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This paper is devoted to the numerical approximation of the elliptic-hyperbolic form of
the Davey-Stewartson equations. A well suited finite differences scheme that preserves
the energy is derived. This scheme is tested to compute the famous dromion 1 — 1 and
dromion 2 — 2 solutions. The accuracy of Crank-Nicolson scheme is discussed and it is
shown that it induces a phase error. Then, the qualitative behavior of the solutions is
studied ; in particular the influence of the initial datum and of the various parameters
is pointed out. Finally, numerical experiments show the existence of blow-up solutions

1. Introduction

The aim of this paper is to study numerically the behavior of the solutions of
Davey-Stewartson system

iUy + Mge + Uyy = X\u|2u + buy,,
Paz T MPyy = U(|u‘2)m

0s) {

where the constants §, x, b, m and o are real. This system describes the evolution of
water surface waves in presence of gravity and capillarity ',?. Following Ghidaglia-
Saut 3, we classify these systems as elliptic-elliptic (E-E), elliptic-hyperbolic (E-H),
hyperbolic-elliptic (H-E) and hyperbolic-hyperbolic (H-H) according to the sign of
(6,m) : (+,+), (+,—), (—,+) and (—,—). In this paper, we restrict ourselves to
the (E-H) case. As described in %, the (E-H) mode needs appropriate boundary
conditions. Following 4, we take

lim go(a:,y,t) = @1(€:t)7

n——oo
lim QO(ZE, Y, t) = 902(77: t)a
£——o0
where ¢ = cx —y, ) = cx + y represent the characteristic variables, m = —c? and

1 and @9 are given functions.



Few mathematical results are known in this case. Hayashi and Hirata ® show
global in time existence and uniqueness of a solution u € Lj2, (R, H*% N H%3) with

an hypothesis of regularity on initial data and boundary conditions, with
H™ ={f € L%||(1 -0, - 0;,)"* (1 +af +23)" f]| < oo}.

Moreover, they find a decay rate

lu(®)]|L~ < OTC“)(IUOIHM + [[uol[mo.3).
More recently, always under assumption of small initial datum, Hayashi & proves
the local existence and uniqueness of a solution in C([0,T], H**¢0 n H%1+¢),

On the other hand, for some values of the coefficients in (DS), the system is
integrable by inverse scattering. A well-known example called DSI in the literature
(see 78) is elliptic-hyperbolic and can be written as :

(DSI) { iup +1/2(tze + “ny) = —olulu + up,,
Gaw — Pyy = 20(Ju)*)a.

For (DSI), the mathematical results are very complete (see Fokas-Sung ?) and more-
over there exists a class of localized exact solutions called Dromions (see 5:19).

From the numerical point of view, there are still very few results available since
(DS) system has been derived only twenty years ago and mathematical and numeri-
cal studies have started in the 90i°. To our knowledge, the only numerical work on
DS (E-H) is the one of White and Weideman !! who use a split step spectral method
on (DSI). Our goal is to derive a robust numerical scheme easy to implement and
able to capture well the behavior of the solutions of DS (E-H) for various sets of
parameters. In addition, we want to compute directly both u and ¢ associated to
Dirichlet boundary conditions. We decide to split the two equations of (DS) system
by relaxing the uy, term. Then, we solve the nonlinear Schrédinger type equation
by means of Crank-Nicolson scheme. As the second equation is hyperbolic, we write
it in characteristic variables to make it easy to solve by a finite difference scheme.

To validate the scheme, we test it successfully by computing the well-known
dromions. However, Crank-Nicolson scheme induces a phase error that is quantified
on the linear Schrodinger equation. Then, we study the influence of the initial datum
and the various parameters on the behavior of the solutions.

Finally, as blow-up phenomena can occur in some dispersive equations, we look
for them in the focusing case (x = —1) when b or o are small enough. The results
show that a blow-up occurs even for a large set of values of b.

This paper is organized as follow :

In section 2, we recall some facts on the dromion solutions to DSI.

In section 3, we present our finite difference scheme

In section 4, we present some numerical experiments on dromions.

In section 5, we present some simulations that lead to think that the solution of
DS (E-H) blows up in finite time for some values of the coeflicients.



2. Exact solutions of DSI

Using inverse scattering methods, Fokas and Santini 8% show for DSI that there
exists localized coherent structures which are governed by the non trivial boundaries
1 and 9, and call them “dromions” since they travel on the tracks (in ancient
greek “dromos”) generated by the boundaries and are driven by them. They are
localized traveling solutions which decay exponentially in both ¢ and 7, and can
interact upon the movement. Contrary to solitons, they do not preserve their form
upon interaction and can exchange energy. To obtain them, Fokas and Santini write
(DSI) in the form

iug + Au + u[U; + Us] =0,

o =-U1 + %\u|2,

pe = ~Ua + Flul’,

where

3
v, [ (u?)yde’ + ur (n, 1)
g

7
Vs = =3 [ (uP)edn' + (e, 1),
Therefore, uy(n,t) corresponds to —ps, (n,t) and uz(&,t) to —p1,(£,t). As usual
by inverse scattering techniques, the analytic form of dromions solutions is very
hard to obtain. However, the (M, N) dromion solution, describing the interaction
of N x M localized lumps, takes the following form

u(é,m,t) = 2X'ZY (2.1)

with
X = (C* +1)"'V is a vector of size N,
Y = (CY +I)"'W is a vector of size M,
Z=(A—-ol)"'pand pa N x M matrix,
A=pCY+D7'[(C*+1)""p]" isa N x N matrix,

where the superscript ¢ denotes the transpose of a matrix. The N x N matrix C*

is given by

m;mp

(C)jr = ——
T+

and the M x M matrix CY by

exp [—(p; + 1x) (€ — i(p; — mx)t)],

LTk —

(C¥)jr = IS exp [—=(Xj + Ae)(n —i(Aj — Ap)t)].
Finally,
(V); =ljexp[—p;(€ —ip;t)], 1< j <N,
(W)] = mj exp [_Aj(n - ZAJt)]a 1 S .7 S M:



where \;, pj, lj, m; and p € C and Re();), Re(u;) € RT. Besides, the boundary
conditions are

U1(77=t) = 28,)(YtW), (22)
uz(§,t) = 20¢(X'V),

which can be written as

M
ur(n,t) = =20, > mexp [~ (n + ixet)]Yi (0, 1),
k=1

L
us(&,t) = =208 » I exp [T (€ + ifijt)| X (€, 1).
=1

Then, as t — oo, u1(n,t) (resp. ua(&,t)) consists of M (resp. L) solitons each
traveling with velocity —2Im(A.) (resp. —2Im(y;)). Moreover, always as t — +oo,
u(&,n,t) consists of M times N widely separated lumps, named ug;, k = 1..M,j =
1..N, each traveling with velocity (—2Im(Ag), —2Im(g;)). In the special case of
prj = 0 for k # j, the number of lumps is min (M, N).

To illustrate these formula, we give here the (1 —1) dromion expression. Let A =
p+idr, p = prtipn, €= €420t ) = 042Xt = oI i €= o i

Ry = Ap(—7) + pr(€ = &) and I, = —(Ari) + pré) + (|ul? + [A?)t + arg(Im), then

2AR2

Y Ot =) .
U2 (fat) = ZMRf — 9 (25)
cosh (ur(€ =€)
and
w= 4P\/mexp {_Ru + ZIu} (26)

(1 + exp (=22r(7 — 0))(1 + exp (=2ur(E = €))) + |p>

The dromion solutions are not the only explicit solutions of DSI. Indeed, recently,
Hietarinta and Hirota '2 and Jaulent et al. '3 obtained a broader class of dromion
solutions in terms of Wronskian determinants. Finally, Gilson and Nimmo * con-
sidered an alternative direct approach which uses a formulation of the solutions as
grammian determinants to obtain a much broader class of solutions (plane-wave
solitons, dromions, solitoffs).

3. Numerical scheme

In this section, we introduce the numerical method used to compute solutions of
the slightly modified (DS) (E-H) system to see the influence of each derivative term



on the behavior of the solution

iU+ O + Ylyy = X|u|?u + bup,,  (a)

Pz — Cway = U(|U‘2)m, (b)
ngr_noo o(z,y,t) = p1(&, 1), (3.7)

lim (p(xay,t) = @2(777”7
{——oc
U(t = O,x,y) = U(](f,y)-

with 6, v > 0. Approximating this system, we face several difficulties ; namely, the
size of the domain, the coupling of equations and the hyperbolic type of the second
equation. Then, we have two possibilities for the numerical treatment of (3.7). On
one hand, we can use the structure of the system as in ! and write (3.7) as

iU + OUgg + YUy = X|u\2u + buV

o 13 n
V= P (/ (luf?),dg’ +/ ([ul*)edn’ | + @1, + @2,

however, without the use of spectral methods, the integrals are difficult to compute

where

and, with such a formulation, it is not possible to compute ¢. On the other hand,
we can approximate separately both equations of (3.7) which is more appropriate
for finite difference schemes.

Moreover, we want to preserve the energy

M(u) = /R2 |u|?dzdy (3.8)

3.1. Semi-discretization in time

The main idea is to use the Crank-Nicolson scheme proposed by Delfour-Fortin-
Payre 1° for the nonlinear Schrodinger equation (NLS) :

(NLS) iug + Au=Aul®’u , z€R?, t>0,
u(z,t =0) =wug(zr) , z€ R
This scheme is studied in 61718, Tt is fully implicit and exactly preserves both
invariants of (NLS). It takes the semi-discretized form

'un—l—l_un un—l—l +un ‘un+l|2+|un|2 un—l—l +un
P Y\ [ L I
ot 2 2 2

where u™ is the approximation of u at time t™ = ndt. In fact, this equation is
written at time t"*2 = (n + 1/2)ét. In order to use this scheme for DS (E-H), we
just have to add the discretization of the term uy,. We write it as

(un+1 +un> n+%
# P



and replace the operator A by D = 00, + v0y,. Now, the principle of relaxation
is to write (3.7 b) at the different time " = ndt, and proceeding in the same way,
we obtain
n+i n—2L1
P4 n
LE—TE ) = o).

0

where L = 8,, — ¢*0,,. We take as initial condition u® = ug. Finally, we get

un+1 —um un+1 + um nt12 2 wntl
. D _ P Lur _
i 5 + < 5 > X ( . 21( ) (3.9)
()
n+ 1 n—i
I (‘P i ;”P ) = o(ju"?).. (3.10)

Then, there is conservation of the energy (3.8). Indeed, multiplying (3.9) by
unt! + u”, integrating in space and taking the imaginary part, we get

/|u"+1|2dazdy=/ "2 dxdy. (3.11)
R2 R2

Moreover, as the functions ¢ and ¢y are defined on the characteristic variables, we
have to rewrite (3.9) and (3.10) in the (£,7n) plane

n+i n—2L1
eIt o n
ST = L) (a)
n+l1 _ ,n n+1 n n+1 n
i (P AC) 2P - ) S(— ) = ©

un—l—l 2 + um 2 un+1 +un
s L ) il

where S = 0¢, and T' = 0¢ + 0.

Remark 0.1 In this paper, we do not prove neither existence of a solution nor
the convergence of the scheme. However, the same scheme is used in '° for the
(NLS), DS (E-E) and DS (E-H) equations and results of existence and convergence
of solutions are proved.

3.2. Full discretization

For the spatial approximation, we restrict the infinite domain to a large enough
bounded one and take homogeneous Dirichlet conditions on the boundary. We
consider the approximated domain is large enough when the value of the initial
datum at the boundary is less than 10-6. The numerical tests show than this is
enough to avoid a damage of the qualitative behavior of the solution.
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Fig. 1. Domain

The non trivial boundary conditions on the mean flow ¢ are well adapted to
such a domain. Indeed, if we represent it on figure (1), we just have to prescribe
them on (AB) and (AC). Obviously, we will impose that lime_,_ocp1(&,t) =
lim,__oop2(n,t) = 0, so that, the point A will have to be chosen sufficiently
far from the origin. We mesh the bounded domain with a (J — 1) x (K — 1)
grid. We will denote by dz and dy the space steps, and u;' the value at the point
(2o + (j — 1)0z,y0 + (k — 1)0y), (j = 1..J.k = 1.K), I = J(k —1) +j, and o2
the value of ¢ at the same point. Always using centered finite differences, the fully
discrete scheme reads

1 1 1 1
nti ntd ntd nt+d
p) 3 3 3
1 (4pl+1+J7LPl+1—17¢1—1+J+¢l—1—‘])+

46$§y 2 1 1 1 1
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ul+J—2ul +ulﬂ,+ul+‘,—2ul—l—ulﬂ,)]
20y2

28 +1 +1 +1
2(0 J 7) uln+1+J_ul"+1—J_uln—1+J+

)

+(

2
40zdy u?,+117]+u,ln+1+J7u?+1—‘77u,l’1—1+]+u,l’1—1—]
2
n n+ n+ n+ n+i n
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We can now see that the boundary conditions are well adapted. Indeed, as

1 1
n+3 n+3

n4 L nti 1
Croing = Pyt iy — ey fl@"2u", 6z, dy)

1
we see clearly on figure (2) that ‘P?++12+J is the only unknown for the hyperbolic

known row or column

known data

D

L
U
-1+J l+1+J QO  unknown data

—= dependence

®
I-1-J [+1-J

Fig. 2. Mesh

equation on ¢ at point [. All other terms are known from the boundary conditions
or from the previous step in an explicit way going along the z-direction and then
along the y-direction or conversely.

Then, the first step is to compute ¢? with Sp7 = ZT(ju|?). At each time

step, we solve alternatively the hyperbolic equation (3.12-(a))
n—l—l n—4i g n|2
Sp"rer = =Sp"mr 4 o T(ju"f)

and the equation (3.12-(b)) using a standard iteration procedure based on a fixed-
point algorithm. So, we get successive approximations of u™*! by solving linear
systems until we estimate that there is enough precision.

4. Numerical experiments

4.1. Computation of dromion solutions

As we mentioned in section 2, there are explicit solutions of the sub case (DSI). So,
we first test our scheme on (DSI) system and dromion solutions. We start with the
1-1 dromion solution

diexp (—(&+n+4t) —i(€ +n))

u(£’n= t) = (]_ + exp (—25 — 4t))(1 + exp (_277 - 4t)) +1

corresponding to 0 = =1, A\=pu=Il=m =144 and p =1 in (2.6). It represents
a soliton moving with speed 2v/2 in the negative direction on the line &€ = 5. The



non trivial boundary conditions associated with ¢ are

v1(€,t) = —2tanh (£ +2¢) + A
pa(n,t) = —2tanh (n + 2t) + B

where A = B = —2 in order that lime_, _ocp1(£,t) = limy—_ocp2(n,t) = 0. More-
over, as

a

n 3
pl&mt) = 5 (/_ IuP(f,s,t>ds+/_ |u2(s,n,t>ds> +1(66) + p2(n,1)

an easy computation gives

1 1
T+ oxp (26 +40) T 1+ exp (27 + 40)
1+ exp (-2 —4t))(1+exp(—2n—4t)) +1

@(&n,t) =—4( +1(&,1) + p2(n, 1)

We take the initial datum at ¢ = —3. The domain is the square [-12,12] x [-12,12]
with a 128 x 128 mesh, §t = 10~ and ¢ € [-3,3]. On the figures (3),(4), we plot
the module of the theoretical and the numerical solution at ¢t = 0.

Fig. 3. Numerical dromion 1-1 Fig. 4. Exact dromion 1-1

We can not see any revelant differences. To emphasize it, we look at the evolution
of the contour of the localized solution for ¢t = —3,0, 3 on figure (5).



Fig. 5. Contour of numerical dromion 1-1

The structure of the dromion is perfectly preserved. Moreover, we show the
evolution of the L>-norm and see that it is well conserved on figure (6).

0.5 —

0.0 L L

Fig. 6. L* norm

Next, to understand better what driven by the tracks means, we plot ¢ for the
same values of ¢ on (fig(7,8,9).

10
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In fact, if we compare position of u on fig(5) with cross section position of the
contour of ¢ on fig(10,11,12), we can see that u is exactly localized on the tracks

left by ¢.

Y

Fig. 10. ¢ at t=-

In order to analyze better the error we made, we

Fig. 11. ¢ at t=0

Fig. 12. ¢ at t=3

plot on figure (13, 14, 15)

Nl = Huex‘|2 - HunumH2a N2 = Huex - unum”? and NS = |Huez| - ‘unume where

Uep 1S the exact solution and u,, the numerical one.

11
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Fig. 13. N1 = [[uca |2 — [|unum|[2

a0 ™
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0oz | | 0| ]

00055 =N 0 30 %035 =N 0 30
Fig. 14. N = |[ttea — Unum||2 Fig. 15. N3 = [[|ttex| — [tunuml|||2

The N; quantity is less than 1075 at any time as expected from (3.11). However,
the phase error is quite high as revealed by Ns.

This phase error comes from the Crank-Nicolson scheme. Indeed, let us consider
the linear Schrédinger equation

iug + Au = 0,
u(0,z) = uo(x),

w5) {
and the semi-discrete Crank-Nicolson schemes
.un+1 _ un un+1 + un

Y tA—5— =0, (4.13)
u’(z) = ug(x).

12



The solution of (LS) is given by

u(a,t) = S(t)uo(x)

— —

where S(t)(¢) = exp (—i¢?t) and (.) denotes the Fourier transform. Writing (4.13)
as

u™t = (Op) "' Opou™

with Op; = (& + £) and Op, = (& — £). We get
un+1 = exp (if)u" = exp (i(n + 1)8)ud
with 6 = =26t + S92 4 o(¢1064%). Thus, if t = ndt,

tot2(s
24

||tex () — u™||2 = 2[sin ( )| Huoll2

So, the error phase could grow up to 2||ug||2, which is not negligible. On figure (16),
we plot the relative phase error (Na/||ug||2) in one dimension for ug(z) = sin(6z),
which is the eigen vector of Laplacian operator associated to the eigenvalue k% = 36
corresponding to (% in the above formula. We take 6t = 1072, dz = 5.10~! and
z € [0, 7).

Crank-Nicolson scheme error phase
k=6
20 3

error phase
o

0.5 -

—— Theoretical error
- Numerical error

0.0

L W I H
30.0 40.0 50.0
time

0.0

Fig. 16. Phase error for (LS) equation

Obviously, we present here the simple example to analyze the error phase of
Crank-Nicolson scheme. If we want to understand why N3 is bad too, we must
plot |||tez| — [Unuml||2 for a superposition of two solutions of (LS). The result for
uo(x) = sin (62) + sin (8x) is plotted on fig(17).

13



25

—— Na/[|uo]|
---- N2/|juoj|
r‘ n

Fig. 17. Na/||luol|2 and N3/||uol|2 for (LS) equation

We see that the error for (LS) is quite high. In fact, |uez| — |tnum| couples the
phase as soon as the number of phase is more than two.

A possible correction for (LS) consists in solving

'un+1 _ un N A,ul'rH»l + un §t2 AS un+1 + un
7 i - -

ot 2 12 2 =0

but, although this is better for the linear case, it is not so good for the nonlinear
Schrédinger equation.

We continue our tests with the 2-2 dromion and a diagonal matrix p, which
corresponds to the interaction of two lumps. We take A\ = 2 — 24, Ay = 4 — 0.5¢,
ll = 2+1, l2 = 1+2Z, M1 = 1—2i, M2 = 3—052, m; = 1+Z, mo = 2+3Z,
p11 = 141, poo =2+ 3i and p12 = p21 = 0in (2.1) to (2.3). The resulting algebraic
equations are solved by making use of MapleV. Thus, we get the explicit expression
of u(&,n,t), ui(n,t) and us(€,t) which are too large to be printed in this paper.
Therefore, we can compare the numerical solution computed from u(§,n, —1) with
the exact solution above. The space domain is [-10, 10] x [-10, 10], with 257 points
in every direction and 6t = 102, We plot the contour of the exact solution and the
numerical one for t = —1,0,1 (fig (18)).

14



Exact solution, t=—1 Exact solution, t=0 Exact solution, t=1

10 10 10

5 5 5

0 0 0

-5 -5 -5
% 0 10 %o 0 10 % 0 10

Numerical solution, t=—1 Numerical solution, t=0 Numerical solution, t=1

10 10 10

5 5 5

0 0 0

-5 -5 -5
% 0 10 %o 0 10 % 0 10

Fig. 18. Contour of dromion 2-2

The two solutions are very close to each other and we note only a small discrep-
ancy for ¢ = 1 behind the upper bump. We also draw the module of the solution
(fig(19,20,21)) at the same times to show that it is really the interaction of two
localized lumps.

-0 10 -0 10 -0 10

Fig. 19. Numerical dromion Fig. 20. Numerical dromion Fig. 21. Numerical dromion
2-2 at t=-1 2-2 at t=0 2-2 at t=1

We precise the movement of the tracks left by ¢ with the representation of the
contour of ¢ (fig(22,23,24)).

15
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=

Fig. 22. ¢ at t=-1 Fig. 23. ¢ at t=0 Fig. 24. ¢ at t=1

As the p matrix is diagonal, the number of lumps is only two instead of four.
However, there are four cross-points on the tracks. Two of them localize the existing
lumps and the two others give the location of the two missing ones as stated in 8.
The phase error (fig(25)) is bigger than the one of dromion 1-1, but the dynamic of
movement is more sophisticated.

2.0

05

0.0 L L L
-1.0 -0.5 0.0 0.5 1.0

time

Fig. 25. [|tex — Unuml]|2

4.2. Role of the initial datum and parameters

Now that we have tested our scheme with exact solutions, we can examine the
action of DS on other initial data. For that, we put the gaussian datum uy, =
4exp[—(2? + y?)] in DSI with ¢; = o = 0. Like it is stated in Fokas-Santini ®, all
initial data with ¢; = s = 0 should disperse at infinity and this is exactly what
we get (fig(26,27,28,29,30)).

16



Fig. 26. Gaussian datum at t=0 Fig. 27. Gaussian datum at t=0.321

Fig. 28. Gaussian datum at t=0.642 Fig. 29. Gaussian datum at t=0.963

We see the effect of dispersion on the L*°-norm which decreases with time
(fig(31).

17



t=0. t=0.321

5.0

Fig. 30. Contour of gaussian datum Fig. 31. L°® norm of gaussian datum

Then, we go on by changing some coefficients while keeping the others to the
values taken for DSI. The initial datum and the boundary conditions are the same
than those of dromion 1-1 test. It is difficult to make an exhaustive review of
the effects of each parameter due to their number. However, we can imagine the
influence of some coefficients. For example, § and v should manage the dispersion.
Some tests show that § and v do not have the same influence. § acts directly on
the z-direction, whereas y acts on the y-direction, but without the same strength.
Indeed, = and y do not have the same role in DS. For example, we present here the
test for 6 = v = 1. Then, the equations become

{ iug + Au = |ul*u + up,,
Paz — Pyy = —2(|uf*)e.

We see that the initial lump disperses away much faster in the z-direction than in
the y-direction fig(32,33).

18



t=—1.5 t=—1.072

Fig. 32. 6 =v9=1

t=—1.5 t=-1.072
10 10
5 5
0 0
-5 -5
-10 -10
-10 -5 0 5 10 -10 -5 0 5 10
t=-0.640 t=-0.216
10 10
5 5
0 0
-5 -5
-10 -10
-10 -5 0 5 10 -10 -5 0 5 10

Fig.33. 6 =v=1
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Then, we choose to study the effects of the b parameter on the behavior of
dromion 1-1. We plug into (DSI) respectively b = 0.5 and b = 1.5. We note
(fig(34,35,36,37)) that dromion 1-1 is not stable at all with respect to b.

t=—1.5 t=-0.430

Fig. 34. b= 0.5
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Fig. 35. b= 0.5
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t=—1.5 t=-0.430

Fig. 36. b= 1.5
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Fig. 37. b= 1.5
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Other tests show that the results are about the same when modifying the value
of x and 0. So, dromion 1-1 is not stable with respect to the coefficients of (DSI).

5. Blow-up of DS (E-H)

It is well known that (NLS) admits blow-up solutions (see Ginibre-Velo 2°, Kato
2 or Glassey 22 for instance). Now, the dynamic of explosion is better understood
(17,23). Moreover, as predicted by Ghidaglia and Saut ®, Papanicolaou-Sulem-Sulem
and Wang 2* show numerically that the blow-up occurs in the elliptic-elliptic case

of (DS). Unfortunately, no results are known to validate or not the blow-up in the
(E-H) mode.

From now on, we set 6 =y =1/2, c=1 and p;(n,t) = p2(&,t) = 0, Vi. Then,
in the (¢, n) plane, DS (E-H) becomes

iy + Au = xlul*u + bupgr,,  (a)
T S (5.14)
oen = T(1uf? + [uf?). @
If we assume that y = —1, blow-up should arise when b goes to zero, as the first

equation tends to the focusing (NLS) equation. In the same way, as ¢ — 0, (5.14 b)
gives 90(57 U t) = ¢1 (’7: t) +'¢}2 (gv t)- Using the hYPOtheSiS ¥1 (’7: t) = 2 (6: t) =0, Vt,
we get p(&,m,t) =7, r € R. Putting it on (5.14 a), we get exactly (NLS). Therefore,
we will work finally on the system

{ g + Au = —|ul?u + bupey, (5.15)

g
pen = Z(ul? + [uf?)

In order to verify our statement, we take as initial condition the one used in
17 and 2 for blow-up of (NLS). So, ug = 4exp[—(2? + y?)]. In the last reference
17 the presumed blow-up time for this initial datum is compute numerically and
is t, = 0.1425. This reference time allows us to validate our suppositions. For
the numerical tests, we take a 256 x 256 mesh, 6t = 10~* and the domain is
[—4,4] x [—4,4].

We begin by the o — test consisting to compute the approximate solutions of
equations (5.15), with the gaussian initial datum, for 0 — 0 and b = 1. We plot on

fig(38) sup |u(&,n, )| for different values of o.
&
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Fig. 38. Evolution of blow-up time for b = 1 and different values of o

We see clearly that blow-up seems to arise and that the sign of o changes the
relative position of the blow-up time for (5.15) compared to ..

Next, we go on with b — 0, setting 0 = —2. Now, we plot the results on fig (39)
for a wider range of values of b.

b=-0.1 b=-0.15
100.0 -

b=0.1
75.0 -

50.0 -

25.0

0.0 . . . . . . . . . . . .
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 020 022 0.24

Fig. 39. Evolution of blow-up time for ¢ = —2 and different values of b

If b is small enough, the results are the same than for the o — test. But we see
in addition that a strong concentration and may be a blow-up occurs for values of
b in O(1) when b is positive. Therefore, this fact seems to indicate that DS (E-H)
system has an inner blow-up mechanism. For negative values of b, a stabilization
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appears. The first value of b leading to this stabilization is hard to compute because
of relative instability. We plot on fig (40) a more complete study on a 512 x 512
finer mesh for those values leading to stabilization.

200.0
— b=-0.18
"""""" b=-0.19
---- b=-0.20
150.0 | —— b=-0.21 .
—-— b-0.22
b=-0.25
100.0 J
50.0 - J
0.0 R I I
0.00 0.05 0.10 0.15 0.20 0.25

Fig. 40. Stabilization of blow-up for ¢ = —2

We show now that the sign of o has an influence on the position of the supposed
blow-up time of DS with respect to the blow-up time of (NLS). The fig(39) and
fig(41) illustrate this fact with 0 = —2 and ¢ = +2.
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b=0.1
100.0 g
b=-0.1 b=0.2
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"0.00 002 004 006 008 010 012 014 016 0.18 0.20

Fig. 41. Evolution of blow-up time for 0 = 42 and varying b

Finally, although we do not have a refinement procedure, we show on various
meshes the validity of the tests above as the L°°-norm increases twofold each time
the mesh size is divided by two. So, we think that blow-up for DS (E-H) really
exists. We plot on (fig(42)) sup |u(&,n,t)| for different mesh and |u| (fig(43,44))at

1]
t =0.1704 for 0 = —2 and b = —0.15.

200.0 j
— — — Mesh=128x128
- Mesh=256x256
—— Mesh=512x512

150.0

100.0 -

50.0 -

0.0 ‘ ‘ ‘
0.00 . . 3 0.20

Fig. 42. Evolution of blow-up time for b = —0.15 and different grid mesh
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Fig. 43. |u| at t=0 Fig. 44. |u| at t=0.1704

6. Conclusion

We develop a new scheme in order to solve DS (E-H) systems. This tool allows to
show that dromions 1-1 are not stable with respect to coefficients and that blow-up
mechanism can exist for DS (E-H). We confirm that from an initial datum with
w1 = pa = 0, the solution disperses away for (DSI). In addition, we prove that
Crank-Nicolson type schemes create a periodic phase error that can be quite big
for some values of t. Unfortunately, we can not prove existence of solution and the
convergence of our semi-discrete scheme. However, the principle of relaxation is
applicable to a wide range of systems, and, in particular, our scheme is relatively
easy to transpose to other versions of DS.
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