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Abstract : Non reflecting boundary conditions on artificial frontiers of the domain are proposed for
both incompressible and compressible Navier-Stokes equations. For incompressible flows, the boundary
conditions lead to a well-posed problem, convey properly the vortices without any reflections on the
artificial limits and allow to compute turbulent flows at high Reynolds numbers. For compressible flows,
the boundary conditions convey properly the vortices without any reflections on the artificial limits and
also avoid acoustic waves that go back into the flow and change its behaviour. Numerical tests illustrate
the efficiency of the various boundary conditions.

Résumé : Les équations de Navier-Stokes pour des fluides incompressibles ou compressibles sont
résolues avec des conditions aux limites non réfléchissantes. Dans le cas incompressible, les conditions
aux limites conduisent à un problème bien posé, permettent de convecter correctement les tourbillons sans
créer de réflexions et de faire des simulations directes de la turbulence à grands nombres de Reynolds. Dans
le cas compressible, les conditions aux limites permettent aussi de convecter correctement les tourbillons
et surtout d’éviter la remontée d’ondes acoustiques qui changent le comportement de l’écoulement. Des
tests numériques illustrent l’efficacité des conditions aux limites proposées.

1. Introduction

The aim of this work is very simple, we want to find the best conditions on the artificial
limits of a computational domain, so that the computed solution on a small bounded
domain will be close to the restriction of the solution computed on a larger one. The
ideal case is reached when the computed solution on a bounded domain is equal to the
restriction to that domain of the solution defined on an infinite domain. Many authors
have already dealt with this problem and a lot of work has been done to derive relevant
boundary conditions either directly in order to get a well-posed problem [17], [21], or
by using the theory of pseudo-differential operators to derive transparent or absorbing
boundary conditions [12], [20]. Nevertheless, the problem is not yet completely solved.
Indeed, when dealing with compressible flows many computations use a buffer region
technique (see [23], [11]) to get a meaningful solution, as most of the boundary conditions
create artificial acoustic waves that go back from the open limits into the flow field. These
acoustic waves interact with the flow itself and can also reflect on the bodies to perturb
the flow. Thus the behaviour is completely changed. For instance, artificial frequencies
can be added to the main flow, changing a steady flow into an artificial periodic flow.

Here, we derive boundary conditions for incompressible fluids directly from a mixed
formulation of Navier-Stokes equations keeping the positive part of the boundary term
into the energy integral. The result is a condition that involves the stress tensor and a non
linear term which occurs only when the flow is entering the domain at the artificial frontier
of the domain. For compressible fluids, the characteristic waves for the corresponding
Euler equations are used as in [19] to get a good evaluation of the waves entering the
domain, assuming that the structures are convected by the main part of the flow. In
both cases, a reference flow is needed and the key point is to use this reference flow to
prescribe the right convection at the open boundary. Let us say for instance that in the
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incompressible case, the traction of the flow plus a non linear term are set equal to the
traction of a reference flow. This reference flow can be either the flow at infinity or is
derived from the computation.

This paper is divided into two parts. The first one is devoted to incompressible flows and
is partly published in [6], [7]. The second one concerns very new results on compressible
flows [5]. In both cases, some non trivial numerical tests show the efficiency of the
boundary conditions and their ability to convey properly strong phenomena in direct
numerical simulations.

2. Open boundary conditions for incompressible flows

2.1. Preliminaries

A discussion and analysis of the various forms of incompressible Navier-Stokes equations
can be found for instance in [22], [13], [18]. Let Ω be a bounded domain in IR2 or IR3, we
assume that Ω contains regular obstacles the reunion of which is called Ωs. We denote by
Ωf = Ω\Ωs the domain for the incompressible fluid in which the Navier-Stokes equations
are prescribed. The boundary of Ωf is ∂Ωf = ∂Ωs∪ΓD∪ΓW ∪ΓN where ΓD corresponds to
a part of the boundary (for instance an entrance section) where the flow is prescribed, ΓW

denotes the solid walls and ΓN denotes the open boundaries (for instance an exit section)
where a good boundary condition must be specified (see an example on Figure 1). The
motion is given by specifying a non homogeneous Dirichlet boundary condition on ΓD

and a no-slip boundary condition is imposed on ΓW . Then, the obstacles are taken into
account by a penalization procedure which consists to add a penalized mass term in the
equations which are now specified on the whole domain Ω [2], [1]. So, it is not necessary
to specify a no-slip boundary condition on ∂Ωs. Finally, an open boundary condition is
specified on ΓN .
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Figure 1. Numerical domain

Thus, we are looking for the solution of the following initial boundary value problem :
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∂tU + (U · ∇) U − 1
Re

∆U + 1
K
U +∇p = F in ΩT = Ω× (0, T )
divU = 0 in ΩT

U(X, 0) = U0(X) in Ω
U = UD on ΓD × (0, T )
U = 0 on ΓW × (0, T )

(U, p) to be derived on ΓN × (0, T )

(2.1)

where the vector U is the velocity, p the pressure, Re the Reynolds number, U0 the initial
datum and UD the flow at the entrance section. Note on one hand that the entrance must
be far enough to the obstacles in order the Dirichlet condition on ΓD makes sense and
on the other hand that we can have ΓW = ∅. In this Navier-Stokes/Brinkman model,
the scalar function K can be considered as the permeability of the porous medium we
are. Here we have the two opposites as the fluid should be of permeability infinite (set
equal to 1016) and the solid of permeability zero (set equal to 10−8). Consequently, in
the fluid the penalty term vanishes and the Navier-Stokes equations are solved whereas
a Darcy equation is solved in the solid [1]. Then, the velocity vanishes in the obstacles.
The computed values are of the same order of magnitude than K inside Ωs. But, we get
a continuous pressure field on the whole domain Ω that can be used to compute the drag
and lift coefficients [9].

2.2. The boundary condition

The boundary condition can be seen as a natural Neumann-type boundary condition.
Indeed, the first equation of 2.1 can be written in terms of the stress tensor σ(U, p) =

1
2Re

(∇U +∇U t)− pI) as :

∂tU + (U · ∇) U − div σ(U, p) + 1
K
U = F in ΩT . (2.2)

Denoting (U ref , pref) the solution of the steady Stokes problem on Ω associated to the
same data UD on ΓD and F , the variables V = U −U ref and q = p− pref satisfy the first
equation :

∂tV + ((V + U ref) · ∇) (V + U ref )− div σ(V, q) + 1
K

(V + U ref) = 0 in ΩT (2.3)

and we get formally the weak formulation :
∫

Ω
∂tV · ΦdX +

∫
Ω

((V + U ref) · ∇) V · ΦdX +
∫

Ω
((V + U ref) · ∇) U ref · ΦdX

−
∫

Ω
div σ(V, q) · ΦdX + 1

K

∫
Ω

(V + U ref) · ΦdX = 0
(2.4)

where Φ is a regular test function which satisfies Φ = 0 on ∂Ω\ΓN .
Then, we have by Green and Stokes formulas :
∫

Ω
∂tV · ΦdX + 1

2

∫
Ω

(((V + U ref) · ∇) V · Φ− ((V + U ref) · ∇) Φ · V )dX
+1

2

∫
ΓN

(V + U ref) · nV · Φdγ +
∫

Ω
((V + U ref) · ∇) U ref · ΦdX

+
∫

Ω
σ(V, q) : ∇ΦdX −

∫
ΓN
σ(V, q) · n · Φdγ + 1

K

∫
Ω

(V + U ref) · ΦdX = 0.
(2.5)

Setting the boundary terms in this last equation 2.5 to zero we can write down a
Neumann-type boundary condition. But to take into account the local sign of the velocity
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on the artificial boundary, we can keep the positive part of ((V + U ref) · n) in the weak
formulation [7]. So, we can derive the boundary condition on ΓN for (V, q) :

σ(V, q) · n+
1

2
((V + U ref) · n)−V = 0 on ΓN (2.6)

Consequently the boundary value problem 2.1 has to be completed with the boundary
condition for (U, p) :

σ(U, p) · n+
1

2
(U · n)−(U − U ref ) = σ(U ref , pref) · n on ΓN . (2.7)

For more details the reader should refer to [7] where a rigourous proof of the well-
posedness of the boundary value problem 2.1,2.7 is given. Let us remark that the non
linear term is zero when U · n ≥ 0 which means that the flow is going out of the domain
through ΓN . On the contrary this term has to be taken into account when the flow is
entering the domain. So, for Stokes flows the boundary condition 2.7 reduces to :

σ(U, p) · n = σ(U ref , pref) · n on ΓN . (2.8)

In order to use these boundary conditions we have to specify the reference flow (U ref , pref).
To write down the equation 2.3, we have assumed that this flow is the solution of a steady
Stokes problem with U = UD on ΓD which is in fact the flow at infinity. So, in many
cases we can take for instance :

U ref = U∞ and pref = p∞. (2.9)

Nevertheless, such a reference flow does not give a good equivalent of the traction when
the flow is chaotic or turbulent and consequently the condition becomes unstable for these
regimes. A way to overcome this difficulty is to take as reference flow the flow computed
just before the boundary at the same time step or at the previous one depending on the
scheme used. Then, the reference flow changes at each time step and the boundary con-
dition stay stable at high Reynolds numbers. But another difficulty can arise concerning
the flowrate specially for internal flows. Indeed, in that case, the flowrate of the new
reference flow can slightly deviate from the flowrate at the entrance section and time step
after time step can induce a significant change corresponding to an external force applied
to the exit section. So, it is necessary to control the flowrate of the reference flow.

2.3. Numerical tests

the numerical tests presented here concern the flow around a cylinder and the flow
around obstacles (one or several cylinders) in a pipe. The numerical appoximation stands
on finite differences with a high-order scheme in time, implicit second-order differences
for the pressure and diffusion terms, and explicit uncentered differences for convection
terms. The resolution at each time step is achieved by means of a multigrid procedure in
order to capture efficiently the whole range of the frequencies present in the flow. More
details can be found in [3] [4]. The boundary condition of the previous section has been
implemented in 2D and 3D either for an open domain or for an exit section in a channel.
The Reynolds numbers given until the end of the section are the real Reynolds numbers
Re = U∞lc/ν where the characteristic length lc is taken equal to the diameter of the



5

cylinders. For the well-known test of the flow around a cylinder we find results in very
good agreement with the physics [24] as it is shown on table 1 where various values of
the Strouhal number are compared. These tests were performed using as reference flow
(U ref , pref) = (U∞, p∞) = ((1, 0)t, 0) which is convenient for this kind of flow at low
Reynolds numbers.

Reynolds number Computed St Value of St in [24]
60 0.130 0.136
100 0.164 0.164
160 0.188 0.186

Table 1: Comparison of the Strouhal number around a cylinder

Now, we present some tests in a channel for various obstacles and Reynolds numbers
in order to get interesting regimes.

Figure 2. Comparison of the solutions obtained at Re = 400 on the do-
main Ω with L = 4 and L = 3

First of all, we compare the flow computed behind one single cylinder in a channel Ω
with total length L = 4 and L = 3 to show the efficiency of the boundary condition.
The flow at a medium Reynolds number Re = 400 is periodic with strong alternate
vortices convected to the artificial exit section of the infinite pipe. We can see on Figure
2 that the solution computed on the smaller domain is very close to the restriction of the
solution computed on the larger one. We point out to the reader that both solutions are
obtained after a long time of simulation corresponding to thirty periods of time and that
the vortices are located at exactly the same place. In former works [6], we used Poiseuille
flow as reference flow and got about the same solution. This is true for low Reynolds
numbers but not any more for high Reynolds numbers.



6

Now, we present the flow computed behind an array of five cylinders at very high
Reynolds numbers on a regular mesh of 1920×640 cells. The array of cylinders is located
at a length of 1 from the entrance section and the total length of the domain is L = 3.
The diameter of the cylinders is 0.1 and the spacing between two centers of cylinders is
0.2. The vorticity contours are displayed on Figure 3 for a simulation at Re = 5. 105 at
a time such that the full regime is well established. The numerical simulation at such a
high Reynolds number is made possible by the choice of the computed flow before the exit
section as reference flow. Indeed, with the choice of Poiseuille flow it is not possible to get
the solution when Re > 5. 103. On Figure 3, we see that The flow before the cylinders is
laminar and displays a Poiseuille profile with mean velocity equal to 1. After the passage
by the grid, the flow is dominated by the presence of vortices interacting very strongly
with each other. The strong vorticity gradients are well captured and correspond to the
dark filaments on the plot. The size of the vortices which is close to the diameter of the
cylinders just behind them grows as they are convected downstream. This coarsening of
the coherent structures is due to the vortex mergers typical of 2D turbulence.

Figure 3. Vorticity contours at Re = 5. 105

To better analyse the turbulent flow, a time trace is recorded at different points ran-
domly chosen in the flow. This is done for the two components of the velocity U = (u, v)t,
the pressure p and the vorticity ω. The spectra displayed on Figure 4 correspond to one
point located at about one channel width down from the array of cylinders. The spectra
for the two components of the velocity (squares for u and circles for v) have roughly the
same amplitude in the frequency range studied, showing that the turbulence is nearly
isotropic. Both spectra show a small flat part at low frequencies and a continuous de-
crease as the frequency is increased which becomes steeper for high frequencies. The
whole spectra can be fit to the analytical function f−βe−f/f0 where the cutoff frequency
f0 is 18 and the exponent β is 3.7. The same observations are valid for the enstrophy
spectrum (triangles) except the exponent β is 1.9. The inset of Figure 3 shows the same
features for the energy density (squares) and the enstrophy (circles) spectra obtained from
2D Fourier transforms of the 2D velocity and vorticity fields.

This direct numerical simulation is also compared to an experiment. This experiment
is carried out in a vertical soap film formed between two parallel thin wires, as described
in details in [15]. The film falls under the action of gravity at speeds controlled by
the injection flux. The turbulence in the film is generated by a comb that is thrust
perpendicularly through the film. The interaction between the wakes coming from the
different cylinders produces nearly isotropic turbulence some distance behind the grid.
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Figure 4. Spectra

Although the results seem to be consistent with expectations for two-dimensional decaying
turbulence [10], the vorticity results indicate deviations from the theoretical predictions
[16]. A good agreement between numerical simulations and the experiments is obtained
for energy and enstrophy spectra as well as for the moments of longitudinal velocity
differences and the probability density functions of the enstrophy flux. More details can
be found in [8], [14].

3. Open boundary conditions for compressible flows

3.1. Preliminaries

In this section, we consider a domain Ω without obstacles with boundary ∂Ω = ΓD ∪
ΓW∪ΓN where, as in the previous section, ΓD corresponds to a part of the boundary where
the flow is prescribed, ΓW denotes the solid walls and ΓN denotes the open boundaries
where a good boundary condition must be specified to avoid reflections. (see an example
on Figure 5). Eventually, the part ΓW can be empty to test the convection of a vortex
through an artificial limit.

On this domain Ω the 2D compressible Navier-Stokes equations for the density ρ, the
velocity V = (u, v)t and the total energy e are prescribed :





∂U

∂t
+
∂Fx(U)

∂x
+
∂Fy(U)

∂y
=

1

Re

(
∂Gx(U,∇U)

∂x
+
∂Gy(U,∇U)

∂y

)
in ΩT

U(x, 0) = U0(x) in Ω
U = UD on ΓD × (0, T )
U = 0 on ΓW × (0, T )
U to be derived on ΓN × (0, T )

(3.1)
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with :

U =




ρ
ρu
ρv
ρe


 Fx(U) =




ρu
ρu2 + p
ρuv
(ρe+ p)u


 Fy(U) =




ρv
ρuv
ρv2 + p
(ρe+ p)v




Gx(U,∇U) =




0
σxx
σxy
βx


 Gy(U,∇U) =




0
σxy
σyy
βy




where :




σxx =
4

3

∂u

∂x
− 2

3

∂v

∂y

σyy =
4

3

∂v

∂y
− 2

3

∂u

∂x

σxy =
∂u

∂y
+
∂v

∂x





βx = uσxx + vσxy +
γk

Pr

∂Θ

∂x

βy = uσxy + vσyy +
γk

Pr

∂Θ

∂y

Re is the Reynolds number with the same definition as above where lc depends on the test
problem, γ, k and Pr are respectively the perfect gaz constant, the thermal conductivity
coefficient and the Prandtl number which is constant here. To eliminate the pressure p in
these equations, we add the state equation p = (γ− 1)ρΘ. When the flow is supersonic it
is not necessary to prescribe something on the artificial frontiers ΓN of the domain as all
the characteristics curves are leaving the domain Ω. Here, we are interesting in subsonic
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flows for which one or several quantities depending on the sign of the local velocity have
to be derived.

3.2. The boundary condition

To discretize the equations we use a finite volumes - finite elements approximation of
the conservative variables except on the boundary where the normal derivative of the
convective flux is derived from the characteristic variables. So, the boundary condition
is derived from the discretization of the characteristic waves amplitude vector L of the
unviscous part of the equations 3.1 which is given on ΓN with outside unit normal n =
(1, 0)t by (see [19] or [5]) :

L =




L1

L2

L3

L4


 =




(u− c)
(
∂p

∂x
− ρc∂u

∂x

)

u

(
c2 ∂ρ

∂x
− ∂p

∂x

)

u

(
∂v

∂x

)

(u+ c)

(
∂p

∂x
+ ρc

∂u

∂x

)




=




λ1

(
∂p

∂x
− ρc∂u

∂x

)

λ2

(
c2 ∂ρ

∂x
− ∂p

∂x

)

λ3

(
∂v

∂x

)

λ4

(
∂p

∂x
+ ρc

∂u

∂x

)




(3.2)

where c is the local speed of sound and λk 1 ≤ k ≤ 4 are the eigenvalues of the Euler
operator. If the flow is subsonic and u ≥ 0, the first characteristic curve is entering the
domain and thus L1 must be evaluated from outside the domain. If u < 0, then it is the
same for L2 and L3. In [19], L1 is either set equal to zero or to a function of p − p∞ in
order to introduce the pressure at infinity as p = p∞ is a relevant boundary condition for
subsonic flows. Here, we propose to discretize L1 from outside the domain according to
the way of propagation of that wave using a steady reference flow U ref which is supposed
to represent properly the main part of the flow. In several cases the reference flow can be
taken equal to the flow at infinity or derived from it. In some cases like for the flow over
a dihedral plate (Figure 5) it is necessary to compute a steady solution at low Reynolds
number to get the reference flow. Then, we write down U = U ref + U

′
where U

′
is the

deviation from the chosen reference flow. Now, if for the sake of simplicity we consider
a cartesian uniform mesh around one point Pi,j on the frontier ΓN , we can write at time
nδt for the first component :

(L1)ni,j = (uni,j − cni,j)
(
−prefi+2,j+4prefi+1,j−3prefi,j

2δx
− ρni,jcni,j

−urefi+2,j+4urefi+1,j−3urefi,j
2δx

)

+ (uni,j − cni,j)
(
−(p
′
)ni+2,j+4(p

′
)ni+1,j−3(p

′
)ni,j

2δx
− ρni,jcni,j

−(u
′
)ni+2,j+4(u

′
)ni+1,j−3(u

′
)ni,j

2δx

)

= (Lref1 )ni,j + (L
′
1)ni,j

(3.3)



10

the first part of which is computed with the reference flow and the second part is approx-
imated in time as follow :

(L
′
1)ni,j ≈ (uni,j − cni,j)(

−(p
′
)n−2α
i,j +4(p

′
)n−αi,j −3(p

′
)ni,j

2δx
− ρni,jcni,j

−(u
′
)n−2α
i,j +4(u

′
)n−αi,j −3(u

′
)ni,j

2δx
)

= (uni,j − cni,j)(
−pn−2α

i,j +4pn−αi,j −3pni,j
2δx

− ρni,jcni,j
−un−2α

i,j +4un−αi,j −3uni,j
2δx

)

(3.4)

as the reference flow is stationary. In the equation 3.4 we define tn−α = tn − αδt where
α = qmax/Vconv with qmax the modulus of the maximum velocity used in the CFL condition
and Vconv the convection velocity on ΓN . Indeed, we assume that the value (p

′
)ni+1,j outside

of the domain can be replaced by (p
′
)n−αi,j on the frontier of the domain at a previous time

which corresponds to the time necessary to convect the phenomena from point Pi,j to
point Pi+1,j . In some applications we can have :

Vconv = V ref = V∞. (3.5)

But in some situations it is necessary to take Vconv 6= V ref as V ref can be very small. For
instance in the neighbourhood of the boundary layer V ref is very small but the phenomena
are convected by the mean flow. So, taking Vconv instead of V ref is better as it involves
shorter times in the past.

3.3. Numerical tests

The first test presented here concern the convection of an inviscid vortex by an uniform
constant flow. At the initial time, the vortex is located in the middle of a square domain.
Then, it is convected from left to right by an uniform velocity V∞ = (u∞, v∞)t = (1, 0)t

and we compare the solution obtained with the non-reflecting boundary condition (NRBC)
presented in [19] and the one obtained with the present boundary condition (PBC) to a
reference solution computed on a large domain, so that the vortex does not interact with
the artificial frontier. To apply our boundary condition we have taken V ref and Vconv
equal to V∞ as proposed above 3.5.

As can be seen on Figure 6, the PBC solution is quite identical to the reference solution
whereas the NRBC solution has a vorticity field slightly deformed and provides strong
acoustic waves that go back into the flow field. In addition, the vorticity evacuation is
very good and the reflection coefficient is very low with the PBC as it is detailed in [5].

The second test case corresponds to the flow over a 2D ramp with an angle β = 100 and
the computational domain Ω is taken in the neighbourhood of the corner as illustrated
on Figure 5. The inflow condition is a Blasius flow developped from the beginning of the
plate which is equal to (1, 0)t far from the boundary layer. Here, the reference flow U ref

is taken equal to the steady flow computed on a larger domain with the technique of the
buffer zone at Re = 50 and the convection velocity is taken equal to (1, 0)t (see [5] for
more details). The first run is to compute the solution at the same Reynolds number
on the domain Ω applying our boundary condition using the flow computed with the
buffer zone as initial datum. Then, the solution remains stable without any changes and
keeps positive velocities in the whole domain. The second run is to increase the Reynolds
number to Re = 100. After a while, a new steady solution with a recirculation zone behind
the corner is obtained like with the buffer zone technique whereas the NRBC provides a
periodic solution. The last run is to increase again the Reynolds number to Re = 400
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vorticity isolines

pressure isolines

Figure 6. Comparison of the NRBC solution (middle) and the PBC so-
lution (right) to the reference solution (left)

taking the steady solution at Re = 100 as reference flow. This time a more complex
solution with strong vortices coming from the corner is obtained. These vortices grow as
they are convected along the ramp and cross the artificial boundary without any visible
reflections. The solution after a long time of simulation is close to the one obtained with
the buffer zone technique despite a small delay (Figure 7). A Fourier analysis of the time
trace recorded at some points located behind the corner show that the same frequencies
appear in the two solutions whereas the spectrum of the NRBC solution is dominated by
a low frequency already present at Re = 100 which corresponds to the travel of acoustic
waves from the artificial boundary back to the corner (see [5] for more details).

4. Conclusions

In this paper, we show that the introduction of a reference flow is a very efficient way
to derive non reflecting boundary conditions. For incompressible flows a Neumann-type
boundary condition coupled to the traction of a reference flow yields a nearly transparent
boundary condition. For compressible flows the characteristic waves amplitudes of the
Euler part of the equations are discretized using a reference flow and a convection velocity
to avoid reflections of acoustic waves. In both cases, a direct numerical simulation of
complex flows can be achieved without the help of the buffer zone technique which is not
completely handled and induces a significant increase of the computing time.
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Figure 7. Comparison of the NRBC solution (middle) and the PBC so-
lution (bottom) to the reference solution (top)
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milieu fluide - milieu poreux: application à la convection naturelle, C. R. Acad. Sci. Paris 299, Série
II, 1984.

[3] Ch.-H. Bruneau, Numerical Simulation and Analysis of the Transition to Turbulence, 15th ICN-
MFD, Lect. Notes in Phys. 490, 1996.

[4] Ch.-H. Bruneau, Numerical Simulation of incompressible flows and analysis of the solutions, CFD
Review Vol. I, 1998.
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