon as the penalty
parameter is small enough. In addition, the pressure field is continuous in
the whole domairf? and the equation

1 .
—uy + Vp, =0 in (X
n

is numerically satisfied, which confirms the asymptotic formal expansion
given by (3.5). Hence, there is a Darcy flow in the solid at the ondés it
is carried out numerically in [10] and according to (4.17) and Remark 4.4,
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Fig. 5. Comparison of the solutions computed with Dirichlet boundary conditionZzhd
penalization withy = 10~8 andn = 102 at Re = 80 (vorticity field)

the lift and drag coefficients can be computed from

1
lim/ Vpdx = — lim — up de = / o(u,p) - ngdy.
n—=0.J 0, =01 Jo, b

6.2. TheH! penalization

We perform the same numerical tests than in Sect. 6.1. The results plotted
on Fig. 6 atRe = 40 show that there is a small discrepancy with the original
solution. Itis due to the discretization of the penalized viscous term. Indeed,
the discretization of this term changes slightly the size of the obstacle and
thus the recirculation zone in the wake is a little bit different.

In the unsteady case, we observe also a discrepancy in the determination
of the Strouhal number even fgr= 10~8. This is still due to the varia-
tion of volume of the body which is effectively taken into account by the
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Fig. 6. Comparison of the solutions computed with Dirichlet boundary conditionfhd
penalization withy = 10~® at Re = 40 (vorticity field)

discretization and induced by the approximation of the penalized viscous
term. Hence, thél ! penalization does notimprove in practice the numerical
results as it is shown theoretically.

7. Conclusions

This paper gives a rigorous justification of the penalization method to take
into account a solid body immersed in an incompressible viscous fluid in
motion. This method is a fictitious domain method which has been proved
to be very easy to implement, robust and efficient. In addition, since the
penalization parameter can be taken as small as necessary, the penalty
error is always negligeable in front of the error of approximation.
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