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A variety of complex fluids consist in soft, round objects (foams, emulsions, assemblies of copoly-
mer micelles or of multilamellar vesicles — also known as onions). Their dense packing induces
a slight deviation from their prefered circular or spherical shape. As a frustrated assembly of in-
teracting bodies, such a material evolves from one conformation to another through a succession
of discrete, topological events driven by finite external forces. As a result, the material exhibits
a finite yield threshold. The individual objects usually evolve spontaneously (colloidal diffusion,
object coalescence, molecular diffusion), and the material properties under low or vanishing stress
may alter with time, a phenomenon known as aging. We neglect such effects to address the sim-
pler behaviour of (uncommon) immortal fluids: we construct a minimal, fully tensorial, rheological
model, equivalent to the (scalar) Bingham model. Importantly, the model consistently describes the
ability of such soft materials to deform substantially in the elastic regime (be it compressible or not)
before they undergo (incompressible) plastic creep — or viscous flow under even higher stresses.

PACS numbers: 83.10.GrConstitutive relations 83.80.IzEmulsions and foams in Rheology 83.50.AxSteady
shear flows, viscometric flow 83.85.LqNormal stress difference measurements

I. INTRODUCTION: ELASTICITY AND

PLASTICITY IN FOAMS AND EMULSIONS

A. From crystals to foams and emulsions

Historically, descriptions of deformations in crystalline,
solid materials are based on a decomposition in terms of
elastic and plastic components. Conceptual and technical
problems arise in this process. On the one hand, general
elastic formulations use continous deformations [1] with
respect to a reference state associated with the ordered
structure of minimal energy. On the other hand, plas-
ticity is related to the existence of defects in the crys-
talline structure, called dislocations [1–3], which are set
into motion above some local threshold stress. Elemen-
tary motion steps constitute discrete relaxation events,
which result in a drift of the reference state.

In foams and dense emulsions, the local arrangement
of elementary objects (droplets, foam cells) can be highly
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(CNRS UMR 7057), Bâtiment Condorcet, Case courrier 7056,
75205 Paris Cedex 13
†Centre de recherche Paul-Pascal–CNRS, UPR 8641, Université de
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disordered. In the framework of crystals, this corre-
sponds to the limit of a very high concentration of dislo-
cations. Hence, a small increment of stress gives gener-
ally access to a large number of relaxation events. This
limits the accessible range of purely elastic deformations
between successive elementary relaxations.

Like in crystals, each relaxation event is associated
with a topological flip: the stucture of the network locally
changes. In foams and emulsions, such events are known
as “T1 processes”: nearest neighbour links are exchanged
between two pairs of cells. This class of materials thus
exhibits an original interplay of elasticity (geometry and
continuity), and plasticity (topology and discreteness).

B. Immortal vs. aging fluids

Foams and emulsions usually undergo spontaneous
evolution such as coarsening (due to coalescence or ripen-
ing) or drainage [4–6]. Such changes may induce a few
topological rearrangements and cause the material rheo-
logical properties to slowly evolve [7, 8] — a phenomenon
known as aging. If the material is subjected to a weak
external stress (far below the plastic threshold), such re-
arrangements may also statistically induce some creep
which would otherwise not occur [9].

In other materials made of soft, round objects, the rel-
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evant molecular processes are slow and no subtantial ag-
ing is observed. Among such materials — which may be
called ‘immortal‘ — are copolymer micelles [10, 11] and
some foams and emulsions formulated in such a way as
to make the diffusion of the dispersed phase and the rate
of film ruptures imperceptible within the experimental
time-scale.

C. A brief history of flow localization

The structural characteristics summarized above lead
to interesting non-linear mechanical behaviours in which
a rich interplay exists between structural and mechanical
responses. One of the most extensively studied problems
concerns flow localization, studied in various materials,
from micellar solutions to granular flows.

In the thoroughly studied system of surfactant solu-
tions self-organized as giant micelles, the flow curve was
originally observed to exhibit a plateau-like behaviour
under controlled shear rate [12].

Structural observation followed, demonstrating shear-
banding. Thus, in the stress plateau region, two differ-
ent organizations of the material coexist: an isotropic
region, similar in structure to the original solution, and
a strongly birefringent region, in which the micelles are
aligned to a high degree with the flow direction [13].

This situation was initially interpretated in terms of
out-of-equilibrium phase transitions in the material, lead-
ing to a steady-state coexistence between two struc-
turally homogeneous domains [14].

Theoretical descriptions attempted to capture the on-
set of this transition and the stability of the coexistence
in terms of interfacial dynamics and mechanical instabil-
ity [15].

A more detailed investigation of the birefringent phase
has more recently revealed strong spatial [16] and tempo-
ral [17] variations. That disagrees with the initial simple
picture.

The birefringent phase consists in numerous transient,
narrow zones of very large shear. The term “fluid frac-
ture” [18] has been proposed to describe these individual
events, which have been observed in different systems
with similar rheological properties but different internal
structures (connected microemulsions [19], copolymer
cubic-phase [10, 11]).

The understanding of the shear-banding phenomenol-
ogy has thus begun to shift from a phase transition pic-
ture to a fracture picture, and the interest is now focusing
on the highly localized events that initiate the transition,
and on their relation to the structural properties of the
material.

Similarly, in the case of foams, a similar phenomenol-
ogy of localization has been observed both in experiments
[20] and simulation [21–25], and interpreted[48] in terms
of the interaction between individual events via (mostly
elastic) deformations of the surrounding material [26–

28]. The challenge now consists in understanding the
self-organization of dispersed relaxation events into a lo-
calized fracture-like behaviour.

Thus, the emergence of a fluid fracture from these dis-
crete, elementary relaxation events appears as a well-
defined problem. In that respect, two main problems
remain open: (i) the role of structural disorder, and
(ii) non-local effects between individual events, mediated
through elastic stresses in the material Both problems
relate to the unknown typical length scale on which the
discrete system should be averaged for a descriptions in
terms of a continuous model.

More precisely, problem (i) addresses this length scale
from the limit of smaller length scales where disorder is
relevant. Paragraph II C will address a thorough discus-
sion of this important problem of the structural disorder
in relation with the material deformation history, as well
as how it might be included in our framework.

Conversely, problem (ii) addresses it from the larger
length scale limit: a suitable constitutive equation, in-
croporated into the general framework of continuum me-
chanics, provides the tools for generating such non-local
effects.

D. Ingredients of our model

In the present work, we focus on the second problem
discussed above, and construct an example of a rheolog-
ical model inspired by the behaviour of such “immortal”
fluids. It is characterized by four main features.

1. The flow properties are motivated and discussed in
terms of microscopic considerations (T1 processes).

2. In order to incorporate the non-local elastic effects
mentioned above, our model is written in a fully
tensorial form, whether in two and in three dimen-
sions.

3. It is a commonly observed feature that such soft
materials deform substantially before they display
plasticity. In other words, their yield stress is com-
parable to their elastic modulus (unlike for classi-
cal, hard crystals). Correspondingly, the present
model implements a consistent description of the
elastic properties of the material up to finite de-
formations (i.e., beyond the usual approximations
valid at small deformations).

4. As we shall see now, an amorphous, elastic mate-
rial undergoing plasticity loses the memory of past
events. The initial reference state thus has no phys-
ical relevance. Correspondingly, our model is de-
veloped in the Eulerian formalism (attached to the
current reference state).

The ingredients that our model does not include are
the following:



3

1. the role of disorder (see Section II C);

2. an argument for the value of the averaging length
scale suitable for a continuum description of a foam;

3. aging effects in the material;

4. effects of deformation history;

5. short-time behaviour (acoustics).

II. LOSS OF MEMORY AND CONSEQUENCES

In foams or emulsions and in crystals alike, large defor-
mations of the sample do not imply large deformations of
individual objects, since topological rearrangements re-
lax local stresses. In both types of systems, two objects
that are initially in contact can end up at a large mutual
distance when many topological rearrangements have oc-
curred. In such a situation, there does not exist any kind
of elastic restoring force between both objects. Hence,
the distance between them is irrelevant to the current
mechanical behaviour. As a consequence, the deforma-
tion from the initial state, which keeps track of such large
distances, is mainly mechanically irrelevant, even though
it has a clear experimental meaning. In other words, the
material has lost the memory of such large deformations.

As we shall see, this is the reason why:

• we use Eulerian coordinates;

• we define a quantity called “stored deformation”;

• we discuss the impact of local disorder.

A. Eulerian description

In order to describe the deformations of a material
sample and the evolution of the physical quantities at-
tached to it, two types of coordinate systems (see Fig-
ure 1 are commonly used: either “Lagrangian” coordi-
nate systems attached to the initial state of the sample,
or “Eulerian” systems attached to its current configura-
tion, which coincide to first order in a small deformation
context.

In the case of an elastic material, that keeps the mem-
ory of its initial state, the choice of one or the other does
not have consequences other than computational (physi-
cists most usually use Lagrangian coordinates [1]).

However, in the case of a material that progressively
looses the memory of its initial configuration, such as a
foam or an emulsion via rearrangements (T1 processes
described later in this paper), it would be physically ir-
relevant (and computationally tedious) to refer to the
initial sample state. One therefore generally uses Eu-
lerian coordinates in such situations. For instance, the
Navier-Stokes equations are usually expressed in a fixed
coordinate system (Eulerian approach).

Lagrange

Euler

time

FIG. 1: When a block of foam undergoes very large defor-
mations (symbolized by the evolution of the coordinate sys-
tem between the three top drawings), one might think that
its local structure correspondingly evolves towards a highly
stretched configuration. In fact, it always remains statistically
similar to its initial state, as illustrated by the superimposed
foam structure detail. Let us attach a system of coordinates
to the initial state of a foam (left-hand side drawings). After
some deformation, we may describe the quantities attached
to the foam in terms of either of two coordinate systems (top
or bottom drawings): either the initial (now deformed) coor-
dinate system (top, Lagrange coordinates), or a new (undis-
torted) coordinate system defined on the current state of the
foam (bottom, Euler coordinates). In the case of elastic defor-
mations, when material keeps trace of its initial configuration,
such a choice does not have noticeable consequences. But in
the case of deformations that imply plastic events which pro-
gressively erase the memory of the initial state, the choice of
the initial, much deformed coordinate system would not be
physically (or computationally!) particularly relevant.

B. From deformation to ‘stored deformation’

Experimentally, the accessible variables are (1) the de-
formation or deformation rate, as measured or imposed
at the sample boundary, and (2) the stress (at least in
some systems such as foams, where it can be extracted
from the shape of the individual objects, or in photoe-
lastic systems). In order to set up a spatio-temporal nu-
merical scheme, one needs not only continuity and force
balance equations, but also a specific evolution relation
of the local stress in terms of the deformation rate. Our
purpose in this paper is to propose a model example for
this missing ingredient, and to explore its properties.

The very notion of a fixed reference state, and of a
global deformation from this state, being of no use, the
stress, as an index of the local elastic deformation, repre-
sents only the recoverable (or ’stored’) part of the defor-
mation. It can be defined through the following thought
experiment, described on Fig. 2: a fragment of the ma-
terial is cut, in the deformed state, and allowed to relax;
the “stored deformation” is defined as the inverse of the
deformation observed during this relaxation.

In the case of foams, it was shown a few years ago [29]
that it is possible to construct a deformation tensor
from the experimentally observed inter-bubble (centre-
to-centre) vectors, which indeed faithfully represents the
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stress [30].

Ω
F

Ω?

FIG. 2: Stored deformation: operative definition through a
thought experiment. Consider stretched piece of material Ω,
When its macroscopic deformation (represented by a large
ellipse) is relaxed (center, large circle), there remain local in-
ternal stresses. Only by cutting out small pieces of material
(right) can the corresponding stored deformations (small el-
lipses) be relaxed (small circles). The resulting pieces Ω? can-
not fit together without restoring local stresses: relaxation is
meaningful only on the local scale. Note that the orienta-
tion of each piece is arbitrary and can always be chosen in
such a way that when going back to the initial, macroscopi-
cally stretched state (left), the corresponding transformation
(F , see Eq. 11) be purely elongational (no rotation), with
stretching factors λi (see Eq. 12). This stored deformation
is related to the local stress via the material elasticity (see
Eq. 26).

C. Disorder, stored deformation, and stress

The knowledge of the local stored deformation is ex-
actly equivalent to the knowledge of the stress. They are
related through a specific, material-dependent, constitu-
tive relation, namely the elasticity, be it linear or not.

Generically, disordered systems are locally frustrated
and contain internal stresses even in the absence of ex-
ternal applied stress. In other words, stored deforma-
tions are nonzero. One might think it possible to relax
stored deformations by cutting the material into pieces
and sewing them together again, as described above. In
fact, the relaxed pieces do not fit together nicely, even
after adjusting local orientations: the field of stored de-
formations cannot be reconstructed from a displacement
field. If one were to sew all pieces together again, one
would need to stretch each of them appropriately, thus
reconstructing a frustrated stress field corresponding to
a state with zero external applied stress.

The notion of reference state is always clear in a local
context. But it cannot be extended to any macroscopic
part of a disordered material. Indeed, it would not be
extensive: one half of a relaxed sample generally does
not match the relaxed state of the same sample half.

D. Evolution of the stored deformation

Let us return to the construction of the local evolution
of the stress in terms of the applied deformation rate.

The main point is that topological events participate
in the applied deformation but relax part of the corre-
sponding stored deformation. The evolution of the stored
deformation must thus involve both an entrainment part
and a plastic part.

The entrainment part is purely kinematic, driven by
the velocity gradient. The plastic part reflects the T1 re-
laxation processes triggered at large stored deformations.
It always[49] tends to lower the stored deformation. It
reflects the rate at which the material looses memory of
the local reference state which is implicit in the stored
deformation.

III. CHOICE OF A RHEOLOGICAL MODEL

Let us now choose a rheological model. The considera-
tions of Section II D imply that the rheological model of
a foam must incorporate a spring (which represents elas-
ticity) in series with a creeping, plastic part. This creep-
ing part will sometimes contain a viscous term, which
we will call “creeping viscous element”. A list of several
common rheological models, that correspond to various
choices for the creep, is given in Figure 3. Notice that
another viscous element was added in parallel in a few of
these models. As we shall see later, this element reflects
mainly the continuous (liquid) phase viscosity, especially
in the dilute regime. We henceforth call it the “dilute
regime viscous element”.

Note that although such a viscous element in parallel
impacts the stress response of the material, it does not
affect the local dynamics of stored deformation (at least
not directly[50]).

Such models are listed on Table III together with an
indication of their creep and relaxation properties. We
now review some of these models, which have been used
in the context of foams or similar materials.

?

FIG. 3: The considerations of Section IID lead us to the
idea of a rheological model consisting in a spring in series
with some creeping element yet to be defined. The long, soft
spring reflects the fact that creep may trigger at rather large
elastic (stored) deformations. Optionnally, an additional “di-
lute regime” viscous element may be added in parallel: in a
context of imposed deformation, it will not alter the dynamics
of the system.
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Model

Relaxation

from σ > σy

towards σ = σy

Creep

threshold

Foams

(or similar)

linear Maxwell delayed
σy = 0

(viscoelastic)

linear Burger delayed
σy = 0

(viscoelastic)
Höhler [9]

linear elasto-plastic immediate σy � G
Marmottant-Graner [31]

(+ viscous)

linear Bingham delayed σy � G
Saramito [32] (+ viscous)

Takeshi-Sekimoto [33]

non-linear Bingham delayed σy ' G present model

TABLE I: Some common rheological models with creep. Each model is schematically designated by a combination of springs,
viscous and frictional elements, where viscous elements are not necessarily assumed to respond linearly. The ability of the
material to relax from above the threshold stress when applied deformation is stopped is indicated. The value of the stress
threshold is compared to that of the elastic modulus in order to estimate the deformation at the threshold. Models have been
labeled as “linear” when the deformation at the threshold is small, whether explicitely or implicitely. Some references are given
when such models have been used in the context of foams or other soft, disordered materials. In some instances (marked with
label “+ viscous”), an additional “dilute regime” viscous element was introduced in parallel with the other elements altogether.
This element is then indicated with dashed lines in the corresponding diagramme in the left-hand side column.

A. Burger model for weak applied stresses

The rheology of dry liquid foams under weak stresses
is well-described [9] by the Burger model, which con-
sists in a Maxwell group in series with a Kelvin-Voigt
group (see Table III). The elastic response (resulting
from both spring elements) corresponds to the deforma-
tion of the disordered network of inter-bubble films and
Plateau borders. The (short) transient (given by the
Kelvin-Voigt group) corresponds to the viscous stretch-
ing of films needed to reach the new equilibrium film
conformation. The (slow) creep (given by the Maxwell
viscous element) corresponds to the spontaneous T1 pro-
cesses (which are responsible for aging phenomena) being
slighlty biaised by the ambiant stress.

B. Models with non-zero threshold

Although well suited to describe the response of foams
at weak stresses, the Burger model does not incorporate
the finite plasticity threshold. Let us now review some
models that do incorporate the threshold, even though
they oversimplify the short-time response under weak

stresses.
More precisely, these models are designed to provide

most, if not all, of the following features: (i) a simple
elastic response to small stresses, (ii) yielding above a
stress threshold, and (iii) a viscous response at large,
constant deformation rates.

The first family of such models includes the simple
elasto-plastic model (a spring in series with a solid fric-
tion element), with an optional viscous element in paral-
lel, in our terms a “dilute regime viscous element” (see
Table III). The simple elasto-plastic model, as it does
not incorporate this dilute regime viscous element, fails
to capture feature (iii). This dilute regime viscous ele-
ment was incorporated by Marmottant and Graner [31]
to account for this feature, observed in foams.

The second family, also used in the context of foams
or rheologically similar materials (see Table III), includes
a viscous element (our “creep viscous element”) coupled
to the solid friction element, i.e., the Bingham model
(Takeshi and Sekimoto [33], and present work). An ad-
ditional “dilute regime viscous element” is sometimes
present in parallel (Saramito [32]).

It important to notice that any of the two kinds of
viscous elements discussed above is sufficient to capture
feature (iii). Thus, all the models discussed do capture
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this property, the only exception being the limit case of
the a pure, viscosity-free elasto-plastic model.

C. Each foam has its own rheological model

The reason why different models have been suggested
is that the rheology of a foam varies with several param-
eters, among which surface tension, bubble size, polydis-
persity, surfactant properties. Let us concentrate on the
effect of volume fraction and continuous phase viscosity,
see Figure 4.

1. Elasticity and volume fraction

At gas volume fractions below the close-packing
threshold, the foam flows and displays no elasticity.

Slightly above the threshold, elasticity is weak at small
stored deformations as bubbles move rather freely be-
tween neighbouring bubbles. Further above the thresh-
old, elasticity is stronger as bubbles come into closer con-
tact; this makes larger stored deformations accessible be-
fore plastic flow occurs.

At large gas volume fractions, the elastic modulus is
expected to be large even at small deformations, as the
bubbles are already in close contact.

2. Plastic threshold and volume fraction

In order for neighbouring bubbles to undergo a plas-
tic rearrangement (such as a T1 process), they need to
deform more importantly when the gas volume fraction
is larger. As a result, the plastic threshold σy is also
expected to be larger.

3. Large elastic deformations

The plasticity threshold of foams usually corresponds
to moderate deformations, that are beyond the small de-
formation regime. For instance, the threshold deforma-
tion for a polydisperse foam under shear in the dry limit
(volume fraction approaching unity) is on the order of 30
to 50% [34].

The ratio σy/G is an indication of whether elastic non-
linearities appear prior to the onset of plasticity. It is not
clear to us whether this ratio increases or decreases with
gas volume fraction.

4. Relaxation and volume fraction

Under stationary conditions, elasticity is inactive and
both viscous elements play similar roles. They can be
distinguished, however, in transient responses.

At moderate volume fractions, we expect any relative
motion of bubbles to generate viscous dissipation: the
“dilute regime” viscous element should dominate over the
“creep” viscous element.

At higher gas volume fractions, bubbles interact so in-
timately that most viscous dissipation can be expected to
arise during plastic events. In other words, the “creep”
viscous element should dominate over the “dilute regime”
viscous element.

The relative weight of the “creep” viscous element and
the “dilute regime” viscous element is apparent on Fig-
ure 4.

Their ratio also impacts the ability of the material
to relax when the applied deformation rate is suddenly
brought to zero. Indeed, in this respect, only the “creep”
viscous element is relevant. A model without such a
“creep” viscous element [31] does not display relaxation
in common situations (like oscillatory measurements)
where the deformation rate may reverse.

5. Viscous vs. plastic behaviour

Besides, the visosity of the continuous phase impacts
the relative importance of the viscous elements and the
solid friction element. This impacts the stationary re-
sponse of a foam, which typically changes from mainly
plastic to mainly viscous as the deformation rate is in-
creased. This transition is expected to occur at lower
deformation rates if the continuous phase viscosity is in-
creased.

D. Choice of the Bingham model

Let us now choose a specific model in order to develop
a fully tensorial version of it.

Except for sollicitations at very low deformation rates,
both the “dilute regime” viscous element and the “creep”
viscous element always impact the rheological response.
Nevertheless, the “dilute regime” viscous element merely
provides an additional contribution to the stress which
is not coupled to the structural evolution under imposed
applied deformation conditions. Thus, we simply drop it
in the remaining of this paper and focus on structurally
significant relaxation effects.

By contrast, we believe that the “creep” viscous ele-
ment captures essential features of the system in terms
of relaxation.

For these reasons, in the remaining part of this paper,
we focus on the Bingham model (see Fig. 5), which is
the simplest one to provide all three desired properties
together with relaxation. We hope that it may also apply
to a broad range of materials made of densely packed,
soft, essentially round objects.

We shall keep in mind that the parameters of the model
(G, σy and η on Fig. 5) will depend on such physical
quantities as the volume fraction and the viscosity of the
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FIG. 4: Tentative variation of foam rheology as a function
of its volume fraction and of the continuous phase viscosity.
Four instances of the local aspect of the foam are drawn in
the center of the figure, for low (light grey) or high (dark
grey) continuous phase viscosity and for dispersed (round) or
concentrated (faceted) bubbles. In each case, a tentative cor-
responding rheological model is schematically represented in
terms of one spring, one solid friction element, one “creep”
viscous element, and one “dilute regime” viscous element.
The strength of each element is coded as weak (dashed line),
medium (thin solid line) or strong (thick line).

continuous phase, as discussed in Section III C and illus-
trated by Fig. 4.

E. Behaviour of the Bingham model

σy

η

G

FIG. 5: With the Bingham model, from which we develop
a fully tensorial model in the present work, the response to
weak stresses is elastic (modulus G); by contrast, the response
to large stresses presents both a yield threshold (σy) and a
viscous component (η).

Let us now check (with its scalar version) that the

Bingham model (Figure 5) behaves as expected for this
class of materials. In this model, the evolution of stress
(for positive values of the stress[51]) is given by:

σ̇ = G D − (σ − σy)

η/G
θ[σ − σy ] (1)

where θ(x) = 1 when x ≥ 0 and θ(x) = 0 otherwise,
and where D is the applied deformation rate, i.e., the
symmetric part of the velocity gradient tensor:

D =
∇~v + ∇~vT

2
(2)

Equivalently, the evolution of the spring elongation ε =
σ/G is given by:

ε̇ = D − (ε − εy)

η/G
θ[ε − εy] (3)

where εy = σy/G.

Let us now consider successively three simple exper-
iments: (a) quasistatic imposed deformation; (b) con-
stant, imposed deformation rate; (c) constant, imposed
stress. The corresponding evolution of the main rheolog-
ical variables is schematically represented on Figure 6.

1. Quasistatic imposed deformation

Under low applied deformation, the stress depends lin-
early on deformation. This low deformation regime is
valid as long as the resulting stress is smaller than the
yield value σy . At larger deformations, the stress remains
constant and equal to σy, even under arbitrary large (but
constant) deformations.

The reason why foams and emulsions display such a
solid friction behaviour is that the T1 processes are very
similar to the relaxation of surface bumps involved in the
friction between rough solids: in both cases, part of the
mechanical work done by the imposed stress is dissipated
in discrete relaxation events which enable discrete defor-
mation steps. As a result of these events, the work is
proportional to the total deformation (rather than to the
velocity, as in a viscous fluid).

Under imposed deformation, supposing that the defor-
mation value is reached through a quasi-stationnary pro-
cess, the stress will remain constant as soon as the elastic
stress associated with a deformation increment is exactly
compensated by the stress relaxed through the plastic
processes. In this situation, even if the imposed defor-
mation can be arbitrarily large, the stored deformation
remains equal to the value that corresponds to the yield
stress: any extra applied deformation is relaxed through
T1 processes. The noisy aspect of the stress plateau re-
flects the disorder of the material — and hence, of the
distribution of available relaxation processes.
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2. Constant imposed deformation rate

Under constant applied deformation rate (see Fig-
ure 6b), the stress rises linearly at short times, as long
as it is smaller than σy. At later times, it eventually
stabilizes above the threshold, and its final value σ∞ in-
creases with the deformation rate (affinely in the Bing-
ham model).

3. Quasistatic imposed stress

Under constant applied stress, by contrast (see Fig-
ure 6c), the system displays two different behaviours.
At small stress values (σ < σy), it behaves elastically.
It switches to a flow behaviour at larger stress values
(σ > σy).

(a) (b) (c)

t

σ

ε

σy/G

σ

σy

ε

σ

t

ε̇

σy

ε̇

σy

σ∞

σ = σy

FIG. 6: Behaviour of the Bingham model (time t, deforma-
tion ε, deformation rate D, stress σ) in three series of ex-
periments: (a) quasistatic imposed deformation (with a zoom
on the stress fluctuations due to individual T1 processes and
corresponding elastic loading periods); (b) constant, imposed
deformation rate (top: value of plateau stress); (c) constant,
imposed stress.

F. Two-phase fluid

1. Evolution modes

Since a foam (or an emulsion) is a system with two
different phases, it has more deformation modes than a
monophasic fluid. Figure 7 depicts three isotropic modes
obtained from the initial configuration (0) via gas dif-
fusion (1), via an applied isotropic (2) or deviatoric (3)
stress, or via fluid permeation (4).

Note that the gas diffusion mode and the liquid perme-
ation mode are plastic, even for small magnitudes: they
are accompanied by dissipation and they lead to situ-
ations that are stable even in the absence of any extra
applied stress. Indeed, in situation (1), the extra amount
of gas occupies the extra volume. Similarly, in situation
(4), the amount of gas in the bubble and the bubble vol-
ume have remained constant, so the force balance within

stretching

deviatoricisotropic

stretching

gas diffusion permeation

liquid

(3)

(0)

(1)

(2)

(4)

FIG. 7: Four changes in the local structure of a foam. (0) Ini-
tial structure. (1) Structure obtained through diffusion of gas
from neighbouring regions into the bubble: the number of gas
molecules in the bubble (represented by black dots) has in-
creased, while the amount of liquid that surrounds the bubble
has not changed. (2) Structure obtained by isotropic stretch-
ing: the quantity of gas and the quantity of liquid have not
changed. This is not a stress-free conformation. (3) Structure
obtained by deviatoric stretching: the volume, the quantity of
gas and the quantity of liquid have not changed. This is not

a stress-free conformation. (4) Structure obtained by perme-
ation of liquid from the vicinity of the bubble towards other
places in the foam: the amount of liquid that surrounds the
bubble has decreased, while the number of gas molecules has
not changed. In the present work, only changes where both
phases are transported simultaneously, such as (0) → (2) and
(0) → (3), are considered.

the material has not been altered despite the loss of liq-
uid.

In the present work, for the sake of simplicity, we re-
strict to changes in the applied stress i.e., modes (0) →
(2) and (0) → (3). For small magnitudes, these two
modes are elastic: if the applied stress is removed, the
system returns to state (0). For larger amplitudes mode
(0) → (3) is plastic. Indeed, under large applied devia-
toric stresses, rearrangements of the liquid films between
bubbles (like the T1 processes described in Section VI A
below) lead to stress-free states that differ from the ini-
tial state, even though they may locally be very similar,
if not identical, to state (0).

2. Density, velocity and stress

With this choice of modes (0) → (2) and (0) → (3)
rather than modes (0) → (1) or (0) → (4), the weight
fraction of each phase remains constant, and the mate-
rial can safely be handled like a one-phase fluid, which
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substantially simplifies its description.
The overall material density, ρ, can be expressed in

terms of the contributions from both phases:

ρ = ϕ ρliq + (1 − ϕ) ρgas (4)

1

ρ
=

ϕw

ρliq
+

1 − ϕw

ρgas
(5)

where ϕ (resp., ϕw) is the volume fraction (resp., weight
fraction) of the liquid phase.

Because we ignore the gas diffusion and liquid perme-
ation modes depicted on Fig. 7, the velocity of the ma-
terial at larger length scales suffers no ambiguity, as it
is the same in the dispersed phase (bubbles or droplets)
and in the continuous (liquid) phase:

~v = 〈~vdispersedphase〉 = 〈~vcontinuousphase〉 (6)

As for the stress, it varies strongly at the microscopic
scale within such a structured medium as a foam: com-
pressive within a bubble and across the gas/liquid inter-
faces, tensile along these interfaces (surface tension), ten-
sile within the liquid Plateau borders and vertices. In the
present work, the stress variable σ represents the sum of
these contributions averaged at some larger length scale,
where such structural details are smoothed out:

σ = 〈σgas〉 +
〈
σgas/liq interf.

〉
+ 〈σliq〉 (7)

G. Compressibility

In Section III D, we motivated our choice of the Bing-
ham model to describe the rheological behaviour of an
emulsion or a foam. The above considerations, however,
were based essentially on scalar arguments.

One of the main properties that reflect the actual, ten-
sorial nature of deformations and stresses in the material
is compressibility, which is the ability of the material to
adapt its volume when the pressure (i.e., the isotropic
part of the stress) is changed (see mode (0) → (2) in
Fig. 7). A material is considered incompressible when the
elastic modulus involved for changes in volume is much
larger than the elastic modulus involved for deformations
at fixed volume. In practice, the deformations of such a
material therefore obey a fixed volume condition (mode
(0) → (3) in Fig. 7).

Among the materials we address in the present work,
emulsions can be considered incompressible for all prac-
tical purposes since both phases are liquid.

Foams can also be considered incompressible as long
as their constitutive bubbles are not too small. Indeed,
their compression modulus is then typically equal to the
pressure in the dispersed, gas phase, while their shear
modulus (and other moduli corresponding to deforma-
tions at constant volume) are on the order of the inter-
phase surface tension divided by the typical bubble ra-
dius. Hence, under atmospheric pressure and with usual

liquids, gases and surfactant molecules, foams with bub-
bles not smaller than 0.1 mm in size can safely be con-
sidered incompressible. By contrast, the compressibility
of foams made of micron-sized (or even smaller) bubbles
cannot be neglected.

As for bubble monolayers, when regarded as two-di-
mensional foams, their apparent compressibility depends
on the boundary conditions. When such a monolayer is
squeezed between two solid plates, it can be considered
incompressible under the same conditions concerning the
typical bubble size as a three-dimensional foam. In other
situations, a bubble monolayer may have at least one
free interface, for instance when it floats on a bath of the
liquid, continuous phase, and/or when its upper surface is
in contact with the atmosphere. In such a situation, each
bubble is free to slightly deform in the vertical direction
in order to better accomodate in-plane stresses. As a
result, the bubble monolayer may appear compressible
as seen from above, even though the total bubble volume
in fact remains essentially constant.

In the present work, in order to be able to describe the
rheology of all such systems, we consider a compressible
material (modes (0) → (2) and (0) → (3) both available
in Fig. 7). Nevertheless, specific properties or mathe-
matical formulations suitable for the incompressible case
(mode (0) → (3) only) are provided whenever appropri-
ate.

IV. GENERAL FORMULATION FOR

MATERIALS CAPABLE OF CREEP

A. Evolution of the stored deformation

After the scalar description given in Section III E we
now turn to a tensorial version of the model. In particu-
lar, instead of the scalar deformation ε, we will now use a
deformation tensor e, to be defined in detail in Section V.

As mentioned at the beginning of Section III, we are in-
terested in materials that display some elasticity and are
capable of creep (see Figure 3). The evolution of their
deformation can be decomposed into an elastic part and
a creeping part [35]. An example of such a decomposi-
tion was provided above for the (scalar) Bingham model,
see Eq. (3). More generally, the evolution of the stored
deformation can be written in the form:

ė = kinematics(e,∇~v) − creep(e, D), (8)

where D is the applied deformation rate as defined by
Eq. (2).

In the Bingham model, the creep term depends only
on the stored deformation e. In other models [31], it
additionally depends on D. This point will be discussed
later, in Section X B.
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dσ/dt

de/dte

FIG. 8: Evolution of stored deformation e and stress σ in the
elastic regime. The evolution de/dt of the stored deformation
e is purely kinematic, as it directly results from the convection
of the material the velocity gradient ∇~v. As for the stress σ,
it is related to the current stored deformation e through the
elastic law. As a result, by composition, the evolution dσ/dt
of the stress results from the expression of de/dt and from the
elastic law.

B. Stress evolution

For a material capable of creep (see Section IV A), once
the evolution of the stored deformation is known, the
stress evolves as prescribed by elasticity (see Figure 8).

Hence, in the elastic regime, since stored deformation
evolves purely kinematically, the stress evolution results
from the kinematics and elasticity alone. In the pres-
ence of plasticity, although the evolution of the stored
deformation includes an additional term (see Eq. 8), the
stress evolution is still deduced therefrom in the same
way, namely via elasticity.

C. Consistency of some commonly used stress

evolutions

It is common habit to express the stress evolution di-
rectly in the form

dσ

dt
= g(σ,∇~v), (9)

At first sight, this might seem exactly equivalent to the
evolution for the stored deformation as given by Eq. (8).

In fact, if no special care is taken, such an expression
does not usually correspond to the composition of the
stored deformation evolution with elasticity as illustrated
on Figure 8. The validity of such an evolution equation
for stress is then implicitely restricted to the domain of
small stored deformations, where elasticity is linear.

As an example, as shown in another work [36], general-
ized Maxwell models that involve the Gordon-Schowalter
derivative interpolation [32, 37] suffers such restrictions
(except for the special cases of upper and lower-convected
derivatives).

x

X

Ft+dtFt

∇~v dt

FIG. 9: Variation of the local material stored deformation (see
Fig. 2) that corresponds to an infinitesimal displacement field.
As described by Eq. (11), tensor F describes the transforma-
tion from the relaxed, reference state (sphere, generic point
~X) to the current state (ellipsoid, generic point ~x). F is cho-
sen to be a pure deformation, while ∇~v dt may include some
rotation. In this example, the evolution of tensor F is purely
kinematic (see Appendix A), as the material is supposed to
behave in a reversible, elastic manner here. See Fig. 28 for
details on the relaxed state.

V. RELAXED, REFERENCE STATE, AND

ELASTICITY

Let us now construct a consistent framework for the
material elasticity, with the help of Figure 9, which pic-
tures the evolution of the stored deformation due to an
applied flow.

A. Stored deformation

In such a plastic material, as pointed out above, there
is no point to define the deformation with respect to some
remote, initial reference state. At any time, however, ev-
ery region of the material is stretched (or not). In other
words, its conformation differs (or not) from the confor-
mation it would have in the absence of stress from the
neighbouring regions: the stress locally induces (via its
elasticity) a stored deformation, which can be visualized
in the form of an ellipse (or, more generally, of an ellip-
soid). To obtain the ellipse (see Figure 2), one needs to
cut out a piece of material, draw a circle on it while it is
thus relaxed, and put it back in place.

The circle (or, more generally, the sphere) in the re-
laxed state is described by:

~XT · ~X = R2, (10)

where ~X is a vector whose origin is the center of the
sphere, and whose end is a generic point on the sphere
(see Figure 9). The ellipsoid in the stretched material can
be described by some vector ~x, which depends linearly
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on ~X if the sphere radius R is infinitesimal, and can be
expressed in terms of the transformation from the relaxed
state to the current state:

~x = F · ~X (11)

The transformation from ~X to ~x (see Figure 9) can be
chosen as a pure deformation (see Fig. 2). Tensor F is
thus symmetric, and in its principal axes, we have:

F =






λ1 0 0

0 λ2 0

0 0 λ3




 (12)

where, in the case of an incompressible material, det F =
λ1λ2λ3 = 1.

The equation for the ellipsoid is obtained from equa-
tions (10) and (11):

~xT · F−2 · ~x = R2 (13)

B. Finger tensor and associated deformation

As mentioned in the caption of Figure 2, the relaxed
state local orientation can be chosen arbitrarily. This
choice thus must not have any incidence on the material
elasticity. We therefore need a variable that reflects local
deformation without being sensitive to local orientation.
A commonly used such variable is the Eulerian Finger
tensor B = F · FT. In the present case where the local
orientation is chosen such that F be a pure deformation
(i.e., represented by a symmetric tensor),

B = F 2 =






β1 0 0

0 β2 0

0 0 β3




 (14)

where βi = λ2
i . From the Finger tensor, we can also

construct a deformation[52] e = 1
2 (B − I):

e =






1
2 (β1 − 1) 0 0

0 1
2 (β2 − 1) 0

0 0 1
2 (β3 − 1)




 (15)

C. Evolution of the stored deformation

Let us now describe how a piece of material under
stress is further deformed when an infinitesimal displace-
ment field ~vdt is applied to the material. The correspond-
ing deformation,

∇~v dt, where (∇~v)ij =
∂vi

∂vj
, (16)

weakly deforms the ellipsoid (see Figure 9). As shown
in Appendix A, one can express the equation for the de-
formed ellipsoid and derive the evolution equation for

tensor B:

dB

dt
−∇~v · B − B · ∇~vT = 0 (17)

where d/dt = ∂/∂t + ~v · ∇ is the particulate derivative
and where the entire left-hand side is the upper-convected
objective derivative of B.

The evolution of the associated deformation, defined
by Eq. (15), also involves its upper-convected objective
derivative:

de

dt
−∇~v · e − e · ∇~vT = D, (18)

where D is the applied deformation rate (see Eq. 2).
Equations (17) and (18) provide the variation of the

stored deformation in the case of a purely elastic be-
haviour, i.e., in the absence of any plasticity. We shall
soon discuss the origin of plasticity and indicate how it
may enter such evolution equations. But let us first give
a clear formulation of how the stress relates to the stored
deformation.

D. Elasticity

Since the material is supposed isotropic, the princi-
pal axes of the stress coincide with those of the Fin-
ger tensor, and the stress can be expressed as a linear
combination[53] of three powers of B, for instance:

σ = a0 I + a1 B + a2 B2 (19)

where a0, a1 and a2 are scalar, isotropic functions of B
(i.e., of its scalar invariants). Equivalently, the deviatoric
(traceless) part of the stress

σ̄ = dev(σ) = σ − I

d
tr(σ) = σ + pI (20)

(where p is the pressure and d is the dimension of space)
can be expressed as

σ̄ = a1 dev(B) + a2 dev(B2) =






σ̄1 0 0

0 σ̄2 0

0 0 σ̄3




 (21)

and the pressure is given by:

p = −a0 −
a1

d
tr(B) − a2

d
tr(B2) (22)

More specifically, we will assume that the material is
hyperelastic, i.e., that the stress results from the differen-
tiation of an elastic potential E(B), here defined as being
an elastic energy per unit mass of the material. It can
then be expressed [38] as:

σ = 2ρ
dE

dB
· B (23)

σ̄ = 2ρ dev

(
dE

dB
· B

)

(24)
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with:

ρ
dE

dB
=

a0

2
B−1 +

a1

2
I +

a2

2
B (25)

In the case of an incompressible material (see Sec-
tion III G for examples), the stored deformation (ex-
pressed in terms of B or e) does not depend on pressure:
it only depends on the deviatoric part σ̄ of the stress.
Conversely, the deviatoric stress σ̄ can be expressed in
terms of B or e:

σ̄ = F(B) = G(e) (26)

In this incompressible limit, the pressure p (more pre-
cisely, its term a0) varies very strongly when det B de-
parts from unity. In practice, one usually considers that p
is not known explicitely: in a practical situation, it must
be obtained from the boundary conditions, while strictly
enforcing the constraint det B = 1.

VI. PLASTICITY

Now that we have described the evolution of the stored
deformation in the material (Eq. (17) or (18)) and the
material elasticity (Section V D), let us turn to the de-
scription of its plastic properties.

As mentioned earlier, a plastic term must be added to
Eq. (17) or (18) in order to reflect the deformation due
to topological events:

dB

dt
−∇~v · B − B · ∇~vT = −2 DB

p (27)

de

dt
−∇~v · e − e · ∇~vT = D − DB

p (28)

This equation is the tensorial version of the decomposi-
tion of the applied deformation into a kinematic part and
a creep part expressed by Eq. (8).

In the present section, we recall the microscopic origin
and discuss the mathematical properties of the plastic
term DB

p in the evolution equation.

A. Threshold for a single T1 process in two

dimensions

Figure 10 provides a two-dimensional illustration of
a T1 process in an emulsion or a foam. Four objects
(hereafter called quadruplet) are initially organized in a
diamond conformation. As compared to the initial con-
formation at rest (point R1), a weak applied stress in-
duces an elastic deformation, symbolized by a continu-
ous branch (thick line). Once the applied stress exceeds
a certain value (symbolized by σy on Fig. 10), the sys-
tem undergoes a discrete flip while the four objects swap
neighbours. This is the T1 process, symbolized by a jump
onto the other branch.

ζ

ξ

dξ − dζ

C2

R1

R2

C1

σy

−σy

Σξξ − Σζζ

FIG. 10: Schematized T1 process in two dimensions: confor-
mations of four neighbouring objects (quadruplet) subjected
to external forces. One pair of objects is oriented along axis ξ
and the other one along axis ζ (see inset). The stress principal
axes are assumed to be aligned with those of the quadruplet,
which therefore adopts a diamond configuration. Moreover,
the applied pressure is assumed to be constant. The dia-
gramme indicates how both pairs compare as for the (centre-
to-centre) inter-object distance (horizontal axis) and as for
the external stress that they undergo (vertical axis). By con-
vention, positive values of the stress Σξξ (resp. Σζζ) denote
traction on the pair that is oriented along axis ξ (resp. ζ).
A T1 process starts from the relaxed situation R1, denoted
by a black circle. Through compression along axis ξ (i.e.,
Σξξ < 0) or traction along ζ (Σζζ > 0) or through a com-
bination of both, the system follows branch 1 (thicker line)
towards the critical point C1. The T1 itself is the sudden
transition from C1 (on branch 1) to branch 2 (thinner line).
In the case of an incompressible material the quadruplet con-
formation depends only on Σξξ−Σζζ , while for a compressible
material it additionally depends on Σξξ + Σζζ = −p.

More precisely, let us suppose that the quadruplet is
symmetrical like that on Fig. 10, with axes ξ and ζ. The
stress orientation that is most favourable for the T1 pro-
cess to occur is that in which the stress axes are aligned
with those of the quadruplet. Thus, Fig. 10 is drawn
in terms of Σξξ and Σζζ , with the non-diagonal stress
component Σξζ being equal to zero.

The condition for the quadruplet to remain on branch 1
of Figure 10 can be expressed in the form:

feigen(Σ) ≤ 0 (29)

where feigen(Σ) = Σζζ − Σξξ − σy
T1 (30)

Here, σy is a real, positive number.
Note that we have chose to present this discussion in

terms of a critical yield stress. However, prior to creep,
as the system is elastic, stress and strain are in a one-to-
one correspondence. Hence, the ongoing discussion about
yield threshold could be equivalently formulated in terms
of a critical strain.
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When the pressure is varied or when the stress is not
aligned with the quadruplet (non-zero shear stress com-
ponent, i.e., Σξζ 6= 0 in the present, 2d case), it more
generally takes the form:

σy
T1 = σy

T1(p, Σξζ) (31)

σy
T1 is expected to increase with the applied pressure

p = −Σξξ −Σζζ . Indeed, increasing the pressure reduces
the typical object size, thus enhancing surface tension ef-
fects. It should therefore increase the stress threshold in
such surface tension sensitive systems as foams or emul-
sions.

In the case of an incompressible material, σy
T1 de-

pends only on Σξζ , not on p [54]. More generally (in
two and three dimensions), the stress threshold function
feigen depends only on the deviatoric part of the stress
and can be written in the form:

feigen(Σ) = geigen[dev(Σ)] (32)

As schematized on Fig. 11, let us now discuss how
the T1-threshold discussed above impacts the plasticity
threshold and the plastic flow.

B. Plasticity threshold

DB
p

B

FIG. 11: From T1 process to plastic flow. Left: the stress
needed for four bubbles to undergo a T1 process is illustrated
on Fig. 10. Centre: when a chunk of material contains a
number of quadruplets of bubbles with various orientations,
it may be postulated that the plasticity threshold corresponds
to the most favourably oriented quadruplet (this assumption
discards the effects of non-homogeneous deformations, and is
discussed in the main text). Right: the rate at which T1
processes occur in the chunk of material when it is subjected
to elongation B is expressed in the form of a plastic flow DB

p ,
where the material configuration at time t (dashed line) is
mapped onto configuration at time t + dt (full line) through
infinitesimal deformation DB

p dt.

Instead of a single T1-capable quadruplet (Fig. 11,
left), let us now consider a mesoscopic element of ma-
terial, containing quadruplets with many different orien-
tations (Fig. 11, centre).

If we neglect the effects of disorder (see next para-
graph for a short discussion), the plastic threshold for this
chunk of material is reached when the most favourably
oriented quadruplet reaches its own threshold:

f(σ) = max
α

feigen(σα)

where α runs over all orientations in space, and where σα

is the representation of tensor σ in the axes of a quadru-
plet oriented according to α. Note that the most sensitive
quadruplets are those oriented along the stress: the most
favourable orientation α coincides with that of the stress
tensor (possibly up to some permutation of the axes).

In the case of the particular, two-dimensional threshold
given by Eqns. (31) and (30), we obtain:

f(σ) = |σ(1) − σ(2)| − σy(p) (33)

where σ(1) and σ(2) are the eigenvalues of the stress tensor
and where p = −σ(1) − σ(2) is the pressure.

In the case of an incompressible material, the plas-
tic threshold depends on the sole deviatoric part of the
stress, like in Eq. (32):

f(σ) = max
α

geigen[dev(σα)]

= g[dev(σ)] (34)

C. Disorder and plasticity threshold

The local disorder of soft object positions and inter-
actions implies that the stress acting on a particular
quadruplet slightly differs from the ambient mesoscopic
stress, and the threshold of some of the quadruplets is
lower than expected for a particular orientation of the
applied stress.

As a result, the threshold value σy in Eq. (33) above
is in fact slightly lower than the microscopic value σy

T1

in Eq. (30). Similarly, expression (33) for f(σ) is slightly
overestimated: σα should in fact be understood as the
α-oriented representation of a locally disorder-enhanced
version of the mesoscopic stress σ.

D. Plastic deformation rate

In a continuum model, the rate at which topological
events occur is expressed as the plastic flow DB

p and de-
pends on the current state of the material.

In our model, the material state is entirely (see para-
graph II C) captured by the stress σ, or equivalently by
the material deformation (tensor B) via its elasticity (see
Eq. 24). As we have discussed in paragraph II C, an
additional description of the evolution of the structural
disorder of the material would be an important extra in-
gredient. However, in the absence of a widely accepted
microscopic foundation for any specific formal expression
of the disorder, we shall take the plastic flow as depend-
ing on the sole stress or stored deformation:

DB
p (σ) = h(B), (35)

where h is a tensorial function. Since the plastic flow
results from T1 events, whose principal axes almost (up
to the effect of disorder, see paragraph VI C) coincide
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with those of the stress (see paragraphs VI A and VI B),
function h is an isotropic function of B: it is such that
the principal axes of DB

p also coincide with those of B.
Thus, in the same axes as those of B:

DB
p =






δ1 0 0

0 δ2 0

0 0 δ3




 (36)

Equivalently, since powers of tensor B constitute a basis
for symmetric tensors that have the same principal axes,
DB

p can be decomposed for instance in the following way:

DB
p = b̄0 I + b̄1 B + b̄2 B2, (37)

where scalar functions b̄0(B), b̄1(B) and b̄2(B) depend
solely on the scalar invariants of tensor B. Let us em-
phasize the fact that in general, all three functions should
be non-zero above the plasticity threshold. Restricting
DB

p to be proportional to B, for instance, would mean
that all three directions would flow indepedently of each
other. This would be a very specific choice, certainly not
relevant for most materials. It would be the plastic equiv-
alent to taking a Poisson ratio ν = 0 in linear elasticity,
a property valid for only a restricted class of materials.

Function h (or equivalently eigenvalues δi in Eq. 36
or coefficients b̄0, b̄1 and b̄2 in Eq. 37), must also obey
some constraints based on physical grounds, which are
discussed in the next few paragraphs.

E. Incompressible plastic flow rate

D̃B
p dt

F (t)

locally locally

real

relaxedrelaxed

real

F (t + dt) B(t + dt)
elastic

plastic

B(t)
elastic

D dt = dB + DB
p dt

FIG. 12: Incompressibility and plasticity. The incompressible

evolution D̃B
p of the relaxed conformation implies the usual

property tr(D̃B
p ) = 0. Despite this, the corresponding flow

DB
p in real space is not traceless in general (tr(DB

p ) 6= 0): it is

related to D̃B
p through a finite transformation B, see Eq. (38)

for details.

Due to plasticity, the deformation between two real
configurations (see Figure 12) does not reflect solely the
increment dB

dt dt in stored elastic deformation, but also

the irreversible drift D̃B
p dt of the relaxed local configu-

ration, where the drift rate D̃B
p is related to the plastic

term DB
p defined by Eq. (35) through covariant transport

via tensor F :

D̃B
p = F−1 · DB

p · F−1 (38)

In the present work, we do not consider all possible
plastic deformation modes. Among the situations de-
picted on Fig. 7, conformations (0), (1) and (4) are equi-
librium situations (at least on time scales where the dis-
persed phase does not diffuse and where the continuous
phase does not permeate). Hence, modes (0) → (1) and
(0) → (4) correspond to plastic evolutions of the mate-
rial. In the present work, as stated in Section III F 1,
such evolutions that involve mutual diffusion between
both phases are not addressed.

The plastic evolutions of interest for us correspond to
stress-induced evolutions, where the relaxed conforma-
tion is always characterized by the same amount of mate-
rial per bubble or droplet (inside and around it). Among
the equilibrium conformations (0), (1) and (4), only con-
formation (0) is thus eligible.

We are thus interested in elastic deformations (combi-
nations of modes (0) → (2) and (0) → (3)) followed by
plastic rearrangements that bring the local conformation
back to (or at least towards) situation (0). In other words,
the local relaxed conformation is always locally similar to
situation (0), even though some bubbles or droplets may
have swapped positions.

In particular, the evolution of the local relaxed state
must not be accompanied by any change in volume. This
can be expressed through a condition on the drift rate

D̃B
p :

tr(D̃B
p ) = 0 (39)

Using Eq. (38), this can be expressed in terms of DB
p :

0 = tr(B−1 · DB
p ) (40)

=
δ1

β1
+

δ2

β2
+

δ3

β3

Expression (40) thus expresses incompressibility for the
plastic flow rate DB

p .
Note that in order to satisfy the incompressibility con-

dition given by Eq. (40), the plastic flow given by Eq. (37)
can be written in the form:

DB
p = b1 B · dev(B) + b2 B · dev(B2) (41)

Scalar functions b1 and b2, like b̄0, b̄1 and b̄2 in Eq. (37),
depend solely on the invariants of tensor B.

In this case, the coefficients of Eq. (37) can be obtained
through the relations:

b̄0 = b2 (42)

b̄1 = −b2

2
[tr(B)]2 +

b2

6
tr(B2) − b1

3
tr(B) (43)

b̄2 = b1 + b2 tr(B) (44)
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and are related to one another through:

b̄0

6

(
[tr(B)]2 − tr(B2)

)
+ b̄1 +

b̄2

3
tr(B) = 0 (45)

F. Elastic versus plastic incompressibility

At this point, it may be useful to precisely delineate
two different types of incompressibility, which can be dis-
cussed using Fig. 7.

As stated in paragraph VI E above, in the present work
we are only interested in locally relaxed states of type (0),
and the plastic flows we consider correspond to relaxed
conformations that evolve among such states of type (0),
and the density of the locally relaxed state is conserved:
the material is plastically incompressible.

By contrast, as mentioned in paragraph III F 1, the ac-
tual state of the system (with local stresses) may have a
local density that differs from that of the relaxed state,
due to evolutions of type (0) → (2). In other words, the
material is assumed to be compressible, that is: elasti-
cally compressible.[55]

It follows that with our assumptions, the material may
locally change volume (and the density ρ then departs
from its initial value ρ0) when the flow is not divergence-
free (∇ · ~v = trD 6= 0). Nevertheless, because the plastic
evolution is assumed incompressible, the material returns
to its initial density ρ0 as soon as the local stress vanishes.

For some systems, elastic compressibility is negligible
and the material can be considered elastically incom-
pressible, as explained in paragraph III G. The material
then locally never changes volume, and the flow is then
divergence-free (∇ · ~v = trD = 0).

G. Thermodynamic constraints

The total work developed by the stress in the material
is given by tr(σ · D). In the present system, the internal
energy U is purely elastic: U = E. The first principle of
thermodynamics can thus be written as

ρ dE = tr(σ · D) dt + δQ, (46)

where δQ is the heat uptake per unit volume.
Besides, the dissipated power Pdissip per unit volume

results from viscosity, especially during the relaxation of
individual T1 processes. It constitutes the only source of
entropy in the system, which is non-negative according
to the second principle:

Pdissip = T dScreated ≥ 0 (47)

It also constitutes the only source of heat in the system.
If we assume that the system remains at a constant tem-
perature, this condition can be written as:

Pdissip dt + δQ = 0 (48)

The Clausius-Duhem inequality is readily derived from
the above equations:

tr(σ · D) − ρ
dE

dt
≥ 0 (49)

Let us express this inequality in a different way.
From Eq. (23), we get:

tr(σ · D) = 2ρ tr

(

B · dE

dB
· D

)

(50)

We also have:

dE

dt
= tr

(
dE

dB
· dB

dt

)

(51)

where dB/dt is given by Eq. (27). Hence, from Eqs. (49),
(50) and (51), we obtain the constraint on the plastic flow
DB

p that corresponds to the Clausius-Duhem inequality:

Pdissip = 2ρ tr

(

DB
p · dE

dB

)

≥ 0 (52)

This inequality may seem familiar. In fact, it is the exten-
sion of the well-known inequality to the regime of large
deformations. The role of this thermodynamic inequality
is to provide a mathematical constraint on the form of
the plasticity function DB

p (B).

H. Plastic deformation rate: a summary

In the last few paragraphs, we showed that the plastic
deformation rate must obey constraints that express the
fact that:

1. the plastic flow depends only on the stress, or
equivalently on the stored deformation (see Eqs. 35
or 37), up to the caveat raised in Section II C;

2. if applicable, the plastic flow is incompressible (see
Eqs. 40 or 41);

3. the associated dissipation is positive (see Eq. 52).

VII. COMPLETE, CONTINUOUS MODEL

In this brief section, let us discuss how the constitutive
equation derived in the present work can be inserted into
a set of equations and provide a complete, continuous
model.

Keeping in mind the considerations of paragraph III F,
let us now close the evolution equation of the system
(Eqs. 27 or 28)

dB

dt
−∇~v · B − B · ∇~vT = −2 DB

p (53)
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One needs the elastic law (Eq. 19 or 23)

σ = 2 ρ
dE

dB
· B (54)

and the usual force balance equation

∇ · σ + ρ ~f = ρ
d~v

dt
, (55)

where ~f represents external forces per unit mass. The
evolution of the density ρ obeys the usual mass conser-
vation equation

∂ρ

∂t
+ ∇ · (ρ ~v) =

dρ

dt
+ ρ trD = 0 (56)

We provide later (see Eq. 94) a version of this equation
that includes liquid permeation.

Let us now mention the special case of an initially non-
dilated material, and discuss dissipation at weak applied
stresses.

A. Initially non-dilated material

Let us assume that the material initially has a uniform
density i.e., with stored deformation

ρ(t0, ~r) = ρ0 (57)

and that it verifies everywhere

det B(t0, ~r) = 1, (58)

In such a case, our assumptions stated in para-
graph III F 1 imply that the material density is related
to the determinant of tensor B in a very simply way. In-
deed, the derivation shown in Appendix B implies that
at any later time, throughout the sample:

ρ =
ρ0√
det B

(59)

With such assumptions, Eq. (59) can therefore be used
to replace ρ within Eq. (55), and Eq. (56) is then not
useful any more.

B. Viscous losses under weak stresses

The Bingham model addressed in the present work re-
duces to a simple elastic system when subjected to weak
stresses (below the yield stress). As a result, vibrations
may be present in the material, at arbitrary high frequen-
cies. Such vibrations may be undesirable. Not only do
they make numerical simulations of the above system of
equations more complicated, if not impossible, but they
do not faithfully reflect the damping observed in real ma-
terials. This problem does not arise under large stresses,
as the plastic flow rate introduces dissipation.

One of the simplest ways to introduce some dissipation
at weak stresses is to add a viscous term to the stress.
Eq. (54) thus becomes:

σ = 2 ρ
dE

dB
· B + V (D, B) (60)

where the viscous term V is a symmetric tensor which
depends linearly[56] on the applied deformation rate D.
As the material is locally anisotropic due to the stored
deformation, V additionally depends on B.

The general form of function V (D, B) is a sum of
terms whose principal axes are those of tensor B:

l1(B) tr(l2(B) · D) (61)

and of terms that depend tensorially on D:

m1(B) · D · m2(B) + m2(B) · D · m1(B) (62)

Here, all functions li and mi are isotropic scalar functions
of tensor B.

If we neglect any effect of the material deformation, we
may simply add a linear viscous term, and Eq. (54) then
becomes:

σ = 2 ρ
dE

dB
· B + η D (63)

VIII. HOMOGENEOUS CONSTANT SHEAR

FLOW: ONE EXAMPLE

Let us now use the constitutive Eq. (27) to obtain the
evolution of the system in a very common type of flow:
a shear flow at a constant shear rate γ̇ starting at time
t = 0. For non-homogeneous flows, the constitutive equa-
tion must be combined with the classical mechanics equa-
tions for continuum media, as mentioned in Section VII.
Here, for simplicity, we assume that the material is ho-
mogeneous and incompressible (uniform density ρ0 at all
times) and that the flow remains homogeneous: no shear-
banding, etc.

A typical result from Eq. (27), coupled with an elastic
law (here incompressible, see Eq. 21) is the shear stress
as a function of the shear deformation γ since time t = 0
when shear started. An example of such a mechanical
response (with parameters chosen as described in Sec-
tion VIII B) is provided on Fig. 13. The equations of our
model provide:

1. the material response in its elastic state (first part
of the curves on Fig. 13);

2. the threshold that marks the onset of plasticity
(point where curves split apart depending on the
shear rate);

3. the transient response that results from plasticity
(second part of the curves);

4. the stationary response, as a function of the applied
shear rate γ̇ (see Fig. 15).
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FIG. 13: Shear stress σ̄12 in the course of a shear experiment,
as a function of the shear deformation γ, for three different
shear rate values γ̇. The elasticity and plasticity terms are
chosen as described in Section VIIIB. The response increases
during the initial period of time, when the material deforms
purely elastically (as expected, the response is then indepen-
dent of the shear rate). The increase then levels off once the
plasticity threshold has been reached, and saturates at a sta-
tionary value. For a plot of the final, stationary value on the
applied shear rate, see Fig. 15.
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FIG. 14: Dissipation Pdissip per unit volume and injected
power σ̄12 γ̇ in the course of a shear experiment, as a function
of the shear deformation γ. The applied shear rate is γ̇ = 8.
The elasticity and plasticity terms are chosen as described in
Section VIIIB. Note that there is no dissipation (Pdissip = 0)
in the elastic regime, prior to the onset of plasticity. Part
of the injected work is not dissipated (non-zero surface area
between both curves) and corresponds to the elastic energy
stored in the material.

A. Method

Let us recall the evolution equation (27) for the mate-
rial deformation (tensor B):

dB

dt
−∇~v · B − B · ∇~vT = −2 DB

p (64)

This equation must be understood as written in a basis
attached to the (fixed) laboratory frame. Let x be the
axis of velocity, y the axis of the velocity gradient and z
the vorticity axis. The symmetry of the shear flow implies
that the corresponding material deformation B has two
principal axes within the xy plane (in directions X and Y
yet to be determined, see Fig. 16) and one principal axis
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FIG. 15: Shear stress σ̄12 and dissipation power Pdissip per
unit volume in the stationary regime, as a function of the
shear rate γ̇. The elasticity and plasticity terms are chosen
as described in Section VIIIB.
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FIG. 16: The homogeneous shear flow imposed in basis xyz
attached to the laboratory (z being the direction of vorticity)
causes the principal axes of tensor B to tilt (basis XY z) with
respect to the shear. The lengths of the ellipse axes represent
the magnitudes of eigenvalues β1 and β2.

along z. Note that DB
p and σ̄ also has the same principal

axes X , Y and z as B (see Eqs. 23 and 41).
As shown in Appendix C 1, Eq. (64) provides a system

of differential equations for β1, β2 and for angle θ between
axes x and y (see Fig. 16):

u = cos(2θ) (65)

dβ1

dt
= γ̇β1

√

1 − u2 − 2δ1(β1, β2) (66)

dβ2

dt
= −γ̇β2

√

1 − u2 − 2δ2(β1, β2) (67)

du

dt
= γ̇

√

1 − u2

{

1 − u
β1 + β2

β1 − β2

}

(68)

β3 =
1

β1β2
(69)

where Eq. (69) results from the assumed material incom-
presibility.

The above equations provide the evolution of the ma-
terial deformation (tensor B) from the initial situation at
rest[57] to the onset of plasticity, the plastic transient and
the final, stationary state (see Section C 4 of Appendix).

Once the evolution of tensor B is known, the stress is
obtained through Eq. (24).

As for dissipation, given by Eq. (52), it involves both
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the gradient of the elastic energy (see Eq. 25) and the
plastic deformation rate given by Eq. (41).

The dissipation per unit volume can now be expressed
as:

Pdissip = 2ρ tr

(

DB
p · dE

dB

)

(70)

= 3a1b̄0

+(a2b̄0 + a1b̄1) tr(B)

+(a1b̄2 + a2b̄1) tr(B2)

+a2b̄2 tr(B3) (71)

When DB
p is known explicitely, it can be calculated more

directly:

Pdissip = (a1 + a2β1) δ1

+ (a1 + a2β2) δ2

+ (a1 + a2β3) δ3 (72)

Figure 14 displays both the injected power, σ̄12 γ̇, and
the dissipated power, Pdissip, in the course of a shear ex-
periment. Notice that as long as the material remains
in the elastic regime, no dissipation occurs. The in-
jected power is being stored entirely as elastic energy.
As dissipation starts, an overshoot of dissipated power is
observed. Asymptotically, both quantities converge to-
wards the same value while the elastic deformation and
energy of the material reach their stationary values.

B. Chosen elasticity, threshold and plastic flow

Let us choose a very common (Mooney-Rivlin) type of
incompressible elasticity, which has been shown to suit-
ably approximate the non-linear elasticity of foams [39,
40]. The corresponding elastic energy [38] can be ex-
pressed as:

ρ0 E =
k1

2
(IB − 3) +

k2

2
(IIB − 3) (73)

where

IB = tr(B) (74)

IIB =
1

2
[tr2(B) − tr(B2)] = tr(B−1) (75)

Correspondingly, the coefficients of Eq. (21) can be ex-
pressed as:

a1 = k1 + k2 IB (76)

a2 = −k2 (77)

As in refs. [39, 40], we choose the values of k1 and k2 in
terms of the shear modulus G as:

k1 =
1

7
G (78)

k2 =
6

7
G (79)

Note that in Section IX, we explore other values for k1

and k2 (still in the framework of a Mooney-Rivlin elas-
ticity).

For the plastic deformation rate DB
p , as expressed by

Eq. (41) so as to obey plastic incompressibility, we choose
the following coefficient values:

b1 = (trB − 4) θ(trB − 4) (80)

b2 = 0 (81)

where θ(x) = 1 when x ≥ 0 and θ(x) = 0 otherwise.
Note that in Section IX, we explore the case b2 = b1 for
comparison.

This choice implies, in particular, that the plasticity
threshold corresponds to the following condition:

tr(B − 4) = 0 (82)

We now discuss qualitatively the evolution of tensor B.
We then show the effects of the material elasticity and
discuss the corresponding rheological response.

C. Three-dimensional evolution of the material

stored deformation

With the choices made in Paragraph VIII B for the ma-
terial elasticity and plasticity, the evolution of the system
given by Eqs. (65)–(69) is depicted on Fig. (17). For three
different values of the shear rate γ̇, it represents the tra-
jectory of the material stored deformation as for β1 and
β2, successively in the elastic regime and in the plastic
regime. The plasticity threshold, given by Eq. (82) is also
represented, as well as the locus of the stationary states.

In the elastic regime, the form of Eqs. (C2)–(C3) imply
that β3 remains equal to its initial value, β3 = 1, i.e.,
that the product β1β2 remains equal to unity. This can
indeed be checked from Eqs. (C11)–(C12), and it reflects
the fact that as long as no plastic events have occured
in the material, the absence of material deformation in
direction z (planar shear in the x-y plane, see Eq. C1)
implies that the stored deformation is not modified in
direction z.

In other words, in the elastic regime, the fact that no
plasticity occurs in direction z (i.e., δ3 = 0) implies that
in the same direction, the stored deformation remains
constant, i.e., β3 = const.

Conversely, in the stationary regime, β3 remains con-
stant (like most other quantities) and this imposes that
no plasticity occurs in direction z, i.e., δ3 = 0.

Meanwhile, in the transient regime, the stored defor-
mation β3 in direction z has evolved from its initial value
towards its new, stationary value, despite the absence of
any velocity gradient in this direction. This is made pos-
sible by the plastic events (δ3 6= 0) which allow internal
relaxation within the material even in the absence of any
flow in this direction.
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FIG. 19: Orientation of the stored elastic deformation in the
course of an experiment as a function of the shear deformation
γ. The applied shear rate is γ̇ = 8.

D. Shear thinning

The stationary shear stress is represented on Fig. 15 as
a function of the shear rate γ̇. Above the yield stress, the
stress increases when γ̇ is increased, as expected. Notice
that it increases in a subliminear way. We believe that

the main reason for this shear-thinning behaviour could
be the fact that the plastic flow rate we chose, as ex-
pressed in termes B, is cubic rather than linear for large
stored deformations:

DB
p = (trB − 4) θ(trB − 4)

[

B2 − B

3
tr(B)

]

(83)

where, again, θ(x) = 1 when x ≥ 0 and θ(x) = 0 other-
wise.

E. Normal stress differences

The stress tensor σ̄ is obtained from the Finger tensor
B through Eq. (21). In the case of a homogeneous shear
flow (see above), it can be expressed not only in the XY z
basis (Eq. 21) but also in the xyz basis associated with
the flow:

σ̄ =






σ̄11 σ̄12 0

σ̄12 σ̄22 0

0 0 σ̄3






=






c2σ̄1 + s2σ̄2 cs(σ̄1 − σ̄2) 0

cs(σ̄1 − σ̄2) s2σ̄1 + c2σ̄2 0

0 0 σ̄3




 (84)

where s (resp., c) denotes the sine (resp., the cosine)
of angle θ between axes x and X (see Fig. 16).

The first and second normal stress difference can be
expressed as:

N1 ≡ σ̄11 − σ̄22

= (σ̄1 − σ̄2)u (85)

N2 ≡ σ̄22 − σ̄3

=
1 − u

2
(σ̄1 − σ̄3) +

1 + u

2
(σ̄2 − σ̄3) (86)

with σ̄i given by Eq. (21):

σ̄i − σ̄j = a1 (βi − βj) + a2 (β2
i − β2

j ) (87)

Hence, for instance:

N1 = u
[
a1(β1 − β2) + a2(β

2
1 − β2

2)
]

(88)

N2 =
a1

2

[

β1 + β2 −
2

β1β2
+ u(β2 − β1)

]

+
a2

2

[

β2
1 + β2

2 − 2

(β1β2)2
+ u(β2

2 − β2
1)

]

(89)

In the case of Mooney-Rivlin, coefficients a1 and a2 are
given by Eq. (76) and the normal stress differences can
be expressed as:

N1 = u(β1 − β2)

[

k1 +
k2

β1β2

]

(90)

N2 =
k1

2

[

β1 + β2 −
2

β1β2
+ u(β2 − β1)

]

+
k2

2

[

2β1β2 −
β1 + β2

β1β2
+ u

β2 − β1

β1β2

]

(91)
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FIG. 20: Shear stress σ̄12, deviatoric stress σ̄3 in the vortic-
ity direction and normal stress differences N1 and N2 in the
course of an experiment as a function of the shear deformation
γ, for γ̇ = 8.
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FIG. 21: Shear stress σ̄12, deviatoric stress σ̄3 in the vortic-
ity direction and normal stress differences N1 and N2 in the
stationary regime, as a function of the shear rate γ̇.

F. Discussion of the stress response

Let us now comment briefly on the results presented
on Fig. 20.

Normal stress differences N1 and N2 increase gently
and monotonically to reach their stationary values.

The material is under traction in the direction of vor-
ticity (σ̄3 > 0), as well as in the direction of β1, while it
is under compression in the direction of β2 (not shown).
This is consistent with the fact that it is stretched in the
direction of vorticity (β3 > 1).

The salient feature of these results is that the shear
stress σ̄12 presents an overshoot during its transient, a
behaviour which is intrinsically unstable in a homoge-
neous material, and could trigger flow localization. Such
an overshoot for the shear stress has been observed in
sheared foams [41].

IX. IMPACT OF ELASTICITY AND

PLASTICITY ON THE STRESS RESPONSE

Our dynamical equation was formulated in terms of
tensor B (see Eq. 64). From the resulting evolution of B,

when can then derive the stress evolution using the elastic
law (Eq. 19). In this section, we explore how the choice
for the elasticity and the plasticity impact the stress re-
sponse.

A. Impact of elasticity

Note that in this paragraph the deformation history
will be the same in all cases, and only the stress in the
material will differ. Just like in Section VIII, we restrict
ourselves to a Mooney-Rivlin type of elasticity, which is
complex enough for illustrative purposes, but which has
no specific properties with regards to our problem.

The elasticity of dry foams has been shown [39, 40]
to be well captured by such a Mooney-Rivlin elasticity,
using parameter values k1 = 1/7 and k2 = 6/7. These
values correspond to Figs. 13–21 where we took the mod-
ulus value G = 1.

Exploring different values for k1 and k2 (still with
G = 1), we show in Fig. 22 the time evolution of shear
stress, stress in the vorticity direction and normal stress
differences. The mechanical behaviour remains similar
in all these cases. In particular, the shear stress al-
ways presents an overshoot. This overshoot is more pro-
nounced for k1 = 1 and k2 = 0. In all cases, the normal
stress differences do not present any overshoot and reach
monotonically their stationary values. As for the stress
along the vorticity direction, It presents an undershoot
when k1 > k2, and its stationary value becomes nega-
tive at some point between the situation in the center of
Fig. 22 (k1 = k2 = 1/2) and the situation on the right-
hand side (k1 = 1 and k2 = 0).

B. Impact of plasticity

Let us now briefly explore the impact of the plastic de-
formation rate DB

p (B) through the influence of parameter
b2 in Eq. (41).

In Fig. 23, we take b1 = (trB − 4)θ(trB − 4) like in
Figs. 13–21. We then observe the (unspectacular) effect
of choosing b2 = b1 rather than b2 = 0. Note that in
this case, as opposed to the role of elasticity in para-
graph IX A, the time evolution of tensor B is affected by
the choice of the plastic law.

C. Discussion

In paragraphs IX A and IX B above, we illustrated the
fact that the stress response of the material can be altered
through a change in the material elasticity and plasticity
alone.

Our approach emphasizes the fact that the choice of
the convective derivative is somewhat arbitrary. A ma-
terial is often considered as rather “upper-convected” or
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rather “lower-convected” because its stress evolution fol-
lows more closely the eponymous convective derivative.
In fact, always choosing the upper-convected derivative
(and tensor B for a measure of the deformation) would
be equivalent, provided the elastic and plastic laws be
suitably adjusted. A forthcoming paper [36] will discuss
in detail the consistency of commonly used rheological
laws (see Section IV C above) and explore these issues
more in depth.

X. CONCLUSION AND PERSPECTIVES

In order to describe the rheological behaviour of foams
and emulsions (and potentially other materials), we have
developped a continuous framework to describe the evo-
lution of the stored deformation tensor. It includes elas-
ticity, up to the large deformations commonly encoun-
tered in such systems, and plasticity.

Within this framework, we showed that it is possible
to play with various expressions for the elasticity and the
plasticity. We hope that it is thus possible to adequately
describe the rheological behaviour of a large range of
foams and emulsions with dispersed phase volume frac-
tion close to unity.

In less concentrated foams and emulsions, volume frac-
tion should be added as an extra field to account for os-
motic compressibility of the dispersed phase. The issue
whether the model may be adapted to describe usual,
aging complex fluids, is left for future investigations.

As mentioned in paragraph III A, the Burger model
(see Fig. 24) describes the response of dry foams un-
der weak stresses adequately. By contrast, the Bingham
model (used as a basis for our formulation, see Fig. 25)
captures the large stress behaviour. It would be interest-
ing to combine both models, as represented in Fig. 26.
We did not elaborate on this combined model, as it is
technically more complex than our Bingham-like model,
and we did not want to focus on short timescales or weak
stresses, where both models have differing behaviours.

A. Determining the elasticity from experiments

Beyond all these rheological and phenomenological
models, it is important to make the connection with the
microscopic scale.

From this point of view, the main issue is the definition
of the deformation in the material. In the present work,
deformation is built on a thought experiment: we cut out
a piece of material at sufficiently large a length scale for
disorder to be smoothed out.

By contrast, a way to define deformation was intro-
duced by Aubouy et al. [29] for all systems in which the
individual objects and their mutual contacts are experi-
mentally accessible, such as 2D foams and emulsions (and
3D foams and emulsions when tomography will have be-
come a routine technique for imaging such systems on

rheologically relevant timescales). They first construct
a symmetric tensor M from the centre-to-centre vec-
tors [42] for pairs of first neighbours. This tensor is a
dilation (proportional to the unit tensor when the mate-
rial is at rest). They then define the deformation U as
the logarithm of M .

One might think that their tensor U is just one de-
formation among many others. But with respect to the
particular systems that they consider (2D foams in the
dry limit under quasistatic deformation), it plays a very
special role: it is the deformation for which the elastic
law remains linear up to large deformations [30] (in fact,
up to the onset of plasticity). This result confers some
weight to the initial, scale-independence arguments [29]
for the choice of the logarithm as the link between their
texture (dilation) tensor M and their deformation mea-
sure U = log M .

In our perspective, as we will show in a more elabo-
rate manner elsewhere [36], the choice of a deformation
measure corresponds to a choice for the convective deriva-
tive. The deformation measure U [29, 42] could therefore
lead directly to a continuum formalism well-suited for (at
least) two-dimensional foams in the elastic regime.

B. Plasticity and mechanical noise

In the present work, the plastic deformation rate DB
p

was assumed to depend only on the local stress via the
local stored deformation, see Eq. (35).

This dependence is sufficient to account for the non-
local elastic effects observed in foams [20, 21], and men-
tioned in paragraph I C. Indeed, when plastic events oc-
cur (non-zero DB

p ), this impacts the local stored defor-
mation via Eq. (27). This, in turn, affects the stress due
to elasticity (Eq. 23). Equation (55) then implies that
the stress is modified in the surrounding material.

Thus, within this continuum model in which the plastic
deformation rate depends solely on the stored deforma-
tion (or stress), plasticity at one location alters the stress
(and the stored deformation) elsewhere in the material,
thus possibly contributing to triggering plasticity there.

Nevertheless, stress may not be the only factor that
determines the rate at which T1 processes occur. For in-
stance, in a recent work by Marmottant and Graner [31],
the plastic deformation rate (DB

p in our notation) is pro-
portional to the total deformation rate D when it has
the same sign as the stored deformation[58]. Inciden-
tally, such a choice implies that relaxation[59] cannot
take place in the system.

The fact that DB
p depends on D can be interpreted

physically as the fact that mechanical noise may well help
triggering plastic events.

As an alternative implementation of the impact of me-
chanical noise, one might take the plastic deformation
rate DB

p as slightly enhanced in the presence of non-zero
total deformation rate (although mainly determined by
the stored deformation). For instance, if we assume that
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FIG. 22: Impact of elasticity on the stress response. The shear stress σ̄12, the deviatoric stress σ̄3 in the vorticity direction
and the normal stress differences N1 and N2 are plotted as a function of the shear deformation γ, for a shear rate γ̇ = 8.
Mooney-Rivlin elasticity is chosen with different parameter values. Left: k1 = 0 and k2 = 1. Center: k1 = 1/2 and k2 = 1/2.
Right: k1 = 1 and k2 = 0.
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FIG. 23: Impact of plasticity on the stress response. The shear stress σ̄12, the deviatoric stress σ̄3 in the vorticity direction
and the normal stress differences N1 and N2 are plotted as a function of the shear deformation γ, for a shear rate γ̇ = 8.
Mooney-Rivlin elasticity is chosen with k1 = 0 and k2 = 1. The plastic deformation rate is taken as expressed by Eq. (41) with
b1 = (trB − 4)θ(trB − 4). Parameter b2 is varied. Left: b2 = 0. Right: b2 = b1.

the mechanical noise is isotropic, we may include a multi-
plicative factor of the form (1 + |D2| τ2) into DB

p , where
plasticity would be significantly enhanced for deforma-
tion rates around and above τ−1.

We did not enter such subtelties in the present work,
and restricted our study to a purely stress-dependent
plastic deformation rate, as expressed by Eq. (35).

C. Plasticity and fluidity or fragility

In the present model, the evolution of the stored de-
formation is given by Eq. (27):

dB

dt
−∇~v · B − B · ∇~vT = −2 DB

p

In the present work, the plastic flow rate DB
p was as-

sumed to depend solely on the stored deformation B:

DB
p = DB

p (B) (92)

More generally, as mentioned in paragraph X B above,
one can include the effect of, say, mechanical noise by
including a dependence of DB

p on the applied deformation
rate D:

DB
p = DB

p (B, D) (93)

In reality, the plastic flow rate DB
p may well depend

on yet other variables than B and D.
A few years ago, in their study of sheared two-

dimensional foams between two solid plates, Kabla and
Debrégeas noticed that T1 events appeared preferen-
tially in regions where the stress tensor was most dis-
ordered [21].

Very recently, Goyon and coworkers [43] studied the
flow of three-dimensional emulsions in milli-fluidic chan-
nels. Because of the large aspect ratio of the channel
section, they were able to minimize edge effects and to
obtain two-dimensional velocity profiles for the station-
ary flow of such emulsions between two walls.

One of their key results is that even though they are
able to measure locally the relation between the shear
stress (which they derive from the applied pressure) and
the shear rate (which they observe), they do not obtain a
single mastercurve σ = σ(γ̇) when changing the applied
pressure.

By contrast, Eq. (27), combined with Eq. (93), would
predict, in stationary flow, that the stored deformation
could be expressed in terms of the velocity gradient, B =
B(∇~v), and similarly for the stress, via elasticity. Hence,
in the present situation, they would predict:

σ = σ(γ̇)

The observed behaviour [43] contradicts this predic-
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FIG. 24: Burger model: schematic diagramme (left) and plot (right) of plastic flow as a function of tensor B, in the stationary
regime and under small applied streses. In Burger’s model, suitable for foams under low applied stresses (see paragraph IIIA),
the plastic flow increases with the applied stress. If we neglect the short time scale response provided by the Voigt-Kelvin
element (spring and viscous element in parallel), then this increase is weak and linear, as determined by the viscous element in
series.

DB
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FIG. 25: Bingham model: schematic diagramme (left) and plot (right) of plastic flow as a function of tensor B, in the stationary
regime. In a model based on Bingham’s model, such as that developed in the present work, the plastic flow is zero up to a
certain stress (yield stress). Beyond the yield stress, it increases (linearly with the applied stress).

tion. It thus shows that the plastic flow rate must de-
pend on additional variables. The observations have been
shown [43] to be compatible with the existence of diffu-
sive, scalar quantity Γ, which they call fluidity.

It will be a challenge, in future studies, to identify
the microscopic origin of such a quantity, which should
be truly tensorial in more general situations than plane
shear. In the quasistatic limit, fluidity should probably
be related to the frozen stress disorder identified by Kabla
and Debrégeas [21].

D. Liquid permeation

Permeation of the continuous, liquid phase through the
network of channels formed by the bubbles or droplets
may result from gravity, due to the density mismatch
between both phases, and is called drainage. Even in
the absence of gravity, permeation may occur when the
volume fraction of both phases is not uniform throughout
the foam. Indeed, as depicted on Fig. 27, the pressure in
the liquid phase is lower in dryer regions than in wetter
regions for otherwise identical pressure values in the gas
bubbles. As a result, the liquid permeates from wetter
regions towards dryer regions.

Since vector field ~v represents the bubble (or droplet)
velocity while the material density ρ includes the mass of
the liquid phase (see paragraph III F), the density con-
servation Eq. (56) must include a term that reflects per-
meation.

This effect can be incorporated into Eq. (56) in a rough
manner by adding a diffusion term:

∂ρ

∂t
+ ∇ · (ρ ~v) = Dpermeation ∆ρ (94)

where the diffusion coefficient Dpermeation depends on the
geometrical dimensions of the Plateau borders between
foam vertices (which depend mainly on the volume frac-
tion ϕ) but also on the hydrodynamic boundary condi-
tions along the Plateau borders (which depend on vari-
ous preparation conditions such as surfactant nature and
concentration, salt, etc, in a very non-trivial manner).

E. Towards dilatancy

Eq. (94) above is only the first step towards a model
that would include other effects known to exist in foams
and emulsions. Indeed, relaxing the assumptions made
in paragraph III F 1 would enable us to include an im-
portant phenomenon which is well known in the context
of granular media and which has been recently demon-
strated in liquid foams [44], namely dilatancy. When
deformed, the local conformation of the foam, as schema-
tized on Fig. 7, tends to go from conformation (0) to con-
formation (4). The physical origin of such a phenomenon
is not clearly understood yet. It might be related to the
thickening of films [45] or Plateau borders [45, 46] ob-
served when a Plateau border glides at a solid wall.

Together with the identification of the microscopic ori-
gin of fluidity (see paragraph X C above), including the
effect of dilatancy will thus be yet another challenge in
the ever-bewildering rheology of foams and emulsions.
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FIG. 26: Combined Bingham-Burger model: schematic diagramme (left) and plot (right) of plastic flow as a function of tensor
B, in the stationary regime. In a combined Bingham-Burger model, the plastic flow would increase weakly with the applied
stress at low stresses, and more strongly above the yield stress. We believe it would mimic the rheological behaviour of a foam
quite adequately.
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FIG. 27: Foam with inhomogeneities in liquid volume frac-
tion. The gas/liquid interface is flat in inter-bubble films,
and curved in vertex regions at the junction between 3 (in
two dimensions) or 4 (in three dimensions) bubbles. This
curvature implies that the liquid pressure in the vertices is
smaller than the gas pressure in the neighbouring bubbles. In
wet regions, the interface curvature is less pronounced than in
dry regions. As a result, there exists a pressure gradient, and
the liquid tends to flow from wet regions towards dry regions.
The intensity of the liquid flow depends on the hydraulic re-
sistance in the Plateau borders that convey most of the liquid
(depicted as the channel in this two-dimensional drawing).
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APPENDIX A: EVOLUTION OF FINGER

TENSOR

In order to derive the evolution of tensor B (see Eq. 14)
in some known velocity field, we compute how an ellipse
with generic point x (see Eq. 13) is convected into a new
ellipse (see Fig. 9). The generic point ~x′ of the new ellipse
is obtained as:

~x′ = (1 + ∇~v dt) · ~x (A1)

The equation for the new ellipse can be written in two
ways:

~x′T ·
[
F−2

]

t+dt
· ~x′ = R2

~x′T · (1 −∇~vT dt) ·
[
F−2

]

t
· (1 −∇~v dt) · ~x′ = R2

x′

X ′

x

X

Ft+dtFt

∇~v dt

FIG. 28: Augmented version of Figure 9. As mentioned in
the caption of Figure 2, the relaxed state local orientation is
chosen in such a way that tensor F is a pure deformation. As
a consequence, points X and X ′ do not coincide except for
particular values of ∇~v.

The evolution of tensor B−1 = F−2 is thus given by:

d

dt

[
B−1

]
= −∇~vT · B−1 − B−1 · ∇~v (A2)

From Eq. (A2) above, we then compute[60] the evolution
of tensor B, see Eq. (17).

APPENDIX B: DENSITY AND STORED

DEFORMATION

Our assumptions stated in paragraph III F 1 imply that
the material density is related to the determinant of ten-
sor B in a very simply way. The evolution of det B can
always be written in the form:

d(det B)

dt
= tr

[

(det B) B−1 · dB

dt

]

(B1)

After multiplying Eq. (27) by B−1, taking the trace
and using the plastic incompressibility expressed by
Eq. (40), we insert the result into Eq. (B1) and obtain:

d(det B)

dt
= 2(det B) (trD) (B2)
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and finally:

d(1/
√

det B)

dt
+ (1/

√
det B) (trD) = 0 (B3)

Comparing Eqs. (56) and (B3) shows that for any given
element of material, the current density and deformation
are linked via their initial values:

ρ(t, ~r)

ρ(t0, ~r0)
=

√

det B(t0, ~r0)
√

det B(t, ~r)
(B4)

where ~r0 is the position of material point ~r at time t0.

APPENDIX C: SHEAR FLOW

1. Derivation of the shear flow equations

In order to derive the evolution of tensor B (Eqs. 65–
68), let us use the notations of Fig. 16.

The shear velocity gradient, the material deformation
B and the flow rate DB

p have the following form in basis
xyz:

∇~v[xyz] =






0 γ̇ 0

0 0 0

0 0 0




 (C1)

B[xyz] =






c2β1 + s2β2 cs(β1 − β2) 0

cs(β1 − β2) s2β1 + c2β2 0

0 0 β3




 (C2)

DB
p

[xyz]
=






c2δ1 + s2δ2 cs(δ1 − δ2) 0

cs(δ1 − δ2) s2δ1 + c2δ2 0

0 0 δ3




 (C3)

where s (resp., c) denotes the sine (resp., the cosine) of
angle θ between axes x and X (see Fig. 16).

Inserting the above equations into the evolution equa-
tion (27), we obtain:

˙︷ ︸︸ ︷

c2β1 + s2β2 = 2γ̇cs(β1 − β2) − 2(c2δ1 + s2δ2) (C4)

˙︷ ︸︸ ︷

cs(β1 − β2) = γ̇(s2β1 + c2β2) − 2cs(δ1 − δ2) (C5)

˙︷ ︸︸ ︷

s2β1 + c2β2 = −2(s2δ1 + c2δ2) (C6)

Summing Eqs. (C4) and (C6) yields the evolution of
β1 + β2. The difference between Eqs. (C4) and (C6),
multiplied by (β1 − β2) cos(2θ), plus Eq. (C5) multiplied
by 2(β1−β2) sin(2θ), yields the evolution of β1−β2. From
there, the evolution of β1 and β2 is readily obtained, see
Eqs. (66) and (67). Using these equations, the difference
between Eqs. (C4) and (C6) then yields the evolution of
cos(2θ), see Eq. (68)

2. Elastic shear flow

Let the initial configuration be a material at rest, with
β1 = β2 = 1. The system of Eqs. (66), (67) and (68) has a
singularity at t = 0 since Eq. (68) contains a factor 1

β1−β2

.

In fact, the system of Eqs. (C4), (C5) and (C6) can be
solved explicitely in the domain where the material is
purely elastic, with δ1 = δ2 = 0. Using the same notation
as in Appendix C 1:

c2β1 + s2β2 = 1 + γ̇2t2 (C7)

cs(β1 − β2) = γ̇t (C8)

s2β1 + c2β2 = 1 (C9)

Whence:

γ(t) = γ̇ t (C10)

β1(t) = 1 +
γ(t)2

2
+

γ(t)
√

γ(t)2 + 4

2
(C11)

β2(t) = 1 +
γ(t)2

2
− γ(t)

√

γ(t)2 + 4

2
(C12)

u(t) = cos(2θ) =
γ(t)

√

γ(t)2 + 4
(C13)

3. Plasticity onset

When in the elastic regime, the system is described by
Eqs.(...) above. Once the threshold is reached, given by
Eq. (82), the plastic term comes into play.

Eq. (82) by itself describes the limit of the elastic
regime in terms of tensor B for any choice of the system
history in the elasic regime (not just the simple shear
implemented here). It is represented on Fig. 18.

4. Stationary shear flow

When the flow is stationary, the system of Eqs (66–68)
can be simplified. In particular, Eq. (68) then implies:

cos(2θ) = u =
β1 − β2

β1 + β2
(C14)

sin(2θ) =
√

1 − u2 =
2
√

β1β2

β1 + β2
(C15)

and finally the tilt θ of basis XY relative to basis xy can
be expressed as:

θ = arctan

√

β2

β1
(C16)

From Eqs (66) and (67), still in the stationary regime,
we obtain:

δ1

β1
+

δ2

β2
= 0 (C17)
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Combining this with Eq. (40) which expresses the mate-
rial incompressibility, we obtain δ3 = 0.

Again from Eqs (66) and (67) in the stationary regime,
we derive the shear rate:

γ̇
√

1 − u2 =
2δ1

β1
= −2δ2

β2

=
2δ1 − 2δ2

β1 + β2
(C18)

Using Eq. (C15), we then obtain:

γ̇ =
δ1 − δ2√

β1β2
(C19)

Thus, the stationary branch of the flow plots are ob-
tained by choosing pairs of values for β1 and β2 that
satisfy Eq. (C17), where δ1 and δ2 are functions of β1,
β2 and β3 = (β1β2)

−1. To obtain the relevant values for
β1 and β2, we first find the pair that verifies simulata-
neously the threshold condition given by Eq. (82) and the
stationary condition given by Eq. (C17). We then use a
differential equation derived from Eq. (C17) to follow the
corresponding curve in the β1–β2 plane.

Once the values for β1 and β2 are known, the shear
rate is derived via Eq. (C19).

We can now slightly simplify Eqs. (84)–(91) in the sta-
tionary regime.

σ̄ =






β1σ̄1+β2σ̄2

β1+β2

√
β1β2(σ̄1−σ̄2)

β1+β2

0
√

β1β2(σ̄1−σ̄2)
β1+β2

β1σ̄2+β2σ̄1

β1+β2

0

0 0 σ̄3




 (C20)

The first and second normal stress difference can be ex-
pressed as:

N1 ≡ σ̄11 − σ̄22

=
β1 − β2

β1 + β2
(σ̄1 − σ̄2)

=
(β1 − β2)

2

β1 + β2
[a1 + a2(β1 + β2)] (C21)

N2 ≡ σ̄22 − σ̄3

=
β1(σ̄2 − σ̄3) + β2(σ̄1 − σ̄3)

β1 + β2

= a1

[

2
β1β2

β1 + β2
− 1

β1β2

]

+a2

(

β1β2 −
1

(β1β2)2

)

(C22)

In the case of Mooney-Rivlin, coefficients a1 and a2 are
given by Eq. (76) and the normal stress differences can
be expressed as:

N1 =
(β1 − β2)

2

β1 + β2

[

k1 +
k2

β1β2

]

(C23)

N2 = k1

[
2β1β2

β1 + β2
− 1

β1β2

]

+k2

[

β1β2 −
β1 + β2

β1β2
+

2

β1 + β2

]

(C24)
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[18] J.-F. Berret and Y. Séréro. Evidence of shear-induced

fluid fracture in telechelic polymer networks. Phys. Rev.

Lett., 87:048303, 2001.



27

[19] F. Molino, J. Appell, M. Filali, E. Michel, G. Porte, S.
Mora, and E. Sunyer. A transient network of telechelic
polymers and microspheres: structure and rheology. J.

Phys.: Condens. Matter, 12:A491–A498, 2000.
[20] G. Debrégeas, H. Tabuteau, and J.-M. di Meglio. Defor-

mation and flow of a two-dimensional foam under con-
tinuous shear. Phys. Rev. Lett., 87:178305, 2001.
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