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Summary. From the Navier-Stokes/Brinkman model, a penalization
method has been derived by several authors to compute incompressible
Navier-Stokes equations around obstacles. In this paper, convergence the-
orems and error estimates are derived for two kinds of penalization. The
first one corresponds to aL2 penalization inducing a Darcy equation in the
solid body, the second one corresponds to aH1 penalization and induces a
Brinkman equation in the body. Numerical tests are performed to confirm
the efficiency and accuracy of the method.
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1. Introduction and setting of the problem

About fifteen years ago, there were several attempts to penalize the no-slip
boundary condition on the surface of an obstacle surrounded by a fluid.
The aim was to avoid body-fitted unstructured meshes in order to use fast
and efficient spectral, finite differences or finite volumes approximations
on cartesian meshes. A way to do that is to add a penalized velocity term
in the momentum equation of the incompressible Navier-Stokes equations.
Following the former work of Peskin [12], [13], several authors (for instance
[9]) add both a time integral of the velocity and a velocity penalization term
only at the points defining the surface of the obstacle. It appears that the
penalization has to be extended to the volume of the body to give correct
physical solutions at high Reynolds numbers [14]. In independent works,
Arquis and Caltagirone [4] add a penalization term on the velocity defined
on the volume of a porous body. This corresponds to a Brinkman type
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model with variable permeability where the fluid domain has a very large
permeability in front of the one of the porous medium. This model was
generalized later in [1] [2] to deal with fluid-porous-solid systems. In a
more recent work [8], it is suggested that this model allows to compute the
drag and lift coefficients by integrating the penalization term inside the solid
body. Various works use the same methodology to compute incompressible
flows around a cylinder or behind a step [3], [5], [6], [10].

The aim of this paper is to establish rigourous estimates of the error in-
duced by such penalizations and to show numerically the efficiency of the
method. In Sect. 3, we give the formal asymptotic expansion of the approx-
imate solution with respect to the penalization coefficient. Then Sects. 4
and 5 are devoted to the analysis of the proposedL2 andH1 penalization
respectively. TheL2 penalization consists in adding a damping term on the
velocity in the momentum equation whereas theH1 penalization includes
in addition a perturbation of both the time derivative and the viscous term.
The numerical tests to validate the mathematical modelling are presented in
the last section.

2. Preliminaries and notations

Let Ω be a regular bounded connected open set in IR2, we assume thatΩ
containsI regular obstaclesΩi

s , 1 ≤ i ≤ I (see Fig. 1).
We set

Ωs =
I⋃

i=1

Ωi
s , Ωf = Ω\Ωs

Σi
s = ∂Ωi

s , Γ = ∂Ω

whereΩf is the incompressible fluid domain in which the Navier-Stokes
equations are prescribed. In the physical case, the motion is given by impos-
ing a non homogeneous Dirichlet boundary condition onΓ , whereas, for
sake of simplicity in the mathematical study we assume that the motion, is
imposed by an external source term. Consequently, we take an homogeneous
Dirichlet boundary condition for the velocity onΓ .

So we are looking for the solution of the following initial boundary value
problem:

∂tuf − 1
Re

∆uf + uf · ∇uf + ∇pf = f in IR+ × Ωf

div uf = 0 in IR+ × Ωf
uf(0, ·) = uf 0 in Ωf
uf = 0 on∂Ωf .

(2.1)
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The first equation can be written in terms of the stress tensorσ(u, p) =
1

2 Re(∇u + ∇ut) − pI) as:

∂tuf + uf · ∇uf − div σ(uf , pf) = f in IR+ × Ωf
div uf = 0 in IR+ × Ωf
uf(0, ·) = uf 0 in Ωf
uf = 0 on∂Ωf .

(2.2)

This form is used in Sect. 3 for theH1 penalization.
Now, let us introduce the following functional spaces:

L2(Ω) = (L2(Ω))2

H1(Ω) = {u ∈ L2(Ω) ; ∇u ∈ (L2(Ω))4}
H2(Ω) = {u ∈ L2(Ω) ;

∂2u

∂xi ∂xj
∈ L2(Ω) , 1 ≤ i ≤ j ≤ 2}

H1
0(Ω) = {u ∈ H1(Ω) ; u = 0 on∂Ω}

H = {u ∈ L2 ; div u = 0 ; u.n = 0 on∂Ω}
V = {u ∈ H1

0(Ω) ; div u = 0}.

at last, we denote1Ωs the function:

1Ωs(x) = 1 if x ∈ Ωs
1Ωs(x) = 0 if x ∈ Ωf

3. Two models to penalize the Navier-Stokes equations

Instead of solving the problem (2.1) onΩf , we solve an equivalent problem
on the whole domainΩ by penalizing the obstacles. The linear case is studied
in [3]
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3.1. TheL2 penalization

The first idea is to force the velocity to be small inΩs by solving:

∂tuη − 1
Re

∆uη + uη · ∇uη +
1
η
1Ωsuη + ∇pη = f in IR+ × Ω

div uη = 0 in IR+ × Ω
uη(0, ·) = u0 in Ω
uη = 0 onΓ.

(3.1)

We setuη = u + ηũ andpη = p + ηp̃ to derive formally the equations
satisfied byu, p andũ, p̃. Then we get from the first equation in (3.1) by
identifying the terms of same order:

1Ωsu = 0(3.2)

∂tu − 1
Re∆u + u · ∇u + 1Ωs ũ + ∇p = f(3.3)

∂tũ − 1
Re∆ũ + u · ∇ũ + ũ · ∇u + ∇p̃ = 0.(3.4)

Thus by (3.2)u vanishes inΩs. Consequentlyu satisfies equation (2.1) in
Ωf andũ checks:

ũs + ∇ps = 0 in Ωs
div ũ = 0 in Ωs

(3.5)

and

∂tũf − 1
Re∆ũf + uf · ∇ũf + ũf · ∇uf + ∇p̃f = 0 in Ωf

div ũf = 0 in Ωf .
(3.6)

Let us remark thatu, ũ andp, p̃ are continuous on eachΣi
s. Henceps is

given by:
∆ps = 0 in Ωi

s 1 ≤ i ≤ I
ps = pf onΣi

s

which yieldsũs in Ωs by (3.5).
Thenũf is completly determined by adding:

ũf = ũs onΣi
s 1 ≤ i ≤ I

and
ũf(0, ·) = 0

to (3.6).

Remark 3.1In Ωs, ũ verifies a Darcy type law associated to a Neumann
boundary condition on the pressure. Thus the obstacles are associated to
porous media.
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3.2. TheH1 penalization

In this section we choose to penalize in addition the whole linear part of the
Navier-Stokes equations. So according to (2.2) we set:(

1 +
1
η
1Ωs

)
∂tuη + uη · ∇uη

−div
(
(1 + 1

η1Ωs)σ(uη, pη)
)

+ 1
η1Ωsuη = f in IR+ × Ω

div uη = 0 in IR+ × Ω
uη(0, ·) = u0 in Ω
uη = 0 onΓ

(3.7)

From the expansion form ofuη andpη, uη = u + ηũ andpη = p + ηp̃, we
get by identification of the terms of same order:

1Ωs∂tu − div (1Ωsσ(u, p)) + 1Ωsu = 0,(3.8)

∂tu + u∇u − div σ(u, p) + 1Ωs∂tũ

−div (1Ωsσ(ũ, p̃)) + 1Ωs ũ = f,(3.9)

∂tũ + u · ∇ũ + ũ · ∇u − div σ(ũ, p̃) = 0.(3.10)

Closing equation (3.8) inΩs with the natural boundary condition

σ(us, ps) · ni
s = 0 onΣi

s 1 ≤ i ≤ I

whereni
s denotes the unit normal vector pointing inside ofΩi

s, we find that
us ≡ 0 onΩs thanks to the damping term. Then by (3.9)u satisfies equation
(2.2) inΩf and by (3.9) and (3.10)̃u cheks:

∂tũs − div σ(ũs, p̃s) + ũs = 0 in IR+ × Ωs

div ũs = 0 in IR+ × Ωs

(3.11)

and

∂tũf + uf · ∇ũf + ũf · ∇uf − div σ(ũf , p̃f) = 0 in IR+ × Ωf

div ũf = 0 in IR+ × Ωf

(3.12)

Now, as in the previous subsection, the continuity of(u, ũ) and(p, p̃) on
eachΣi

s allows to close the problem by adding:

σ(ũs, p̃s) · ni
s = σ(uf , pf) · ni

s on IR+ × Σi
s , 1 ≤ i ≤ I

ũs(0, ·) = 0 in Ωs
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to (3.11) and

ũf = ũs on IR+ × Σi
s , 1 ≤ i ≤ I

ũf(0, ·) = 0 in Ωf

to (3.12).

Remark 3.2In Ωs, ũ satisfies a Brinkman type equation associated to a
Neumann type condition for the stress tensor. Once again the obstacles can
be viewed as sparse porous media.

Remark 3.3Instead of (3.7) we study a similar problem given by :(
1 +

1
η
1Ωs

)
∂tuη − 1

Re
div

(
(1 +

1
η
1Ωs)∇uη

)

+uη · ∇uη +
1
η
1Ωsuη + ∇pη = f in IR+ × Ω

div uη = 0 in IR+ × Ω

uη(0, ·) = u0 in Ω

uη = 0 onΓ.

(3.13)

The mathematical analysis of (3.7) can be achieved through a mixed formu-
lation as in [7]

4. TheL2 penalization

In this section we study the behaviour of the solutionuη of problem (3.1)
whenη goes to zero.

∂tuη − 1
Re

∆uη + uη · ∇uη +
1
η
1Ωsuη + ∇pη = f in IR+ × Ω

div uη = 0 in IR+ × Ω
uη(0, ·) = u0 in Ω
uη = 0 onΓ

(4.1)

wheref is a given function inL∞(IR+;L2(Ω)) which support is included
in Ωf . As it is well known, forη given there exists an unique solutionuη of
(4.1) satisfying:

uη ∈ C0(IR+;H) ∩ L2
loc(IR

+;V )

∂tuη ∈ L2
loc(IR

+;V ′)
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Remark 4.1Note that this solution cannot be more regular in space as1Ωs

is a discontinuous function.

As the results of this section are derived from energy estimates, we recall
the weak formulation of (4.1), for anyϕ ∈ V

〈∂tuη , ϕ〉V ′,V +
1

Re

∫
Ω

∇uη · ∇ϕdx +
∫

Ω
uη · ∇uηϕdx

+
1
η

∫
Ω

1Ωsuηϕdx =
∫

Ω
fϕdx.

uη(0, ·) = 0

(4.2)

Remark 4.2It is allowed to extend (4.1) to test functionsϕ in W where:

W =
{
ϕ ∈ L2(0, T ; V ) ; ∂tϕ ∈ L2(0, T ;V ′) ; ϕ(T ) = 0

}

4.1. Convergence result

In order to get a convergence result we need the followinga priori estimates:

Lemma 4.1

sup
t∈IR+

|uη|2 ≤ |u0|2 +
Re2

λ1
sup

t∈IR+
‖f‖2

−1(4.3)

∫ t

0
|∇uη(τ)|2dτ ≤ |u0|2 + Re2 sup

t∈IR+
‖f‖2

−1 t(4.4)

where‖f‖−1 denotes the norm inH−1(Ω).

Proof.From (4.2) withϕ = uη we get:

1
2

d

dt
|uη(t)|2 +

1
Re

|∇uη(t)|2 +
1
η

∫
Ω

1Ωs(x)u2
η(t, x)dx ≤ ‖f‖−1|∇uη(t)|,

so,

d

dt
|uη(t)|2 +

1
Re

|∇uη(t)|2 +
2
η

∫
Ω

1Ωs(x)u2
η(t, x)dx

≤ 1
Re

‖f‖2
−1,(4.5)

that gives after elementary computations (4.3), (4.4).2

From (4.5) we deduce directly:
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Corollary 4.1

2
η

∫ t

0

∫
Ω

1Ωs(x)u2
η(τ, x)dxdτ ≤ |u0|2 + Re sup

t∈IR+
‖f(t)‖2

−1 t.(4.6)

As we are not able to derive an estimate on∂tuη in V ′, we choose to
evaluate a fractional derivative in time ofuη to obtain compactness.

Lemma 4.2 There exists a generic functiong in C0(IR+) independent ofη
such that:

|∂γ
t uη(t)|L2(0,t;Ω) ≤ g(t), ∀γ ≤ 1

4
(4.7)

Sketch of proof: As the term1η1Ωsuη is a damping term, the ideas developed
in [11] , [16] can be applied (see also [7] ).

Following the idea of [7], we introduce the Hilbert space:

W =
{
ϕ ∈ L2(0, T ;V ) ; ∂tϕ ∈ L2(0, T ;V ′) ; ϕ(T ) = 0

}
to obtain:

Lemma 4.3 There exists a generic functiong in C0(IR+) depending on the
data such that:

1
η

∣∣∣∣
∫ t

0

∫
Ω

1Ωs(x)uη(τ, x)ϕ(τ, x)dxdτ

∣∣∣∣ ≤ g(t) ‖ϕ‖W(4.8)

Proof. Integrating by part in time the first term of (4.2) we get forϕ ∈ W :

1
η

∫ T

0
1Ωs(x)uη(t, x)ϕ(t, x)dxdt =

∫ T

0
〈uη(t), ∂tϕ〉V ,V′dt

− 1
Re

∫ T

0

∫
Ω

∇uη(t, x) · ∇ϕ(t, x)dxdt

−
∫ T

0

∫
Ω

uη(t, x) · ∇uη(t, x)ϕ(t, x)dxdt

+
∫ T

0

∫
Ω

f(t, x)ϕ(t, x)dxdt +
∫

Ω
u0(x)ϕ(0, x)dx.

The estimate (4.8) comes from straightforward majorations using (4.3) and
(4.4). 2

Finally, to show that the limitu of the sequence(uη)η is solution of
homogeneous Navier-Stokes equations inΩf we need the last result:
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Lemma 4.4 There exists a generic functiong in C0(IR+) depending on the
data such that

|uη|L2(0,t;L2(Σi
s))

≤ g(t)η
1
4 , ∀i 1 ≤ i ≤ I(4.9)

Proof.As uη belongs toL2(0, T ;V ) the trace ofuη is well defined on each
boundaryΣi

s and we have the following inequality wherec denotes always
a generic constant.

|uη(t)|L2(Ωi
s) ≤ c|uη(t)|

1
2
L2(Ωi

s)
‖uη(t)‖

1
2
H1(Ωi

s)
.(4.10)

We first bound theH1 norm onΩi
s by theH1 norm onΩ ; then using (4.3)

and (4.4) we get:∫ t

0
|uη(τ)|2L2(Σi

s)
dτ ≤ g(t)

∫ t

0
|uη(τ)|L2(Σi

s)dτ

≤ g(t)
{∫ t

0
|uη(τ)|2L2(Σi

s)
dτ

} 1
2

,

which gives with (4.10) and (4.6)∫ t

0
|uη(τ)|2L2(Σi

s)
dτ ≤ g(t)η

1
2 , ∀t ∈ IR+,

whereg is a generic function. 2

Therefore we can show:

Theorem 4.1 Whenη goes to zero, the sequence(uη)η converges to a limit
u which satisfies:

u|Ωs = 0,

andu|Ωf is the unique weak solution of Navier-Stokes equation inΩf .
Moreover there existsh ∈ W′ such that:

1
η
1Ωsuη ⇀ h in W ′ weakly

and

−
∫ t

0
〈u(τ), ∂tϕ(τ)〉V ,V′dτ +

∫ t

0

∫
Ω

∇u(τ, x) · ∇ϕ(τ, x)dxdτ

+
∫ t

0

∫
Ω

u(τ, x) · ∇u(τ, x)ϕ(τ, x)dxdτ + 〈h, ϕ〉W ,W ′

=
∫ t

0

∫
Ω

f(τ, x)ϕ(τ, x)dxdτ +
∫

Ω
u0(x)ϕ(0, x)dx

(4.11)
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Proof.From (4.3), (4.4) and (4.7) we get by a compactness result [16],

uη → u in L2(0, T ;H) strong
uη → u in L2(0, T ;V ) weak
uη ⇀ u in L∞(0, T ;H) weak?

for a subsequence still denoted(uη)η .
Moreover from (4.8) we have

1
η
1Ωsuη ⇀ h in W ′.

At last, from (4.9)
u = 0 on IR+ × Σi

s.

As h is the weak limit of 1
η1Ωsuη, one has for anyϕ in W such that

suppϕ(t, ·) ⊂ Ωf

〈h, ϕ〉 = 0.

Then (4.11) is straightforward and from the remark aboveu is the weak
solution of Navier-Stokes equation inΩf . Finally, from Corollary 4.1u = 0
in Ωs and by uniqueness ofu|Ωf the whole sequence(uη|Ωf )η converges. 2

4.2. Error estimate

Now assuming that the solutionuf of Navier-Stokes equations inΩf is reg-
ular enough, we can derive an error estimate.

So, foruf ∈ L∞(0, T, H1
0(Ωf)) ∩ L2(0, T ;H2(Ωf)) (which is true as

soon asuf 0 ∈ H1
0(Ωf)), let us defineu by:

u = uf in Ωf
u = 0 in Ωs.

It is obvious that:

u ∈ L∞(0, T ;H1
0(Ω)) ∩ L2(0, T ; {H2(Ωf) ∩ H2(Ωs)})

and that
div u = 0 in IR+ × Ω.

So, we get forϕ ∈ V ,

0 =
∫

Ωf

(
∂tu − 1

Re
∆u + u · ∇u + ∇p − f

)
ϕdx,
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and after integration by parts

0 =
∫

Ωf

(
∂tuϕ +

1
Re

∇u · ∇ϕ + u · ∇uϕ − fϕ

)
dx

−
I∑

i=1

∫
Σi

s

σ(u, p)ni
fϕdγ(4.12)

whereni
f is the outward unit normal vector toΩf onΣi

s.
In addition, as the 2D weak solution of Navier-Stokes equations is unique,

the weak limitu obtained in the previous theorem is identical touf in Ωf as
soon asu|Ωf belongs toH1

0(Ωf) and is divergence free inΩf .

Theorem 4.2 Let

uf ∈ L∞(0, T ;H1
0(Ωf)) ∩ L2(0, T ;H2(Ωf))

be the solution of Navier-Stokes equations inΩf andu defined as:

u = uf in Ωf
u = 0 in Ωs.

Then there existsvη bounded inL∞(0, T ;H) ∩ L2(0, T ;V ) such that:

uη = u + η
1
4 vη.

Moreover there exists a generic functiong in C0(IR+) such that:

|vη|L2(0,t;L2(Ωs)) ≤ g(t)η
1
2 .

Proof.To get the error estimate above we seekuη on the followinga priori
form uη = u + ηwη and get from (4.2) as1Ωsu = 0, for ϕ ∈ V

∫
Ω

(
∂tuϕ +

1
Re

∇u · ∇ϕ + u · ∇uϕ − fϕ

)
dx +

∫
Ω

1Ωswηϕdx

+η

∫
Ω

(
∂twηϕ +

1
Re

∇wη · ∇ϕ + u · ∇wηϕ + wη · ∇uϕ

)
dx

+η2
∫

Ω
wη · ∇wηϕdx = 0.
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According to (4.12) this reduce, after dividing byη to:∫
Ω

(
∂twηϕ +

1
Re

∇wη · ∇ϕ + u · ∇wηϕ + wη · ∇uϕ

)
dx

+
1
η

∫
Ω

1Ωswηϕdx + η

∫
Ω

wn · ∇wηϕdx

=
1
η

I∑
i=1

∫
Σi

s

σ(u, p) · ni
fwηdγ.

(4.13)

For fixedη , wη is regular enough to takeϕ = wη in (4.13). So we get the
following energy estimate:

1
2

d

dt
|wη|2 +

1
Re

|∇wη|2 +
1
η

∫
Ω

1Ωsw
2
ηdx

≤ 1
η

I∑
i=1

∣∣∣∣∣
∫

Σi
s

σ(u, p) · ni
fwηdγ

∣∣∣∣∣+
∣∣∣∣
∫

Ω
wη · ∇uwηdx

∣∣∣∣
≤ c

η

I∑
i=1

|wη|L2(Σi
s)

+ c |wη| |∇wη|

≤ c

η

I∑
i=1

|wη|
1
2
L2(Ωi

s)
|∇wη|

1
2
L2(Ωi

s)
+ c |wη| |∇wη| ,

as in the proof of Lemma 4.4.
Then, using Young inequality to absorb the gradient terms, one gets:

d

dt
|wη|2 +

1
Re

|∇wη|2 +
2
η

∫
Ω

1Ωsw
2
ηdx

≤ c |wη|2 + c

(
1
η

|wη|
1
2
L2(Ωs)

) 4
3

,

and absorbing again|wη|L2(Ωs) by the third term of the left hand side, one
has:

d

dt
|wη|2 +

1
Re

|∇wη|2 +
2
η

∫
Ω

1Ωsw
2
ηdx

≤ c |wη|2 + cη− 3
2

Then, by Gronwall lemma, we get forwη(0) = 0 as we chooseuη(0) = u(0)
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|wη(t)|2 ≤ g(t)η− 3
2 ,

and

1
Re

∫ t

0
|∇wη(τ)|2 dτ +

1
η

∫ t

0

∫
Ω

1Ωs(x)w2
η(τ, x)dxdτ ≤ g(t)η− 3

2 ,

whereg is a generic continuous function on IR+. This gives the result for
wη = u−uη

η . 2

4.3. Interpretation ofh

For weak solutions given by (4.11), we are not able to give a rigorous in-
terpretation of the weak limith of ( 1

η1Ωsuη)η. Nevertheless, for regular
solution in time, we can derive an explicit formula.
Following [15], we can show, under the compatibility condition:

− 1
Re

∆uη(0) + uη(0) · ∇uη(0) +
1
η
1Ωsuη(0)(4.14)

+∇pη(0) − f(0) is bounded inL2(Ω)

and under the regularity assumption:

∂tf ∈ L∞(IR+;L2(Ω))(4.15)

that∂tuη is bounded inL∞(0, T ;H) ∩ L2(0, T ;V ).
Thush belongs toL∞(0, T ;V ′).

Remark 4.3The condition (4.14) is fulfilled as soon asuη(0)|Ωs = 0 and
uη(0) ∈ H2(Ω) which is physically relevant.

In this case, instead of (4.11) the limitu satisfies:∫
Ω

∂tuϕdx +
1

Re

∫
Ω

∇u · ∇ϕ

+
∫

Ω
u · ∇uϕdx + 〈h(t), ϕ(t)〉V′,V =

∫
Ω

fϕdx.(4.16)

Theorem 4.3 Under compatibility condition (4.14) and regularity condi-
tion (4.15)h is uniquely determined by

〈h(t), ϕ(t)〉V ′,V = −
I∑

i=1

∫
Σi

s

σ(u, p)ni
fϕdγ ∀ϕ ∈ V .(4.17)
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Proof.The result follows from (4.12) and (4.16).2

Remark 4.4From (4.17) we can write

I∑
i=1

∫
Σi

s

σ(u, p)ni
fϕdγ = − lim

η→0

1
η

∫
Ωs

1Ωsuηϕdx.

Whenϕ ∈ V is such thatϕ ≡ 1 in Ωi
s andϕ ≡ 0 in Ωj

s , j 6= i, we get∫
Σi

s

σ(u, p)ni
fdγ = − lim

η→0

1
η

∫
Ωs

1Ωi
s
uηdx.

This last equation gives an explicit way to compute the lift and drag coeffi-
cients through an integration over the volume of the obstacle [3], [8].

5. TheH1 penalization

We study in this section the behaviour of the solution(uη)η of the penalized
problem (3.7) presented in Sect. 3 whenη goes to zero.

(
1 +

1
η
1Ωs

)
∂tuη − 1

Re
div

(
(1 +

1
η
1Ωs)∇uη

)

+uη · ∇uη +
1
η
1Ωsuη + ∇pη = f in IR+ × Ω

div uη = 0 in IR+ × Ω

uη(0, ·) = u0 in Ω

uη = 0 onΓ.

(5.1)

As the aim of this section is to derive a better error estimate, we work directly
with regular solution in time, and so we take by example

f ∈ L∞(IR+;L2(Ω)) such that∂tf ∈ L∞(IR+;L2(Ω)),(5.2)

and we assume that the following compatibility solution is fulfilled.

− 1
Re

div
(

(1 +
1
η
1Ωs)∇uη(0)

)

+uη(0) · ∇uη(0) +
1
η
1Ωsuη(0) + ∇pη(0) − f(0)(5.3)

is bounded inL2(Ω).
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Remark 5.1The condition (5.3) is satisfied as soon as

uη(0) ∈ H2(Ω) uη(0)|Ωs = 0 , div uη(0) = 0

By usual techniques, we can show that (5.1) has a unique solution under
the compatibility condition (5.3) and under the regularity assumption (5.2)
which checks

(uη)η is bounded inC0(0, T ;V )

(∂tuη)η is bouded inL∞(0, T ;H) ∩ L2(0, T ;V ).

The variational formulation of (5.1) is, for anyϕ ∈ V∫
Ω

(
1 +

1
η
1Ωs

)
∂tuηdx +

1
Re

∫
Ω

(
1 +

1
η
1Ωs

)
∇uη · ∇ϕdx

+
∫

Ω
uη · ∇uηϕdx +

1
η

∫
Ω

1Ωsuηϕdx =
∫

Ω
fϕdx

uη(0, ·) = u0.

(5.4)

As pointed out in Sect. 3, we introduceu andũ in C0(0, T ;V ) solution of:

u|Ωs = 0
u|Ωf = uf ,

(5.5)

whereuf is the solution of Navier-Stokes equations inΩf with uf = 0 on
Γ ∪ Σ andũ defined as:

ũ|Ωs = ũs where

∂tũs − 1
Re∆ũs + ũs + ∇p̃s = 0 in IR+ × Ωs

div ũs = 0 in IR+ × Ωs
ũs(0) = 0 in Ωs
σ(ũs, p̃s)ni

s = −σ(uf , pf)ni
s onΣi

s 1 ≤ i ≤ I

(5.6)

ũ|Ωf = ũf where

∂tũf − 1
Re∆ũf + ũf · ∇uf

+uf · ∇ũf + ∇p̃f = 0 in IR+ × Ωf

div ũf = 0 in IR+ × Ωf
ũf(0) = 0 in Ωf
ũf = ũs onΣi

s 1 ≤ i ≤ I

(5.7)
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Remark 5.2If the penalization is suppressed in the time derivative in (5.1),
the resulting Brinkman equation in the solid (5.7) becomes a steady equation.

Remark 5.3The existence and the regularity ofũf is classical as∫
Σi

s

ũsn
i
fdγ = 0, 1 ≤ i ≤ I.

The existence of̃us can be derived from [7] where such boundary conditions
are studied.

The regularityũs ∈ C0(0, T ;V ) ∩ L2(0, T ;H2(Ωs)) can be obtained by
the translation method of Nirenberg.

Then we setuη = u + ηũ + ηwη and we establish energy estimates on
wη.

Theorem 5.1 Let u and ũ be defined by (5.5), (5.6) and (5.7), Then there
exists(vη)η bounded inL∞(0, t;H) ∩ L2(0, t;V) such that:

uη = u + ηũ + η
3
2 vη.

Moreover there exists a generics functiong in C0(IR+) such that:

|vη|L∞(0,T ;L2(Ωs)) ≤ g(t)η
1
2

|∇vη|L∞(0,T ;L2(Ωs)) ≤ g(t)η
1
2

Proof.Replacinguη in (5.4) by its expression, we get asu|Ωs = 0:∫
Ω

1Ωs

(
∂tuϕ +

1
Re

∇u · ∇ϕ + u · ∇uϕ − fϕ

)
dx

+
∫

Ω
1Ωs

(
∂tũϕ +

1
Re

∇ũ · ∇ϕ + ũϕ

)
dx

+η

∫
Ω

1Ωf

(
∂tũϕ +

1
Re

∇ũ · ∇ϕ + ũ · ∇uϕ + u · ∇ũϕ

)
dx

+η

∫
Ω

(
(1 +

1
η
1Ωs)(∂twηϕ +

1
Re

∇wη · ∇ϕ) + u · ∇wηϕ

+
1
η
1Ωswηϕ + wη · ∇uϕ

)
dx

+η2
∫

Ω
(ũ · ∇ũ + wη · ∇ũ + ũ · ∇wη + wη · ∇wη)ϕdx = 0 .

(5.8)
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Using (5.5) , (5.6) and (5.7) the first three integrals reduce, after integrating
by parts, to:

−η
I∑

i=1

∫
ΣI

s

σ(ũf , p̃f)ni
fϕdγ.

Then (5.8) becomes when dividing byη:

+
∫

Ω

(
(1 +

1
η
1Ωs)(∂twηϕ +

1
Re

∇wη∇ϕ) + u · ∇wηϕ

+
1
η
1Ωswηϕ + wη · ∇uϕ

)
dx

+η

∫
Ω

(ũ · ∇ũ + wη · ∇ũ + ũ · ∇wη + wη · ∇wη)ϕdx

=
I∑

i=1

∫
ΣI

s

σ(ũf , p̃f)ni
fϕdγ.

Settingϕ = wη we get by sobolev embeddings the following inequality:

1
2

d

dt

∫
Ω

(
1 +

1
η
1Ωs

)
w2

ηdx +
1

Re

∫
Ω

(
1 +

1
η
1Ωs

)
|∇wη|2 dx

+
1
η

∫
Ω

1Ωsw
2
ηdx

≤ c (|∇u| + η |∇ũ|) |wη| |∇wη| + c η |ũ| 1
2 |∇ũ| 3

2 |wη|
1
2 |∇wη|

1
2

+c

(
I∑

i=1

|σ(ũf , p̃f |L2(Σi
s)

)
(|1Ωswη| + |1Ωs∇wη|) ,

as

|wη|L2(Σi
s)

≤ c
(∣∣1Ωi

s
wη

∣∣+ ∣∣1Ωi
s
∇wη

∣∣) .

wherec always denotes a generic constant.
Then, from the regularity ofu andũ, and from Young inequalities we have
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for η ≤ 1:

d

dt

∫
Ω

(
1 +

1
η
1Ωs

)
w2

ηdx +
1

Re

∫
Ω

(
1 +

1
η
1Ωs

)
|∇wη|2 dx

+
1
η

∫
Ω

1Ωsw
2
ηdx

≤ c
(
|∇u|2 + η2 |∇ũ|2

)
|wη|2

+c η

(
|ũ| |∇ũ|2 +

I∑
i=1

|σ(ũf , p̃f |2L2(Σi
s)

)

which gives from Gronwall lemma aswη(0) = 0:

|wη(t)|2 +
1
η

|1Ωswη(t)|2 ≤ ηg(t)

and ∫ t

0

(
|∇wη(τ)|2 +

1
η

|1Ωswη(τ)|2
)

dτ ≤ ηg(t).

whereg denotes a generic function inC0(IR+). 2

6. Numerical validation

To validate the penalization we choose a numerical test easy to implement
and for which the geometry is well fitted in order to avoid an additional
error. So we compute the two-dimensional flow around a square cylinder in
a channel, i.e. with a no-slip boundary condition on the horizontal walls of
Γ , as shown on Fig. 2.

We use a cartesian mesh with320 × 80 cells on the whole domainΩ =
Ωf ∪ Ωs = (0, 4) × (0, 1), in such a way thatΣs corresponds to mesh
lines. To get the reference solutionsuref , we approximate the Navier-Stokes
equations inΩf associated to homogeneous Dirichlet boundary conditions
onΣs. Then we can compare for various values ofη the penalized solutions
to these reference solutions.

6.1. TheL2 penalization

First, we investigate a steady case at the Reynolds numberRe = 40 where
Re = UD

ν with U = 1 defines the mean velocity of the Poiseuille flow at
the entrance section,D the size of the square andν the cinematic viscosity.
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Ω Ω

Γ

fs
Σ s

x

x1

2

Fig. 2. Computational domain

Table 1. Numerical measurement of the error estimate atRe = 40

η ||uη||L2(Ωs) α for O(ηα) ||uη − uref ||L2(Ωf ) α for O(ηα)
10−2 3.8110−2 9.6910−2

10−3 5.8010−3 0.82 1.6510−2 0.77
10−4 6.3910−4 0.96 1.8210−3 0.96
10−5 6.4610−5 0.99 2.0110−4 0.96
10−6 6.4710−6 1.00 9.5910−5 0.32

The isolines of pressure and vorticity are plotted on Fig. 3 for both the exact
Dirichlet boundary condition and theL2 penalization respectively. We can
observe that the pressure is continuous through the obstacle with theL2

penalization.
Table 1 shows that the numerical error estimate varies asO(η) in Ωs and

aboutO(η) in Ωf . When the penalty parameterη is going to zero, the error
of the solution in the fluid domain is still decreasing as shown on Table 1.
However the gain in accuracy, which is inO(η) for a range ofη values
not too small, becomes in fact limited by the discretization error as soon
asη is taken below a certain threshold. This is confirmed by the fact that
the latter threshold is decreasing when the mesh step is smaller. Hence, the
theoretical error estimate given in Theorem 4.2 might not be optimal as it
yieldsO(η3/4) in Ωs andO(η1/4) in Ωf .
Then we compute unsteady solutions atRe = 80 to be sure that propagation
effects are not spoiled by the penalization method. We see on Fig. 4 and 5
that a large value ofη induces a delay of the convection. Consequently, the
Strouhal numberSt = fD

U , wheref is the frequency of the vortex shedding
in the wake, is under estimated (Table 2). Let us note that the value of the
Strouhal number for this internal flow does not correspond to the well-known
value for such a Reynolds number in an open flow.
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Fig. 3. Comparison of the solution computed with Dirichlet boundary condition andL2

penalization withη = 10−8 (pressure and vorticity fields atRe = 40)

Table 2. Strouhal number atRe = 80

uref η = 10−8 η = 10−6 η = 10−4 η = 10−2

St 0.2390 0.2390 0.2390 0.2387 0.2349
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Fig. 4. Comparison of the solutions computed with Dirichlet boundary condition andL2

penalization withη = 10−8 andη = 10−2 atRe = 80 (pressure field)

For small values ofη, we clearly observe on Figs. 4 and 5 that there is
no difference betweenuref anduη whenη = 10−8. This means that the
error induced by the penalization method is much lower than the error of
approximation.

These numerical tests show the efficiency of theL2 penalization that
gives the same result than Dirichlet boundary condition as soon as the penalty
parameterη is small enough. In addition, the pressure field is continuous in
the whole domainΩ and the equation

1
η
uη + ∇pη = 0 in Ωs

is numerically satisfied, which confirms the asymptotic formal expansion
given by (3.5). Hence, there is a Darcy flow in the solid at the orderη. As it
is carried out numerically in [10] and according to (4.17) and Remark 4.4,
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Fig. 5. Comparison of the solutions computed with Dirichlet boundary condition andL2

penalization withη = 10−8 andη = 10−2 atRe = 80 (vorticity field)

the lift and drag coefficients can be computed from

lim
η→0

∫
Ωs

∇p dx = − lim
η→0

1
η

∫
Ωs

uη dx =
∫

Σs

σ(u, p) · nf dγ.

6.2. TheH1 penalization

We perform the same numerical tests than in Sect. 6.1. The results plotted
on Fig. 6 atRe = 40 show that there is a small discrepancy with the original
solution. It is due to the discretization of the penalized viscous term. Indeed,
the discretization of this term changes slightly the size of the obstacle and
thus the recirculation zone in the wake is a little bit different.

In the unsteady case, we observe also a discrepancy in the determination
of the Strouhal number even forη = 10−8. This is still due to the varia-
tion of volume of the body which is effectively taken into account by the
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Fig. 6. Comparison of the solutions computed with Dirichlet boundary condition andH1

penalization withη = 10−8 atRe = 40 (vorticity field)

discretization and induced by the approximation of the penalized viscous
term. Hence, theH1 penalization does not improve in practice the numerical
results as it is shown theoretically.

7. Conclusions

This paper gives a rigorous justification of the penalization method to take
into account a solid body immersed in an incompressible viscous fluid in
motion. This method is a fictitious domain method which has been proved
to be very easy to implement, robust and efficient. In addition, since the
penalization parameterη can be taken as small as necessary, the penalty
error is always negligeable in front of the error of approximation.
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linéaires. Dunod, Paris

12. Peskin, C. (1982): The fluid dynamics of heart valves: Experimental, theoretical, and
computational method. Annu. Rev. Fluid Mech.14, 235–259

13. Peskin, C. (1977): Numerical Analysis of blood flow in the heart. J. Comput. Phys.25,
220–252

14. Saiki, E.M., Biringen, S. (1996): Numerical simulation of a cylinder in uniform flow:
application of a virtual boundary method. J. Comput. Phys.123, 450–465

15. Tartar, L. (1978): Topics on nonlinear Analysis, Preprint Orsay
16. Temam, R. (1979): Navier-Stokes equations and numerical analysis, North-Holland,

Amsterdam


