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Abstract : The aim of this survey is
to discuss some of the difficulties one can
encounter both when solving Navier-Stokes
equations for incompressible flows by an ob-
stacle and analysing the approximate solu-
tions. Far to be exhaustive, some main as-
pects of the numerical simulation are delib-
erately pointed out, in addition to the way
the obstacle is taken into account and to the
far field boundary conditions. Then, using
one of the robust methods it is possible to
simulate the transition to turbulence for in-
creasing Reynolds numbers. That means to
compute transient solutions which need to
be analyzed and here is the second topic of
this paper. Indeed, the classical tools like
Fourier analysis are very efficient as long as
the solution is periodic but useless when the
solution is more complex. Despite the de-
velopment of wavelets and new algorithms
it seems still difficult to distinguish quasi-
periodic and chaotic solutions.

1 Introduction

It is nowadays quite impossible to review
all the ways the researchers have found out
all around the world and for thirty years
to solve the Navier-Stokes equations for in-

compressible flows. There are now classical
books devoted to these equations and their
approximations [6, 11, 12, 18, 25, 30, 31].
There are also international conferences fo-
cusing globally or partially on this topic
[17, 29, 23, 9, 16]. This shows the suc-
cess of Navier-Stokes equations among the
computational fluid dynamics community.
Success that gives rise to a tremendous re-
search activity and to so many papers the
reader is overwhelmed. Therefore this paper
does not pretend to give an exhaustive re-
view of the field but only some comments
on some aspects of the formulations, the
boundary conditions, the approximations,
the solving methods and also the analysis
of the solutions. Indeed, using a method ro-
bust enough on a fine mesh at least in the
boundary layer area, it is now possible to
compute transient solutions quite easily in
2D and even in 3D when making the best
of the new computers and the new compu-
tational techniques. That means that one
has to use appropriate tools of analysis to
qualify the computed solutions. As long as
the solutions are periodic this is very easy
by Fourier analysis but when they are more
complex it is very difficult to analyze pre-
cisely the solution even in laminar cases.
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2 Navier-Stokes models

2.1 The equations

From the mass and momentum conservation
laws, it is easy to derive Navier-Stokes equa-
tions for an incompressible Newtonian vis-
cous fluid in a domain Ω ⊂ IRN with N ≤ 3

∂tU + (U · ∇)U − 1

Re
∆U +∇p = F

in ΩT = Ω × (0, T ) (2.1)

div U = 0 in ΩT . (2.2)

The first equation can be rewritten as

∂tU + (U · ∇)U − div σ̃(U, p) = F in ΩT

(2.3)

or

∂tU + (U · ∇)U − div σ(U, p) = F in ΩT

(2.4)

where σ̃(U, p) and σ(U, p) are respectively
the pseudostress tensor and the stress tensor
defined by :

σ̃(U, p) =
1

Re
∇U − p I (2.5)

σ(U, p) =
2

Re
D(U) − p I

with D(U)ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.6)

with U = (ui)i the velocity vector, p the
pressure, Re the dimensionless Reynolds
number and F the external forces. Most of-
ten F = 0 and the motion is given through
a non homogeneous Dirichlet boundary con-
dition imposed on a part ΓD of the bound-
ary ∂ Ω.

These equations for the primitive vari-
ables can be transformed by introducing the
vorticity ω = ∇ ∧ U . The general form in
3D of the velocity-vorticity equations is

∂t ω + (U · ∇)ω − 1

Re
∆ω = (ω · ∇)U

+∇∧ F in ΩT

∇∧ U = ω in ΩT

divU = 0 in ΩT

(2.7)

where the second part of the non linear
term is treated as a source term in the first
equation. In 2D this term vanishes. There
are other models like the stream function-
vorticity model which is valid only in 2D
(see [14] for more details).

2.2 The initial datum

The evolution problem (2.1) (2.2) requires
an initial condition

U(x, 0) = U0(x) in Ω (2.8)

and from a mathematical point of view
this initial datum must belong to the right
space, in particular U0 must a priori satisfy
both the divergence-free condition and the
boundary conditions. In practice it is not
so easy to check the divergence-free condi-
tion and the numerical experience shows it
is not compulsory. The first time steps will
produce the good initial solution.
An other question related to the ini-
tial condition is the use of a high-order
scheme in time requiring several initial
data U−j(x), 0 ≤ j ≤ J for the first time
steps. This can be solved either by setting
U−j(x) = U0(x) for 0 ≤ j ≤ J or by using
an Euler scheme for these first time steps.
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2.3 The boundary conditions

It is well-known that the boundary condi-
tions constitute one of the main difficul-
ties we can encounter. Here there are three
types : inflow, no-slip and outflow or open
boundary conditions. The first two corre-
spond to non homogeneous and homoge-
neous Dirichlet conditions, the last one is
much more difficult to find out in order to
get a well-posed problem and a realistic ap-
proximate solution. These conditions are
gathered for instance when computing the
flow behind an obstacle in a channel (figure
1) where the domain Ω has for boundary
∂Ω = ΓD ∪ Γ0 ∪ Γ1 ∪ ΓN .

On ΓD the flow at infinity (U∞, p∞) is
imposed, that is a Poiseuille flow is set at
the entrance section. On Γ1 there is a no-
slip condition U = 0 as well as on Γ0 if the
mesh is adapted to the limit of the obsta-
cle. We shall see in the next section that
there are other ways to take into account
the obstacle. But the condition to set on
ΓN is far to be so easy. Indeed if ΓD is
not too close to the obstacle Ω0 , the Dirich-
let condition is relevant at the entrance sec-
tion and does not produce any perturba-
tion. On the contrary, even when ΓN is
not so close to Ω0 some boundary condi-
tions can produce strong reflections when
vortices are convected through the artificial
limit. The treatment of the open boundary
conditions for Navier-Stokes equations is it-
self a large field of research as nothing tell
us what to do to get on the truncated do-
main the restriction of the solution on the
infinite domain. There are essentially two
ways of dealing with this difficulty which
are either to use a buffer region outside of
Ω in wich the equations are modified [8, 27]
or to impose the best condition known on
ΓN . Many researchers have find out good

open boundary conditions and we refer to
[28] and references therein for more details.
One of the most used is probably the zero-
stress boundary condition σ(U, p)n = 0 we
generalize in [3] by

σ̃(U, p)n = σ̃(U∞, p∞)n

or
σ(U, p)n = σ(U∞, p∞)n

for Stokes flow and by for instance

σ̃(U, p)n+
1

2
(U · n)−(U − U∞)

= σ̃(U∞, p∞)n (2.9)

or

σ(U, p)n+
1

2
(U · n)−(U − U∞)

= σ(U∞, p∞)n (2.10)

for Navier-Stokes flows with the notation
a = a+− a−. On ΓN , the new term is equal
to zero except if U.n is negative to ease
the convection of vortices and avoid reflec-
tions. From a mixed formulation we can
show by energy estimates that conditions
(2.9) or (2.10) yield a well-posed problem
[2].

2.4 The obstacle

To take into account the obstacle there are
essentially two ways, either the mesh is con-
structed so that Γ0 is approximated by the
sides of some cells or an immersion method
is used. In the first case a no-slip boundary
condition U = 0 is imposed on Γ0 and the
computation is done on the unstructured
mesh via a finite elements or a finite vol-
umes approximation. In the second case a
cartesian mesh is applied on D = Ω∪Γ0∪Ω0

and the approximation is achieved by means
of finite differences or spectral methods. Of
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Figure 1: Computing domain

course, this needs an additional tool to rep-
resent the obstacle. One is to force the no-
slip condition at the surface of the body by
adding a feedback forcing function to the
momentun equations. The points defining
the surface are chosen by the user, they
can be either the closest vertices or the in-
tersection points between the body surface
and the mesh. In this second case several
interpolations can be used [13, 27]. An-
other tool is to consider the obstacle as a
porous medium with a very small perme-
ability coefficient K. This yields a fluid-
solid formulation in the domain D by solv-
ing Navier-Stokes equations in the fluid and
Darcy equations in the solid. One way to
do that is to set K = 1 at every point in Ω
and to set K = KΩ0 � 1 at every point in
Ω0. Then equations (2.1),(2.2) are replaced
by

∂tU + (U · ∇)U − 1

Re
∆U +

U

ReDaK3

+
1

K
∇p = F in DT = D × (0, T ) (2.11)

divU = 0 in DT (2.12)

where Darcy number is given by

Da =
1

ReKΩ0

. It is clear that this adds

an extra work as it requires to solve equa-
tions (2.11), (2.12) in Ω0. But the cartesian
mesh simplifies the computation and allows
to use the spectral or multigrid methods.
Moreover, the pressure in Ω0 permits to
compute the drag and lift forces [5]. Finally
the velocity in Ω0 is of the same order than
KΩ0 .

3 Numerical simulation

3.1 The approximation

It is obvious that we can not give here even
an outline of the numerous types of approx-
imations used to solve the Navier-Stokes
equations. Indeed, this needs several books
[6, 11, 12, 18, 25, 30, 31]. But , we can give
a taste of the main difficulties which lay on
one hand on the equilibrium between the
convection and the diffusion terms and on
the other hand on the divergence-free con-
dition. It is now clear that we have to treat
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the convection term explicitely to avoid ar-
tificial numerical diffusion in time. Let us
say that this term must be expressed at
time nδt when computing the solution at
time (n + 1)δt. On the contrary the other
terms can be discretized implicitely at time
(n+1)δt. The discretization in space is sub-
jected to the mesh and thus to the way the
obstacle is taken into account. The more
used is probably the finite volumes approx-
imation on unstructured meshes [24]. But
with one of the immersion procedures it is
possible to benefit of the spectral or finite
differences methods ([19, 27] or [4]). As
the convection term is put in the second
member of the momentum equation (2.1) or
(2.11), a centered discretisation of the other
terms yields a well-conditioned matrix easy
to invert.

But the convection term needs some
more work. A good discretization is needed
to guarantee the success of the simulation.
Indeed, one has to be very careful deal-
ing with this term as every extra diffu-
sion brought up by the scheme is added to
− 1
Re

∆U and changes the real value of the
Reynolds number. For instance, the dis-
cretization of

u
∂u

∂x

at point j in one dimension by a first-order
upwind scheme

unj (unj − unj−1)/δx (3.1)

if unj is positive corresponds to a second-
order approximation of

u
∂u

∂x
− δx

2

∂

∂x
(|u|∂u

∂x
)

and thus adds a viscosity term that alters
the Reynolds number. Consequently the
simulation can be qualitatively correct but
not quantitatively. It is well-known that the

critical Reynolds number corresponding to
the first Hopf bifurcation for the driven cav-
ity problem is not yet determined for sure.
Because, for this problem, this first bifur-
cation occurs at high Reynolds number and
therefore it is not easy to achieve a good ac-
curacy. Then it is necessary to use a less
diffusive scheme ; a possible choice is to re-
place (3.1) by

unj−1/2 (4unj − 5unj−1 + unj−2)/3δx

− unj+1/2 (4unj − 5unj+1 + unj+2)/3δx (3.2)

if unj−1/2 is positive and unj+1/2 is negative.
The results presented in this paper are ob-
tained with such a scheme. For the driven
cavity problem, it yields the hopf bifurca-
tion for Re around 7500 which appears in
recent work to be a good value of the critical
Reynolds number for this problem [23, 16].
Other results are generally obtained with
high order compact schemes.

Another key to the success is the approx-
imation of the divergence-free condition and
here again there are numerous methods to
do it. For a finite elements approximation,
many ways were developped to find a good
approximate space and often the equation
(2.2) is satisfied only in a weak sense on
each element [30]. With finite differences,
a easy way to approximate (2.2) is to use a
centered discretization on a staggered grid
(figure 2) so that divU = 0 can be written
at the pressure point directly without inter-
polation [4].

But probably the most famous way to
force the incompressibility is given by the
duality method as described in the next sub-
section.

3.2 The convergence methods

The last point is to find the whole method of
resolution which insures a good performance
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Figure 2: A staggered cell

necessary to observe the long time be-
haviour of the solution. As already pointed
out, the duality method is one choice. Then,
the pressure plays the role of the Lagrange
multiplier and is computed by Uzawa’s al-
gorithm. Coupling this to a good gradient
type method to invert the linear system a
good performance can be achieved.

Another choice is to use the decomposi-
tion of the solution in its different scales.
The new and now well-known nonlinear
Galerkin method consists in cutting these
scales into two parts, the large and the
small ones. Then, the original Navier-
Stokes equations are splitted into two parts
to better represent the relative behaviour of
the two types of scale. The result is an
improvement of the performance obtained
with a classical method whatever the ap-
proximation is [21]. Linked also to the dif-
ferent scales, the multigrid method is a very
strong tool [1, 15]. Indeed, by using succes-
sive grids it is possible to capture very fast
the scales related to each grid. On one hand
the solution is computed on a really coarse
mesh to get the large scales and on the other
hand the finer the grid is the smaller the
scales can be reached [4, 33].

This choice of method is decisive. In-
deed to make a direct simulation of the tran-
sition to turbulence it is necessary both to
use a very fine mesh in the boundary layer

and to compute the solution for a long time.
Even in 2D, this can require several days of
computing time on the best work stations.

4 Numerical tests and

analysis of solutions

The numerical tests presented here corre-
spond to the domain Ω of figure 1. The
channel is the rectangle (0, L) × (0, 1) with
L = 3 or 4 and the obstacle is a circle of
radius 0.2 which center is located at point
(1, 0.5). We recall Re is a dimensionless
Reynolds number. To get a meaningful
Reynolds number, one has to multiply Re
by the diameter of Ω0 which is here d =
0.4. So a solution at Re = 100 corresponds
to a solution at real Reynolds number 40.
For low Reynolds numbers the numerical
experiments are performed on a uniform
grid of 256 × 64 cells which is fine enough
to describe the solution. For instance, at
Re = 100 there is a symmetric steady solu-
tion with a recirculating bubble behind the
cylinder as we can see on the stream func-
tion isolines (figure 3).

Then, as Re increases, the steady so-
lution looses its stability to the benefit of
a purely periodic solution very stable for
higher values of Re. The recirculation zone
alternates from the top to the bottom of the
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Figure 3: Solution at Re = 100

cylinder. We can detect quite accurately
the critical Reynolds number corresponding
to the first Hopf bifurcation. Indeed, for
this simple geometry it corresponds to the
loss of symmetry. The question is : Are we
sure it is quantitatively correct ? To answer
this question we can make another numer-
ical test on the same geometry with d =
0.2 by applying an open boundary condi-
tion on Γ1 instead of the no-slip condition.
In this case a constant flow U = (1, 0) is im-
posed on ΓD instead of the Poiseuille flow of
flowrate 1.

We then have a very well-known physical
test and can compare the results with physi-
cal experiments. The values of the Strouhal
number St for various real Reynolds num-
bers are in very good agreement with the
physics [32] and assert the accuracy of the
method (table 1). Nevertheless this compar-
ison is possible only for low Reynolds num-
bers.

Coming back to the initial problem and
using a finer mesh, we increase Re to reach
other regimes. For Re = 1000, for instance,
there is still a periodic solution but this time
there are strong alternate vortices convected
through the domain. We can then control
that the open conditions (2.10) do not affect
the solution computed on a shorter domain
as it can be seen on the isolines of the vor-
ticity field (figure 4). Indeed both solutions

are computed with exactly the same param-
eters. The only difference is the length of
the domain L = 4 and L = 3. We see
in particular that there is no reflections in-
duced by the artificial boundary and that
the computed solution on the shorter do-
main corresponds to the restriction of the
solution computed on the larger domain at
the same time (figure 4).

Then, increasing Re, there is still a peri-
odic solution until Re = 3700 but with var-
ious behaviours. Indeed, a classical Fourier
analysis reveals that approximately from
Re = 200 to Re = 3700 the flow is peri-
odic and exhibits the same main frequency
fm ' 1 (this value depends on the vari-
ous parameters). But from Re = 2200 to
Re = 3600 it appears two subharmonics
corresponding to f ' fm

3
and 2fm

3
and for

Re = 3700 it appears seven subharmonics
corresponding to f ' fm

8
and its multiples

(figure 5). Let us note that this qualita-
tive behaviour, in particular the number of
subharmonics, changes with the geometry of
the obstacle. For instance, a square of side
length 0.4 does not give the same subhar-
monics.

Until now, the Fourier analysis is a very
efficient tool that gives very accurately the
frequencies of a time signal corresponding to
the value of one component of the velocity
at a chosen point of the domain behind the
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Re Reynolds number Computed St Value of St in [32]
300 60 0.130 0.136
500 100 0.164 0.164
800 160 0.188 0.186

Table 1: Comparison of the Strouhal number

Figure 4: Comparison of the solutions obtained on the domain Ω with L = 4 and L = 3

cylinder. Of course, the behaviour of the
solution and thus the spectrum does not
depend of the point. We can complete the
analysis with a phase portrait that corrob-
orates the presence of subharmonics as the
same curve is drawn several times. We see
on figure 6 that a wavelets analysis is not so
accurate even if the main frequency fm and
its subharmonics are detected at Re = 3700.

At Re = 3800, a long time simula-
tion shows us the solution alternates be-
tween two states. It is well-known that the
wavelets are very efficient to detect a dis-

continuity [7, 22, 26] but here there is a
slow transition between the two states much
more difficult to analyze as it contains a
large part of the spectrum. On figure 7 are
represented the time-frequency analysis ob-
tained with both a windowed Fourier trans-
form and an adapted wavelets transform.
We see the two methods provide about the
same informations but as soon as there is a
transition the analysis is spoiled.

When the Reynolds number increases we
get more complex solutions. We can see
the field becomes more complex and looks
chaotic (figure 8). Nevertheless the different
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Figure 5: Spectrum and phase portrait for Re = 1000, 2500 and 3700

analysis give very few informations except
the presence of the main frequency which
changes with time. We think that a match-
ing pursuit procedure [20] can give some
more informations providing a good dictio-
nary adapted to the kind of signal we ana-
lyze is used.

Another question is to understand the
behaviour of the vortices, how they are

convected through the domain for high
Reynolds numbers, if they can merge or be
divided into two parts ? Here again, some
work has been done by means of wavelets
essentially to compress two-dimensional tur-
bulent flows [10]. The result shows that a
2D field can be analyzed with this tool and
well represented. It is now necessary to see
if such an analysis from time to time can
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give enough informations to understand the
behaviour of the whole field.

5 Conclusion

With the improvement of both the numeri-
cal techniques and the computing power it
is now possible to compute directly from the
Navier-Stokes equations good transient so-
lutions in route to turbulence. However it
is still difficult to qualify the computed so-
lutions with the existing tools of analysis.
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