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1. INTRODUCTION

A wide range of numerical methods has been developed for the resolution of
nonlinear conservation laws. In particular, Direct Numerical Simulation of com-
pressible flows is a real stake. It is then crucial to derive effective methods, able to
capture accurately real flows including strong shocks.
This paper deals with high-order discretization methods for convection-dominated
problems on unstructured meshes. In this field, Runge-Kutta Discontinuous Galerkin
methods (RKDG) have raised up a great interest during the last twenty years. They
combine the basis of the Finite Volume and the Finite Element methods, and Rie-
mann problems taking into account the physics of wave propagation. The accuracy
is then obtained by means of high-order polynomial within elements. These meth-
ods are famous for their formal high-order space and time accuracy, their capacity
to handle complicated geometries, their high parallelizability and their nice stabil-

ity properties.

The first analysis of the method, elaborated by Reed and Hill [30], has been per-
formed by Lesaint and Raviart [26], for a linear transport equation. The adaptation
of the scheme to the nonlinear case, which gives rise to the problem of stability,
has been first carried out by Chavent and Salzano [10]. They proposed an explicit
version of Discontinuous Galerkin method. It deals with a linear spatial discretiza-
tion and an Euler Forward time discretization method. The main drawback of
the method was its bad stability properties (it was stable under a very restrictive
CFL condition). Then, the method has been modified by Chavent and Cockburn

[9], by the introduction of a local projection operator (a slope limiter), designed
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to improve its stability properties. The resulting scheme was proven to be Total
Variation Diminishing in the Means (TVDM) and Total Variation Bounded (TVB)
under a fixed CFL (less than or equal to 1/2). Unfortunately, the scheme is only
first-order accurate in time and the solution is affected in smooth regions.

This history is recalled to introduce the RKDG scheme, developed by Cockburn
and Shu in a serie of papers [12, 13, 15]. Their investigations into Runge-Kutta
type discretization in time for Discontinuous Galerkin methods, and slope limiters
that maintain the formal accuracy of the scheme extrema have helped to improve
the efficiency of these methods. It gave rise to RKDG method of arbitrary order
of accuracy both in space and time. For the one dimensional case, the scheme was
proven to be TVB. Jiang and Shu [25] proved a cell entropy inequality for arbitrary
order of accuracy and arbitrary triangulations. The RKDG method has been ex-
tended by Cockburn et al. [14, 17] to multidimensional systems, for rectangular and
triangular elements. They proved a maximum principle for general non linearities
and arbitrary triangulations.

The efficiency of the RKDG method has been widely illustrated by many authors.
Indeed, it has been tested successfully by Lomtev, Quillen and Karniadakis [28] and
Sherwin and Karniadakis [32, 33, 34], for the compressible Euler and Navier-Stokes
equations. They coupled the method with a spectral orthogonal and hierarchical set
of basis functions due to Dubiner [21]. Numerical simulations with RKDG meth-
ods have been also done by Bassi and Rebay [3] who proposed a mixed formulation
to discretize the viscous terms. Biswas, Devine and Flaherty [6] used the present
method to achieve parallel adaptive refinement for conservation laws. For more

details on the use of RKDG methods, see for example the introduction of [11] and
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[19, 20, 24, 7].

Besides being of arbitrary order of accuracy, RKDG methods are very attractive
for shock-capturing. Indeed, the discontinuous representation of the solution and
the upwind flux processing make the scheme well adapted to solutions with dis-
continuities. When combined with a stabilization technique that prevents spurious
oscillations near solution discontinuities, the resulting scheme well captures strong
gradients. Several forms of nonlinear limiting have been carried out so as to en-
sure solution boundedness when discontinuities are present in the flow field. These
techniques can be splitted into two classes : one way consists in supplementing the
numerical scheme with a viscosity term (see [4]), another one is concerned with the
elaboration of a projection procedure to enforce the nonlinear stability. Cockburn
and Shu have precisely contributed a lot in the construction of a slope limiter which
is applied to the numerical solution given by RKDG method at each time itera-
tion [12, 13, 14, 15, 17]. Let us briefly describe the core of their work. The slope
limiting is based on piecewise linear approximations. They assume that spurious
oscillations are present in the approximate solution only if they are present in its
P! part. In regions where limiting is necessary, the expansion is then truncated to
second order. This technique performs very well in practice (see for example [13]).
The high-order accuracy is preserved at local extrema by using a modified minmod
function, instead of the classical one, as in the initial version of the slope limiting -It
comes to replace TVDM by TVBM property-. However, the projection is problem-
dependent due to the presence of a constant, whose aim is to enforce the TVBM

property. In addition, as the method is based on second-order approximations, we
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can suppose that it gives rise to a lack of information for high-order Discontinuous
Galerkin methods, once the development is locally reduced to a linear term.

Biswas et al. [6] proposed an extension of the method of Cockburn and Shu to higher
orders of accuracy, for one-dimensional and two-dimensional rectangular meshes.
The method is based on the P TVDM version of Cockburn’s slope limiting (which

is a very diffusive procedure), and on a Legendre polynomials basis.

The discontinuous Galerkin approach is not the only existing method which can
be high-order accurate in smooth regions and nonoscillatory near solution disconti-
nuities. For example, the ENO and WENO schemes (see for example [22][1][23]) are
based on high-order polynomial reconstructions and use an adaptive stencil which
permits to avoid interpolation accross discontinuities. In [38], Suresh and Huynh
construct a new class of scheme : a high-order interface polynomial value is first
reconstructed by using a centered stencil. Next, the interface value is limited in or-
der the scheme to satisfy the monotonicity preserving property. A test determines
whether the limiting procedure is needed or not, and then accuracy near extrema
is preserved in all norms. The limiter is problem-independent. However, only one-
dimensional or two-dimensional cartesian meshes are considered, and the stencil is
all the wider as the polynomial degree is high. It can give rise to difficulties in the
boundary conditions treatment.

The case of unstructured grid of triangles is treated in [40]. Wierse proposes a new
limiter function for second-order finite volume schemes. A proof of a maximum
principle 1s given, for which no requirements on the domain discretization are nec-

essary. It is shown how to adapt this proof to the case of P! discontinuous Galerkin
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approximations.

The aim of the present work is to propose a new slope limiter for discontinuous

Galerkin methods of any order of accuracy, which satisfies the following properties :

1. it is totally free of problem-dependence,

2. unstructured triangular meshes can be treated,

3. it suppresses spurious oscillations near solution discontinuities,
4. no loss of accuracy takes place at extrema in the L'-norm,

5. the stencil is restricted to one triangle and its neighboors whatever the order

of accuracy 1s.

The guiding principles in those investigations are based on the papers by Cock-
burn and Shu [12, 13, 14, 15, 17], and by Biswas et al. [6] which provide a frame

of reference for the present work.

The paper 1s organized as follows. Section 2 deals with one-dimensional problems.
The necessary background is reviewed, namely : the description of Cockburn’s lim-
iting procedure for linear approximations, its extension by Biswas et al. to the
case of any-order of accuracy. In part two of this section, the proposed limiter is
detailled. Numerical results illustrate its good behaviour, for any kind of solutions
(regular or with discontinuities).

Section 3 presents the extension of the new limiting procedure to triangular meshes,
for the set of basis functions of Dubiner and in the case of P! and P? approxima-

tions.
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2. THE DISCONTINUOUS GALERKIN METHOD WITH SLOPE

LIMITER IN ONE DIMENSION

2.1. Outline of the Discontinuous Galerkin Method
In this section, the RKDG method is briefly introduced for the following one-

dimensional scalar conservation law :

ou  Of(u) .
E—F 5 =0inQx(0,7), QCR (1)
subject to the initial condition
u(z,t=0) =ug, Yo € Q (2)

and periodic boundary conditions.

Let {I;}j=1..; with I; = (xj—l/Zaxj-I—l/Z) be a partition of the interval € into

subintervals. Let us define

Vi ={p € BV(Q)NLYQ) : py, € PF(I;)} (3)

where P*(I) denotes the space of polynomials in I of degree at most k and BV

the space of functions with bounded variation. Let

Bj :{vlyj(a:);l: 1,~~~,k’—|—1}

be the basis of Legendre polynomials on /;.
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For each time ¢ € [0,7T], an approximate solution wup(t) that belongs to V3 is
computed. A weak formulation of the problem is obtained by multiplying (1) by a
test function . The result is integrated on [;, and the flux term is integrated by

part to yield :

/Iv Geulz, t)p(x)de — /1 Flu(z,))0pp(x)de "

+f(u(xj+1/2’t))30($;+1/2) - f(u(xj—l/%t))gp(xj_l/z) =0

xt

and p(a

where (2 12 t) are the values of function ¢, at interfaces ;412

Jt1/2)

of interval ;.

A discrete analogous of (4) is obtained by replacing the exact solution u(z,t) by
the approximation up(#,?) and the test function ¢ by each element of the basis set
B; successively.

The approximate solution can be written as :

k+1
uh(l‘,t)uj = Zulyj(t)vlyj (l‘) Vaoe Ij (5)
=1

where {ulyj};fll are the degrees of freedom of uy in the interval /;.

Taking ¢ = vy, ; leads to :

k+1

/Ij (; %ul,j(t)vl,j(x)) U, (2)dz — /Ij f(uh(x,t))%vmyj(x)dx

(6)

Fh(un) j1/20m 5 (2741 y9) = h(un)j—1/20m 3 (2] ) = 0
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Since solution discontinuities are permitted at element interfaces, the boundary
flux f(up(2;41/2,1)) is not uniquely defined. It is then approximated by a numerical

flux function A that depends on the two values of uy at the point (x;41/2,1) :

hjviyz = h(un)jrayz = h(u]_, o 05y, ) (7)

: + _ +
with Uigy/o = Un (l‘jil/z).

The discrete weak formulation yields, by using orthogonality property of B; :

%Um,j(t) (/1] ”mvj(x)zdx) - /1 /

7

k+1 d
(Z urj (t)vr,; (73)) Tz Ui (z)dx

—hjprvm (27 0) + Ry som(a] L)

(8)

where the integral term on the right-hand side is evaluated using Gauss quadra-

ture.

At last, the following ODE is obtained :

d
5 (un) = L (un) (9)

For a complete discussion of the method, the reader is refered to [11].

2.2. Existing stabilization techniques
The approach in this section is to describe firstly the limiting procedure by Cock-
burn and Shu, and secondly the generalization of the method to P* approximations.

It relies on the construction of a slope limiter All; whose aim 1s to enforce nonlinear
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stability properties.
The TVD Runge-Kutta time discretization introduced in [36] is used to integrate
the ODE system (9) in time. It is of great importance for the method to be cor-

rectly stabilized.

Let {t"}/_, be a partition of [0, 7]. The Runge-Kutta algorithm reads as follows :

1. Set u) = Allp (uop);

2. Forn=0,---, N — 1 compute uZ‘H from uj as follows :

(i) Set ugo) = uf;

(ii) For ¢ = 1,..., T+ 1 compute the intermediate functions :

i—1
U,(LLZ) = ZAHh (ailug) + ﬁilAtLh (ug)))
=0

(iii) Set u?t! = u{/ T

When the projection All is set equal to the identity operator, the RKDG scheme
without slope limiter is recovered. Thanks to this kind of time discretization, good

nonlinear stability properties can be obtained [11].

The mesh size Az is assumed to be constant for sake of clarity.

For the one-dimensional case, the solution is approximated by :

2 2
Uy, = Ut (@ g uzy =0 (@ - xg) (10)
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where the degrees of freedom of uj are uy ; and ug ;, which are respectively de-

signed for the approximation of the mean value of the solution (denoted by @;) and

of the solution gradient on the interval I;.

The slope limiter All; must :
(1) maintain the conservation of mass element by element,

(ii) not degrade the accuracy of the method,

(iii) decrease the gradient of the resulting approximate solution that must be less

or equal to those issued from discontinuous Galerkin space discretization.

The following generalized slope limiter, proposed by Cockburn and Shu, does

satisfy such conditions :

o o, 2 N e -
AMlpup = Up = T+ 5= (v — x;) U j

— 7 2 (e ; T — T T — 77 .
= Uj + - (r — x;) minmod (uz j, Wip1 — Uy, U — ;1) Vo € I

where the minmod function is defined as follows :

(11)

5 MiNj<n<m|anl|, if s = sign(ar) = ... = sign(a,,),

minmod(ay, ..., am) =

0, otherwise

Equation (11) can be rewritten as :

(12)
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Uy = W+ minmod (ujyy — W, Wjpr — Ty, T — Tjmn)

+ S T 3 T — g s e T — T
Uiy = U mmmod(u] Uj_1)2, Uj41 — Uy, Uj u]_l)

The resulting RKDG scheme with the slope limiter previously described is proven
to be TVDM. It can be rendered TVBM by modifying the minmod function (see
[12]) so as not to degrade accuracy at local extrema. Then, it relies on the introduc-
tion of a constant M, which is an upper bound of the absolute value of the solution
second order derivative at local extrema. The TVB corrected minmod function m

1s defined as follows :

ay , if Ja] < M(Ax)?

m(ay, ..., a;m) = (14)
minmod(ay, ..., amn) , otherwise

This way, @ is defined in a unique manner for P* approximations with & < 2.
For greater values of k, Cockburn and Shu suggest to set u; ; = 0 VI > 3. In other
words, in regions where limiting is necessary, the development of the numerical so-
lution is locally truncated. The very interesting property of such a method is that
no loss of accuracy takes place at extrema, even in the uniform norm. However, the
difficulty lies in the evaluation of the constant. Indeed, it can be trivially evaluated

in some cases (for example for a piecewise C? initial data), but there are some

problems for which it is not easy to determine.

The extension by Biswas, Devine and Flaherty of this method to the case of

higher-order slope limiting is of great interest. The paper [6] contains numerical
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results which point out that their proposed limiting projection doesn’t destroy high-
order accuracy where the solution is very smooth. Furthermore, in practice, solution
boundedness is ensured near solution discontinuities. It relies on the TVDM ver-
sion of the Cockburn and Shu method, and consists in successively differentiating
the numerical solution. The result of this derivation procedure gives a linear term

which can be treated like in the case of a linear approximation.

Let &£ € [—1,+1] be the reference element. Noting that for Legendre polynomials :

al l I+1
8_€luh|1j = H (2777, — 1)ul7j + H (2777, — 1)ul+17j€
m=1 m=1
k+1
+ D umll —— (15)
m=Il+2 d€

The limited approximation is written :

k+1
Al (2, 1)1, Zu,] v i(z) Vel (16)

whose degrees of freedom are defined by :

- 1 )
U1y = mmmmod((?l + Dwggr j, w41 — wi g,y —ug 1), forl=1,---k

(17)

In practice, following Biswas, the limiter is applied adaptively. The highest-order
coefficient is first limited. The limiter is then applied to successively lower-order

coefficients when the next higher-coefficient on the interval is changed by the lim-
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iting. This is a way to maintain accuracy in smooth regions, and to apply limiting
procedure only where it is needed. A comprehensive treatment of the method can
be found in [6]. For vector systems, the limiter is applied to the characteristic fields

of the system.

An improved limiter is proposed in the next section. The resulting method is
less diffusive near solution discontinuities and still keeps a good level of accuracy

in regions where the solution is smooth.

2.3. A new slope limiter for one-dimensional problems

There are two key points to ensure the success of a limiting procedure. Firstly,
as it is crucial to preserve the accuracy of RKDG method in smooth regions, a
criterion is necessary to determine regions where the approximate solution must
be limited. This is exactly the aim of the constant M introduced by Cockburn
and Shu in the modified minmod function. Another criterion is proposed in what
follows. It is free of problem-dependence. Secondly, when limiting, it is necessary
to introduce enough numerical diffusion to stabilize the method. However, a too
large amount of viscosity can flatten extrema. Then, a way to balance these two

points must be found out.

Due to the differentiation procedure, the method 1s suited for any order of ac-
curacy once the projection is defined for a linear approximation. In the present

section, a new method is proposed, which combines a basic idea due to Van Leer
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[39] and the method previously described.

We first address the problem of the definition of a regularity criterion. One
interesting idea concerning the slope limiter previously described relies on the fact
that in regions where the solution is smooth, we have % ; = u» ;, which means that
the projection AIl, has no effect on wup, (it is locally reduced to Identity operator).

Consequently,

ﬂzyj = minmod (UQJ,UJ'_H —Uj,u; — Uj_l) (18)

will be used as a regularity criterion. In other words, ”large” gradients are those

for which @y ; # us ;.

It remains to define the limiting procedure. The main drawback of (18) appears
on regular extrema which are flattened. This problem is resolved by relaxing the

limitation procedure as follows :

m — 1 - T T e e —

uy'; = minmod (uj+1/2_u3’ Ujp1 — Uj, U u]_l)

mar _ : + a7 - . T — 19
uy'$" = minmod (uj+1/2 Ujy Ujyy/y = Uj, Uy uj—1/2) (19)
o » — m max

%z; = maxmod (Uz,ja uy's )

with the definition of maxmod function :
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5 Maxi<p<m|anl|, if s = sign(ay) = ... = sign(ay,),
maxmod(ay, ..., am) =

0, otherwise
(20)
Solution gradients at interfaces of each cell are then evaluated by two different
ways, and the gradient which less restricts the approximate gradients coming from

the discontinuous Galerkin method is retained.

A very simple example of the projection effects on two configurations is pro-
posed, in order to understand the action of (19) . The projection’s results for an
extremum are explained by referring to Figure 1. While the minmod function is
inclined to flatten the smooth extremum, the maxmod function (19) doesn’t. Be-
sides, the proposed limiter correctly suppresses spurious oscillations (as illustrated

by the example of non-smooth extremum).

The previous method is generalizable to P* approximations. A regularity cri-
terion is associated to each degree of freedom to determine whether it should be

limited or not.

Forj=1,---,Nandl =k, --- 1, we define

Uy, ;= mmiﬂmod((ﬂ + D g, wjpr — wj,w — wg-1)  (21)

If uﬂ-l,j = w41,; then
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1+1 k41
Allpup,, = D us vt Y s s (22)
s=1 s=I+2
else
41,7 = maxmod (uﬁ_lyj, uﬁﬁfj) (23)
where
maw _ 1 : R + _ . . anT
uiY; = smprminmod((2/ + 1)Ul+1,y’wl,j+1/2 Ui,j, UL wl,j—l/z)

+ — .
Wiye = Wit — (20 + Dy

wl_,j—l/z = -1+ (20 + Dwgr i1

and the limiting procedure goes on.

2.4. Numerical results

2.4.1. Accuracy test for RKDG method with slope limiter
Two test problems are proposed to illustrate the effective order of convergence
of the method (a k + 1 rate of convergence is expected for a P* approximation).

Both are related to the linear scalar transport equation :

<
&
+
<
8

Il
o

-1<e<1
(24)
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with periodic boundary conditions.

Tables T and IT show the errors for the initial condition ug(z) = sin(mz) at time
t=1. The results obtained with the unlimited DG method are compared with the er-
rors of the limited scheme with the Biswas et al. limiter (denoted by DGMIN where
min stands for minmod) and the new one (denoted by DG™3X for maxmod). Both
of the DG™MIN and the DG™MAX methods do not affect the rate of convergence of the
scheme in the L'-norm, but a loss of accuracy shows up in the L®-norm (around

half a power of the rate of convergence is lost).

A much tougher case is now considered with the initial condition ug(x) = sin*(7z).
Results at time t=1 are summarized in Tables III and IV. The limiters still keep

the high order of accuracy.

2.4.2. Riemann problems of nonlinear conservation law system
The system of Euler equations 1s now considered. The first selected test case is

Sod’s problem with initial conditions

U = [pL,UL,pL]T = [1’0a1]a 1f0§$§05

]T

= [pr, ur, PR [0.125,0,0.1], if0.5 < 2 < 1

The results can be compared for example with those of Ref. [13].
As illustrated by Figures 2 and 3, the proposed limiter is suitable for scalar one-
dimensional hyperbolic conservation laws with discontinuities. For linear approx-
imations, it performs very well, despite the fact that the maxmod function au-

thorizes greater gradients than the initial minmod function. The P? version of the
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limiter is also well adapted for shock-capturing, since oscillations are not developed.

The next test case concerns initial conditions

U = [pr,up,pr)T = [3.857143,2.629369, 10.333333], when z < —4
(26)

= [pr,ur,pr]’ = [1+0.2sin(52),0,1], when x > —4

This test problem, elaborated by Shu and Osher [37], is well adapted to demon-
strate the advantage of higher-order methods since the solution has smooth struc-
tures interspersed with discontinuities. The results obtained with the proposed
method are shown in Figures 4 and 5. It is clear that the P? version of slope
limiter performs much better than the linear one. The improvement due to the
fourth-order accuracy is also seen. Furthermore, the proposed limiter is seen to
improve significantly the results obtained using the Biswas ef al. limiter -see Fig-
ure b for fourth-order of accuracy-. A similar behavior is observed for any order
of approximation. The introduction of the maxmod function leads to much less

diffusive results whatever the order of accuracy 1s.

In summary, the accuracy is maintained in regions where the solution is smooth.
The projection All; of course leads to additional error but does not reduce the
order of convergence of RKDG scheme. This is accomplished in a fully problem-
independent way.

On the other hand, the numerical solution is getting better and better in the neigh-

bourhood of the solution’s discontinuity, when the degree of the polynomial & is
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increased.

3. EXTENSION TO MULTIDIMENSIONAL SYSTEMS
The adaptation of the method to multidimensional unstructured meshes raises
numerous problems, among them the problem of stability. This section presents
the extension to triangular meshes of the new stabilization method described for
one-dimensional problems. To achieve that, we take advantage of the paper by
Cockburn and Shu [17] which contains an adaptation of their slope limiter to the
case of unstructured grids for linear approximations. After the description of the

process for P approximations, the P? case is considered.

3.1. The Dubiner set of basis functions
We start by introducing useful notations.
Let 7}, be a triangulation of Q. The approximate solution Uy (x, ), for fixed ¢ €

[0, T], belongs to the finite dimensional space :

Vi = {vn € L=(Q) : vp), € V(T),VT € T} (27)

where V(T) is a space locally defined. We take V (T)) = P*(T).

The approximate vector solution Uy, is expressed as follows :

Up(x,t) = > Us(t)®i(x) VYxeT (28)
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where U, (t) are the degrees of freedom and {®;}7_; a basis for V(T).
The scheme implementation can be made more effective thanks to the choice of
the polynomial basis. In accordance with the papers by Sherwin and Karniadakis
[32, 33, 34], a spectral basis developed by Dubiner [21] is used. Tt is recalled in

what follows.

The following standard triangle and quadrilateral are considered

and

R={(a,b), -1 <a,b<+1} (30)

The basis functions can equivalently be written in 7" or R thanks to the transforms

(see Figure 6) :

fT/I% .

and
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fE/T .

(a,b) —
s = b

Finally, the basis functions {gim }(,myes with

S={l>0,m>0, <L, l+m< M, L <M} are defined by

g = PP (a) (1= ) P00

where PP (zx) is the nth order Jacobi polynomial.
This basis is orthogonal and hierarchical. Besides, by evaluating the basis functions
on the quadrilateral element, the volume integrals can be degenerated into the

product of two one-dimensionnal integrations and then efficiently evaluated.

3.2. Limiter for a P' (second order) approximation
Let’s start with the case of the linear approximation to describe the limiting
procedure. The Cockburn and Shu limiter is first reviewed.

The mean value of Uy, on the triangle Ky is denoted

— 1
UT = m/TUh(X) dx (31)

For the set of Dubiner basis functions, it is reduced to Ur = U 7.

We introduce
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3
Uu(x) = > _Uj(t)@;(x) — Uy (32)
i=1
Given a triangle Ky, its neighbours are denoted by K;,Ks, and K3, and the
middles of the edge j by m; -see Figure 7-.

The purpose is to restrict U, in order to have Uy () € [a, b] where a = min{Uk,, Uk, ,Uk,, Uk, }

and b = max{Ux,,Uk,,Uk,, Uk, }.

The method consists in limiting U, on the middles of the edges of Ky. It comes

to determine 61, 62 and 63 on Ky such that

Uy (x) = Z U, (t)®; (x) (33)

The modified quantities ﬁh(ml) for i = 1,2, 3 are denoted by A;.

Finally, one gets on triangle Ky :

AU, = (U +01) @1 + Ty + Usdg (34)
with
U, = LA+ Ao+ Ag)
U, = 324, — Ay — Ay) (35)
Us = L(Ar—Ay)
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Necessarily, in order to preserve the mean value of Uy on Ky, we must have
U; = 0. Otherwise, a modification on A; is performed to maintain the conserva-

tion of mass element by element (see [17] for more details).

The calculation of the quantities A; is based on a geometrical property, namely

the existence of non-negative coefficients a; and f;, ¢ = 1,2, 3 such that

m1 — By = «a1(B1 — Bo) + 51(B2 — By)
mo — By = «a3(By — By) + 32(Bs — By) (36)

ms — By = a3(Bs — By) + 33(B1 — By)

Quantities A; are defined in the following way :

A7 = minmod (Uh(ml) —Ug,,v (a1 (ﬁKl — ﬁKD) + B (ﬁK2 — ﬁKD)))
Ay = minmod (Uh(mz) —Ug,,v (az (ﬁK2 — ﬁKD) + B (ﬁKa — ﬁKD)))(:W)

As = minmod (Uh(mg) —Ug,,v (ag (ﬁKa — ﬁKD) + B3 (ﬁKl — ﬁKD)))

where v > 1.

Now, the objective is to get a less diffusive method. For a given point P on
interface j, U, (P) is refered to the approximation of U(P) issued from triangle

Koy, and Uf(P) the approximation issued from K.

The following method -which brings in a very simple procedure- improves a lot

numerical results. We define
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(38)
minmod (U;(m]) —Ug,,v (ozj (ﬁKi - ﬁKD) + 5; (ﬁK; - ﬁKu)))

”Large” gradients are identified by A;,, # U; (m;) — Ug,. If the equality is
satisfied then the quantity U} (m;) — Uk, is preserved. Otherwise, the maxmod
function 1s introduced to relax the minmod function effects according to the ap-

proximate solution regularity. We introduce

Aj mae = minmod (U; (m;) — Uxk,, UZ(mj) — ﬁKD) (39)

Limited gradients are defined by

A; = maxmod (Aj n, Aj max) (40)

3.3. Limiter for a P? (third order) approximation

As shown for one-dimensional problems, the differentiation process allows the
adaptation of the slope limiter to any order of polynomial approximations. Given
the good numerical results obtained in 1D, the method is generalized to P? case by
making use of the same methodology.
A question which arises from the elaboration of the technique for triangular meshes
is concerned with the direction of derivatives and quantities to be limited. Two
methods can be used : firstly, derivatives in the flow direction can be computed
and limited, in order to derive a totally multi-dimensional proceeding. This fea-

sibility has been ruled out since the way of establishing a well defined method is
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not clear. Secondly, one way consists in differentiating along the vector joining the
center of gravity of each triangle to the middles of its edges. It leads to a scheme
which depends on the mesh geometry (as for the Cockburn and Shu method) which

is presented in what follows.

B,
Given n; = =220 (i = 1,2, 3) normalized vectors on triangle K. The quanti-

Bom;

ties to be limited are

Wi, = (Bo) (41)

on; (ms) = on;

The affected triangle is not precised when there is no ambiguity. Vectors n; are
computed in reference to triangle Ky. Moreover, as jumps are permitted at inter-
faces of elements, there are two different values for the approximate solution on
each edge of the triangles. Symbol — is related to values on Ky and symbol + to

values on one of its neighbours.

Now, the method can be fully defined. Let us define :

_ ouy, / ouy, ' ouy , ouy,
Zuw, =i (o)) - o))+ (S By - Sk ma)) ()

A2y, m = minmod (Wj, n,, VZj n,) (43)

and
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(44)

o ou,t ou,,
A2y, mae = minmod (Wh,n,, T, (my) — o (Bo)

Finally, if A2y, m # Whn, then A2, = maxmod (A24, n, A2n; mas) takes the

place of Wy, n, (fori=1,2,3).

Contrary to the one-dimensionnal case, the change from P' to P? basis adds
three degrees of freedom. To overcome this difficulty, degrees of freedom [74, 55
and 56 are computed by freezing the moments Uy, U; and Us (moments [71, ﬁz
and ﬁg are computed with the method elaborated for linear approximations). In

brief, on triangle Ky we come down to the system to be inversed

ouU ouU -
anf (m1) — 8Tf(BO) = G1 (Ui k., Uz ky, Uz i) + Z%’Uu{o
i=4
aUh 8Uh 6 ~
(m2) = ——(Bo) = G2(U1k,, Us ko, Us ) + 3 &Uik,  (45)
8112 8112 ig4
ou ou ~
8n§ (ms) — 8n: (Bo) = G3(U1 kg Us ko Usio) + Y 1iUi i,
i=4

with

J

3
~ 0¢; 0o .
Gy = 3 Uik (Gm) - 52 (50) ) 5= 1,23
i=1 J

o 09 _ ¢ o

Vi — anl (ml) 3n1 (BO) 1= 1a2a3 (46)
o Oy D¢ .

€Z — anz (mZ) - anz (BO) 1= 1a2a3
- 09 Dpi .

Hi = an3 (mS) - 3n3(BO) = 1a2a3

The regularity criterion of the solution is based on terms Uy, Us and Ug. In

practice, the following test is used :
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1. If 64 = Uy, 65 = Us; and 66 = Ug then limiter’s effects on the linear part

of the approximation are suppressed :

U, =U;, Uy=U,, U3 =Ug;

Else,

2. all the degrees of freedom of Uy, are limited.

By this process, as for the one-dimensional case, the limiting procedure 1s gen-
eralizable to P* approximations. One only has to differentiate the approximate
solution several times, to get a linear term which can then be limited with the

method based on P! approximations.

3.4. Boundary conditions
The main difficulty 1s to impose the slip condition on the walls in a stable way.
As mentionned in [3], the inviscid interface integral terms are constructed with a
technique traditionally used in upwind Finite Volume schemes. The flux function
F(U) - n is replaced by a numerical flux function A(U~, Up;n), depending on the
internal interface state U~ and the boundary condition Up.. At solid walls, the
flux function F(U) -n is equal to the pressure contribution in the direction normal

to the wall. The pressure is taken from the internal boundary state.

Besides, a special treatment is necessary for the limiting procedure. Indeed, to
limit the gradients of the approximate solution on the sides of a triangle Kg, the
method makes use of the three neighboors K7, Ky and K3. The formulation for a

solid wall boundary condition 1s presented in what follows.
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Given a triangle Ky on the domain boundary, its edges are denoted by e;, (j =
1,2,3) with e; N 0Q # 0 and ¢; NI = for j = 2,3.

For the limiting procedure, boundary conditions are imposed by providing a com-
plete solution on the dummy cell K| (see Figure 9). The exterior solution is recon-
structed from the interior one by considering the Gauss points used to evaluate the
volume integrals. Let M be a Gauss point on triangle Ko, M’ its symmetric on
K}. A symmetry technique is used point by point whereby the state Up(M') on
cell K, has the same density, internal energy and tangential velocity component of
Up (M) and the opposite sign normal velocity component.

In order to increase the stability, the limiting procedure is slightly modified to in-
volve a vector normal to the boundary, as in Bruneau and Rasetarinera [8]. For a
linear approximation, the gradients of Uj are then limited on the midles m» and
mg of the edges es and ez, and on the orthogonal projection of the center of gravity

of the triangle Ky on the boundary edge es.

For a third-order approximation, the quantity to be limited related to the bound-

ary edge is :

Withn:Boﬁ.

3.5. Numerical results

3.5.1.  Shu and Osher test case
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This test case is reconsidered with the two-dimensional slope limiter to show
the procedure elaborated for the one-dimensional case has been well extended to
triangular meshes. Numerical results exhibit an improved solution with P? approx-
imation (see Figure 10 for comparison). The proposed algorithm for unstructured
meshes leads to bounded solutions near discontinuities. Besides, a P? truncated
solution is shown on Figure 11. In practice, the approximate solution has been
locally reduced to a linear term in the vicinity of shocks. Extrema of the resulting
solution are more flattened that those of the not-truncated solution. Finally, Figure
11 shows the improvement due to the regularity criterion previously described. So,

the whole procedure is needed.

Some test results about accuracy are now given for the second and the third

order limited schemes.

3.5.2.  Accuracy test

The first example is the two dimensional linear equation u; + g, +uy = 0 with the
initial condition ug(z,y) =sin(r(z +y)) (=1 < 2,y < 1) and periodic boundary
conditions. Uniform triangular meshes are first considered. Issued from a uniform
cartesian mesh, they are obtained by adding one diagonal line in each rectangle.
The coarsest one is shown in Figure 12. It corresponds to h = hg = 1/2 where h is
the length of the rectangles. The results at time t=2 are shown in Table V.
Non-uniform meshes are next considered. The coarsest mesh is shown in Figure 13.
A serie of meshes is obtained by refining the mesh in a uniform way (each triangle

is divided into four smaller ones). The results are presented in Table VI.
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The same equation is reconsidered with the initial condition ug(x, y) = sin®*(7(x + y))
and the same meshes -see Tables VII and VIII-. As for the one-dimensional case, a

loss of accuracy takes place in the L®-norm but not in the L'-norm.

The accuracy of the method for nonlinear problems is illustrated with the system
of Euler equations. This test case is proposed by Shu in [23]. The initial condition
is obtained by adding an isentropic vortex to a mean flow (pg = 1, up = 1, vy = 1,
po = 1). The vortex is a perturbation to the velocity (u, v), the temperature 7', the

entropy S and is denoted by the tilde values :

i = %60.5(1—7«2)(5 —y)
7 = %60'5(1_7‘2)(1‘ _ 5)
i —1)e —_p?

T = — ’YS’WTQ 1

& _ 0

with e =5, r = \/(x — 5)2 + (y — 5)2.

An analytic solution of the problem is known. The computational domain is
taken as [0, 10] x [0, 10] with periodic boundary conditions in both directions. Error
are shown at time t=2 for uniform and nonuniform meshes (same kind of meshes as
for the previous example) in Tables IX and X. The rate of convergence is preserved

in the L'-norm.

Three bidimensional problems are now presented to illustrate the capacity of

the new limiter to capture strong gradients, whatever the order of accuracy of the
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approximate solution (two or three for the present paper). It is important to notice

that only unstructured nonuniform triangular meshes are considered.

3.5.3.  Reflection of a plane shock from a ramp

This problem was studied in Quirk [29] and Abgrall [1]. A planar shock initially
enters from the left in a quiescient fluid and is reflected from a 45 degrees ramp.
The Mach number is M, = 5.5 and the undisturbed air ahead of the shock has
a density of 1.4 and a pressure of 1. Reflecting boundary conditions are applied
along the ramp and the bottom and the upper of the problem domain. Values for
the initial flow are assigned at the left and right-hand boundaries. The simulation
is performed with second-order approximate solutions. Results obtained with the
Biswas et al. limiter and the new method are compared in what follows.
For such an incident shock wave Mach number and such a reflecting wedge angle,
a double Mach reflection is expected (further details about shock wave phenomena
can be found in [5]) . For a linear approximation, the slipstream coming from the

Mach stem is better resolved with the new limiter -see Figure 14-.

3.5.4. Step marching problem

It concerns a flow past a forward-facing step. This test case has been extensively
studied by Woodward and Colella [41], and is widely present in the literature (for
comparison, see for example [8], [17]). The problem starts with uniform Mach 3
flow in a wind tunnel containing a step. The wind tunnel is 1 length unit wide and
3 length units long. The step is 0.2 length units high and is located at 0.6 length
units from the inflow plane. Reflecting boundary conditions are applied along the

walls of the tunnel, and inflow and outflow boundary conditions are applied at the



34 BURBEAU, SAGAUT AND BRUNEAU

entrance and the exit of the tunnel.

The corner of the step is a singularity. It is well known that if no special treatment
is done, an entropy production is observed in the vicinity of the step corner, and
it alters the quality of the second reflected shock. However, neither artefacts to
impose the slip condition at the corner, nor positivity correction procedure have
been employed.

The value of the CFL number is 0.3 for the P! and 0.18 for the P? approximations.
Two unstructured meshes have been considered. The first one (mesh A) contains
13774 triangles. Tt is locally refined near the corner. The second mesh (mesh B)
contains 14392 elements. Details of the meshes around the corner are shown in the
Figure 15.

The erroneous entropy production near the corner induces a numerical boundary
layer visible on the density contours, and especially on the Mach number and the

entropy function contours.

Results are shown in Figures 16 to 22. The entropy layer at the downstream
bottom wall is clearly reduced by the P? approximation, and by a local refinement
of the mesh near the singularity. The reflected shock on the lower part of the step
is improved with the higher-order method. Second-order results obtained with the
minmod limiter are shown on Figure 19. The maxmod function clearly improves

the contact discontinuity.

3.5.5.  Shock passing a backward facing corner
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This last test case is presented to demonstrate the ability of the new method to
evaluate strong gradients. The computational domain is
Q=([0,1] x [6,11]) U ([1, 13] x [0, 11]). A right-moving shock of M, = 5.09 is ini-
tially located at & = 0.5. The undisturbed air ahead of the shock has a density of
1.4 and a pressure of 1. Inflow and outflow boundary conditions are respectively
applied at = 0 and # = 13. The boundary conditions are reflective everywhere

else.

The simulation is performed with the PZ-version of the limiter, for two different
meshes (which contain respectively 8464 and 23638 elements) -see results on Figure
23-. Contrary to [17], no positivity correction procedure is needed to avoid negative
density or pressure. Besides, the scheme is not modified at the corner of the step,
which is a singularity of the problem. The limiting procedure is then well adapted

to strong shocks even with unstructured meshes.
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4. CONCLUSION

In this paper, a new slope limiter to treat solutions with discontinuities with
RKDG method of arbitrary order of accuracy has been presented. The method has
been first described for one-dimensional problems. Numerical results point out that
the proposed stabilization procedure does not degrade the accuracy of the method
at smooth extrema in the L'-norm. Furthermore, solutions with discontinuities are
well captured, without spurious oscillations, whathever the order of accuracy of the
method is. At last, the resulting numerical approximation is better as the degree
of the polynomial expansion increases.
Next, the new method has been extended to the case of two-dimensional unstruc-
tured triangular meshes, for P! and P? approximations. It has been noticed that
the procedure is generalizable to any order of accuracy.
The paper developed extensive details concerning two points, the definition of a
regularity criterion to determine regions where the solution needs to be stabilized,
and a way of limiting without introducing too much numerical viscosity. This is
done without any dependence of the procedure to the considered problem. That is
the main first advantage of the proposed scheme, the second one being the capacity

of the method to handle unstructured triangular meshes.



10.

11.

12.

13.

SHOCK CAPTURING WITH RKDG METHODS 37

REFERENCES

R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes : Analysis and

implementation. J. Comput. Phys., 114:45-58, (1994).

. H.L. Atkins and C.-W. Shu. Quadrature-Free Implementation of Discontinuous Galerkin

Method for Hyperbolic Equations. Technical Report 96-51, ICASE report, (1996).

. F. Bassi and S. Rebay. A High-Order Accurate Discontinuous Finite Element Method for the

Numerical Solution of the Compressible Navier-Stokes Equations. J. Comput. Phys., 131:267—

279, (1997).

. F. Bassi and S. Rebay. An Implicit High-Order Discontinuous Galerkin Method for the Steady

State Compressible Navier-Stokes Equations. ECCOMAS, (1998).

. G. Ben-Dor. Shock wave reflection phenomena. (Springer-Verlag, 1991).

. R. Biswas, K. D. Devine, and J.E. Flaherty. Parallel, adaptive finite element methods for

conservation laws. Appl. Numer. Math., 14:255-283, (1994).

. M. Borrel and B. Berde. Moment approach for the Navier-Stokes equations. AIAA paper

95-1663, (1995).

. Ch.-H. Bruneau and P. Rasetarinera. A Finite Volume Method With Efficient Limiters For

Solving Conservation Laws. CFD J., 6:1, (1997).

. (. Chavent and B. Cockburn. The Local projection P°P! Discontinuous Galerkin Finite

Element Method For Scalar Conservation Laws. M2 AN, 23:565-592, (1989).

G. Chavent and G. Salzano. A Finite Element Method for the 1D water flooding problem with

gravity. J. Comput. Phys., 45:307-344, (1982).

B. Cockburn. Discontinuous Galerkin Methods for Convection-Dominated Problems. In T.J.
Barth and H. Deconinck, editors, High-Order Methods for Computational Physics, volume 9

of Lecture Notes in Computational Science and Engineering, pages 69-224. Springer, (1999).

B. Cockburn and C.-W. Shu. TVB Runge-Kutta Local Projection Discontinuous Galerkin
Finite Element Method for Conservation Laws II: General Framework. Math. Comput.,
52(186):411-435, (1989).

B. Cockburn and C.-W. Shu. TVB Runge-Kutta Local Projection Discontinuous Galerkin

Finite Element Method for Conservation Laws III: One-Dimensional Systems. J. Comput.

Phys., 84:90-113, (1989).



38

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

BURBEAU, SAGAUT AND BRUNEAU

B. Cockburn and C.-W. Shu. The Runge-Kutta Local Projection Discontinuous Galerkin
Finite Element Method for Conservation Laws IV: The multidimensional case. Math. Comput.,
54(190):545-581, (1990).

B. Cockburn and C.-W. Shu. The Runge-Kutta Local Projection P!-Discontinuous-Galerkin
Finite Element Method for Scalar Conservation Laws. M? AN, 25:337-361, (1991).

B. Cockburn and C.-W. Shu. The Local Discontinuous Galerkin Method for Time-Dependent
Convection-Diffusion Systems. J. Numer. Anal., 35:2440-2463, (1998).

B. Cockburn and C.-W. Shu. The Runge-Kutta Discontinuous Galerkin Method for Conser-
vation Laws V : Multidimensional Systems. J. Comput. Phys., 141:199-224, (1998).

K. D. Devine and J.E. Flaherty. Parallel adaptive hp-refinement techniques for conservation
laws. Appl. Numer. Math., 20:367-386, (1996).

C. Drozo, M. Borrel, and A. Lerat. Un schéma de type Galerkin Discontinu pour les systémes
hyperboliques. 2gtme Congres Frangais d’Analyse Numérique, Larnas, Mai 1997.

C. Drozo, M. Borrel, and A. Lerat. Discontinuous Galerkin schemes for the compressible
Navier-Stokes equations. In Lecture Notes in Physics, 16th Int. Conf. on Numer. Methods in
Fluid Dynamics. Arcachon (France), pages 266—272. Springer, (1998).

M. Dubiner. Spectral Methods on Triangles and Other Domains. J. Sci. Comput., 6(4), (1991).
A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high-order accurate
essentially nonoscillatory schemes. J. Comput. Phys., 71:231, (1987).

Changqging Hu and Chi-Wang Shu. Weighted Essentially Non-oscillatory Schemes on Trian-
gular Meshes. J. Comput. Phys., 150:97-127, (1999).

N. Huré, C. Drozo, and M. Borrel. Une méthode multigrille pour un schéma de type Galerkin
discontinu. 30°me Congres Frangais d’Analyse Numérique, Arles, Mai 1998.

G. Jiang and C.-W. Shu. On Cell Entropy Inequality for Discontinuous Galerkin Methods.
ICASE report 93-37, (1997).

P. Lesaint and P.A. Raviart. On a Finite Element method to solve the neutron transport
equation. Partial Differentiel Equations. C. de Boor, Academic Press, New York edition,
(1974).

S.Y. Lin, Y.S. Chin, Y.F. Dung, C.C. Hong, Y.Y. Wang, and C.H. Ko. Discontinuous Galerkin
Finite Element Method for Two Dimensional Conservation Laws. 31st Aerospace Sciences

meeting and Exhibit. ATAA paper 93-0337, (1987).



28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

39

. I. Lomtev, C.B. Quillen, and G.E. Karniadakis. Spectral /hp Methods for Viscous Compress-

ible Flows on Unstructured 2d meshes. J. Comput. Phys., 144:325-357, (1998).

James J. Quirk. A Contribution to The Great Riemann Solver Debate. ICASFE report 92-64,

(1992).

W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation.

Technical Report LA-UR-73-479, (1973).
Denis Serre. Systémes de Lois de conservation I. (Diderot Editeur, Fondations), (1996).

S.J. Sherwin and G.E. Karniadakis. A new triangular and tetrahedral basis for high-order

(hp) finite element methods. Int. J. for Numer. Meth. in Eng., 38:3775-3802, (1995).

S.J. Sherwin and G.E. Karniadakis. A Triangular Spectral Element Method; applications to
the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 123:189—

229, (1995).

S.J. Sherwin and G.E. Karniadakis. Tetrahedral hp Finite Elements: Algorithms and Flows

Simulations. J. Comput. Phys., 124:14-45, (1996).

C.-W. Shu. TVB Uniformly High-Order Schemes for Conservation Laws. Math. Comput.,

49:105-121, (1987).

C.-W. Shu. Total-Variation-Diminishing time discretizations. SIAM J. Sci. Stat. Comput.,

9:1073-1084, (1988).

C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing

schemes II. J. Comput. Phys., 83:32-78, (1989).

A. Suresh and H. T. Huynh. Accurate Monotonicity-Preserving Schemes with Runge-Kutta

Time Stepping. J. Comput. Phys., 136:83-99, (1997).

B. Van Leer. Towards the Ultimate Conservative Difference Scheme. V.A Second-Order Sequel

to Godunov's Method. J. Comput. Phys., 32:101-136, (1979).

Monika Wierse. A new theoretically motivated higher order upwind scheme on unstructured

grids of simplices. Adv. Comput. Math., 7:303-335, (1997).

P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with

strong shocks. J. Comput. Phys., 54:115-173, (1984).



40

Accuracy for 1D Transport equation, uo(x) = sin(wx)

TABLE 1

p! (second order)

p? (third order)

p? (fourth order)

Ax L'-error order L'-error order Ll-error order
unlimited ~ 1/16  2.60E-03 - 2.88F-05 - 3.31E-07 -
1/32  6.49E-04 2.00 3.60E-06  3.00 2.07E-08  4.00
1/64  1.62E-04 2.00  4.50E-07  3.00 1.29E-09  4.00
1/128 4.05E-05 2.00 5.62 E-08 3.00 8.09E-11  4.00
1/256  1.06E-05 2.00 7.03E-09 3.00 5.20E-12  3.95
pGinin 1/16  1.35E-02 - 2.68E-04 - 3.32E-06 -
1/32  2.83E-03 225  2.88FE-05  3.21 1.72E-07  4.26
1/64  5.86E-04 227  2.95E-06 3.29 9.17E-09  4.23
1/128  1.21E-04 2.26  3.00E-07 3.29 4.79E-10  4.25
1/256  2.57E-05 2.24  3.03 E-08 3.30 2.56E-11  4.22
pgmax 1/16  1.10E-02 - 2.13E-04 - 1.43E-06 -
1/32  2.36E-03 223 241E-05 3.14 1.08E-07  3.72
1/64  4.86E-04 228  2.61E-06 3.20 7.26E-09  3.89
1/128  1.02E-04 225  2.79E-07 3.22  4.30E-10  4.07
1/256  2.18E-05  2.22  2.93FE-08  3.25 244FE-11  4.14



Accuracy for 1D Transport equation, uo(x) = sin(wx)

TABLE I1

p! (second order)

p? (third order)

p? (fourth order)

Ax L-error order L°-error order L®-error order
unlimited ~ 1/16  2.85E-03 - 3.22F-05 - 4.62E-07 -
1/32  6.81E-04 2.06 4.03E-06 3.00 2.89E-08  3.99
1/64  1.66E-04 2.03 5.04E-07 3.00 1.81E-09  3.99
1/128  4.10E-05  2.02  6.29F-08 3.00 1.13E-10  3.99
1/256  1.02E-05 2.01 7.86FE-09 3.00 7.96FE-12  3.83
pGinin 1/16  3.17E-02 - 8.75E-04 - 1.43E-05 -
1/32  1.05E-02  1.59  1.64E-04 241 1.31E-06 3.44
1/64  3.47E-03  1.60  2.92E-05 249  1.21E-07  3.44
1/128 1.13E-03 1.61  5.10E-06 2.51 1.10E-08 3.45
1/256  3.68E-04 1.62 888FE-07 252 1.00E-09  3.46
pgmax 1/16  2.75E-02 - 8.01E-04 - 6.31E-06 -
1/32  1.04E-02  1.39  1.50E-04 242 7.91E-07  2.99
1/64  3.17E-03  1.72  2.74E-05 245 9.78E-08  3.01
1/128 897FE-04 1.82 4.97E-06 246 1.00E-08  3.28
1/256  2.95F-04 1.60  88E-07 249 9.59FE-10  3.39
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Accuracy for 1D Transport equation, uo(z) = sin*(wx)

TABLE III

p! (second order)

p? (third order)

p? (fourth order)

Ax L'-error order Ll-error order Ll-error  order
unlimited ~ 1/16  0.18F-01 - 0.43E-03 - 0.18E-04 -
1/32  0.26E-02 275 051E-04 3.03 0.11E-05  4.00
1/64  0.55E-03 225  0.64E-05 299 0.71E-07  4.00
1/128 0.13E-03 2.06 0.79E-06 3.00 0.45FE-08  4.00
1/256  0.32E-04  2.02 0.99E-07 3.00 0.28E-09  4.00
pGinin 1/16  0.81E-01 - 0.90E-02 - 0.19E-02 -
1/32  0.17E-01 225 0.10E-02 3.12 0.74E-04  4.70
1/64  0.34E-02 2.33 0.10E-03 3.31 0.31E-05  4.57
1/128 0.66E-03 2.34  0.10E-04 3.33 0.13F-06  4.59
1/256  0.13E-03 2.31  0.10E-05 3.33 0.57E-08  4.51
pgmax 1/16  0.78E-01 - 0.77E-02 - 0.14E-02 -
1/32  0.16E-01 224 0.95FE-03 3.02 0.62E-04  4.49
1/64  0.33E-02 2.33 0.10E-03 3.25 0.28E-05  4.46
1/128 0.65E-03 2.34  0.10E-04 3.30 0.12E-06  4.53
1/256  0.13E-03  2.31  0.10E-05 3.31 0.55F-08  4.48



TABLE IV

Accuracy for 1D Transport equation, uo(z) = sin*(wx)

p! (second order) p? (third order) p? (fourth order)

Ax L-error order L®-error order L°-error order
unlimited ~ 1/16  0.19E-01 - 0.35E-03 - 0.15E-04 -
1/32  0.35FE-02 247 043FE-04 3.03 093FE-06 3.98
1/64  0.67E-03  2.37 0.54FE-05 299  0.58FE-07  3.99
1/128  0.14E-03  2.24  0.68E-06 3.00  0.36E-08  4.00
1/256  0.32E-04  2.14  0.84E-07 3.00 0.23E-09  3.99
pGinin 1/16  0.12E+00 - 0.98E-02 - 0.25E-02 -
1/32  0.42FE-01 148 0.19E-02 2.39 0.19E-03 3.75
1/64  0.14E-01  1.57 0.33E-03 248 0.12E-04  3.94
1/128  0.46E-02  1.60  0.59E-04  2.50  0.77E-06  4.01
1/256  0.15E-02  1.62  0.10E-04  2.52  0.48E-07  4.00
pgmax 1/16  0.11E+00 - 0.82E-02 - 0.25E-02 -
1/32  0.41E-01 147 0.18E-02 220 0.18E-03  3.77
1/64  0.14E-01  1.56 0.32E-03 246 0.12E-04  3.90
1/128  0.46E-02  1.60  0.58E-04  2.47  0.76E-06  4.01
1/256  0.15E-02  1.62  0.10E-04  2.51  0.48E-07  4.00
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TABLE V

Accuracy for u; + Uz + 1y = 0, uo(®,y) = sin(w(x + y)). Uniform meshes.

L'-norm L% -norm
Scheme h error order error order
Plunlimited % 031E-01 - 0.44E-01 -
Be 0.60E-02 234 0.99E-02 2.14
Bo  0.13E-02 222 0.29E-02 179
%o 0.30E-03 2.3 0.76E-03 1.91
P?mlimited % 0.11E-02 - 0.33E-02 -
Bo 0.13E-03 3.04 042503 2.99
Bo  0.16E-04 3.01 0.52E-04 3.00
Be  0.20E-05 3.00 0.65E-05 2.9
P'-limited o 061E-01 -  0.76E-01 -
Bo 0.17E-01 1.83 0.42E-01 0.6
Bo  045E-02 193 0.18E-01 1.26
he  0.11E-02  2.02  0.56E-02 1.66
P2 limited b 033E-02 -  0.76E-02 -
Bo 0.43E-03 296 0.13E-02 2.60
Bo  053E-04 3.00 0.24E-03 2.37

| >

0.61E-05 3.12 0.46E-04  2.40
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TABLE VI

Accuracy for u; + 4z + uy = 0 and uo(x,y) = sin(w(x + y)). Non-uniform meshes

L*-norm L% -norm
Scheme h error order error order
Plounlimited % 0.82E-01 - 0.19E4+00 -
bo 017E-01 227 0.42E-01  2.15
bo  0.37E-02 219  0.92E-02  2.19
ho 0.86E-03 2.11  0.23E-02  2.00
P?-unlimited %  0.40E-02 - 0.13E-01 -
ho  0.43E-03  3.22  0.19E-02  2.79
bo 0.50E-04 3.08  0.23E-03  3.01
bo 0.62E-05 3.03 0.27E-04  3.09
P! limited Bo o 091E-01 - 0.19E4+00 -
ho0.20E-01 220 0.46E-01  2.01
Lo 0.50E-02 199  0.19E-01  1.26
bo 0.12E-02  2.02  0.79E-02  1.29
P?limited bo  0.10E-01 - 0.24E-01 -
bo  0.14E-02  2.89  0.42E-02  2.54
Bo 0.16E-03 3.06 0.93E-03  2.17

>
o>|o

T 0.19E-04 3.11 0.17E-03 2.43
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Accuracy for u; 4+ uy +u, = 0 and uo(, y) = sin*(7w(z + y)). Uniform

TABLE VII

meshes
L*-norm L% -norm
Scheme h error order error order
P'unlimited % 0.31E400 - 0.26E4+00 -
bo o 0.11E+00 1.50  0.88E-01  1.58
Bo o 0.19E-01 252 0.19E-01  2.19
ho 0.29E-02 271 0.34E-02  2.51
P?unlimited %2 0.64E-01 - 0.54E-01 -
bo 0.44E-02  3.86  0.35E-02  3.93
bo 0.31E-03 3.83  0.53E-03  2.72
ho 0.33E-04  3.25  071E-04 292
P! limited Bo 0.39E4+00 - 0.33E400 -
bo 0.14E+00 143  0.14E400  1.27
b 0.33E-01 212 0.52E-01 140
bo 077E-02 210 0.19E-01  1.42
P2 limited Bo o 0.15E400 - 0.14E4+00 -
ho 0.27E-01 243  0.36E-01 194
bo o 0.42E-02 269  0.87E-02  2.05
bo o 0.34E-03  3.62  0.96E-03  3.17

16



Accuracy for u; + uy + u, = 0 and wuo(x,y) = sin*(w(x + y)).

TABLE VIII

uniform meshes

L*-norm L% -norm
Scheme h error order error order
P'unlimited % 0.55E4+00 - 0.51E+400 -
bo o 0.20E4+00 1.46  0.25E+00  1.02
Bo o 0.52E-01  1.92  0.84E-01  1.60
bo 0.85E-02  2.62  0.17E-01  2.33
P?unlimited % 0.18E4+00 - 0.21E400 -
Bo 0.24E-01 290 0.37E-01  2.54
bo o 0.14E-02 411 0.28E-02  3.70
bo 0.11E-03  3.65  0.39E-03  2.84
P! limited Bo 059E400 - 0.54E400 -
ho 0.21E+00 1.48 0.26E+00 1.03
bo 0.54E-01  1.96  0.83E-01  1.66
ho 011E-01 229 0.21E-01 197
P2 limited Bo 0.23E400 - 0.27E400 -
bo 0.43E-01 245 0.75E-01  1.82
bo o 067E-02  2.67  0.14E-01  2.39
b 0.82E-03 3.03 0.30E-02 224

16

Non-

47



TABLE IX

Accuracy for the vortex advection. Uniform meshes

L*-norm L% -norm
Scheme h error order error order
Plunlimited 22 093E-02 - 0.20E4+00 -
Bo  0.25E-02 1.92 048E-01  2.07
Bo  055E-03 217 0.11E-01 211
B 0.12E-03 213  030E-02 1.91
P?-unlimited % 0.16E-02 - 0.18E-01 -
Bo 0.25E-03 264 0.53E-02 1.77
Bo  0.29E-04 313 0.69E-03  2.94
Be  031E-05 3.20 0.92E-04 291
P'-limited B 0.98E-02 - 0.22E400 -
Bo 020E-02 1.78 0.61E-01  1.86
Bo  0.72E-03 1.98 0.18E-01  1.74
he  0.18E-03  1.97  0.69E-02  1.40
P2 limited B 063E-02 - 0.12E400 -
Bo  0.10E-02  2.60  0.24E-01  2.29
Bo  0.83E-04 3.64 0.23E-02 334

>
o>|o

0 0.77E-05  3.44 0.33E-03 2.85



TABLE X

Accuracy for the vortex advection. Non-uniform meshes

L*-norm L% -norm
Scheme h error order error order
Plunlimited 22 0.78E-02 - 0.13E4+00 -
Bo 021E-02 1.87 049E-01  1.40
Bo  0.49E-03 213 0.11E-01  2.17
B 0.12E-03 207 031E-02 178
P?-unlimited % 0.16E-02 - 0.28E-01 -
Bo 0.23E-03 276  0.60E-02  2.24
Bo  0.28E-04 3.04 0.77E-03  2.96
"o 0.32E-05 3.5  0.10E-03  2.96
P'-limited B 0.94E-02 - 0.20E400 -
Bo 020E-02 1.71  0.65E-01  1.61
Bo  0.73E-03 1.97 i0.23E-01  1.53
ho  0.18E-03  2.02  0.89E-02  1.35
P2 limited B 081E-02 - 0.13E400 -
Bo  0.12E-02 272 0.26E-01  2.33
Be  0.11E-03 348  0.26E-02  3.30

>
o>|o

0 0.14E-04 3.01 0.46E-03 2.50
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min

min

Effects of slope limiters for a smooth (top) and a non-smooth (bottom) extremum,

FIG. 1.

; the proposed limiter (designed by max) and the Biswas et

for piecewise linear RKDG methods

al. limiter (min) act differently for a smooth extremum
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FIG. 2. Sod shock-tube problem. 100 points. The resulting density contours of employing
the new limiter, exact solution (solid line), approximate solution (o). Second-order (top) and

third-order (bottom) approximations
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FIG. 3. Sod shock-tube problem. 100 points. The resulting velocity contours of employing

the new limiter, exact solution (solid line), approximate solution (o). Second-order (top) and

third-order (bottom) approximations
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FIG. 4. Shu and Osher’s test case. The resulting density contours of employing the new
limiter. 300 points. Exact solution (solid line), second-order P! (top) and third-order P? (bottom)

approximate solutions (o)
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FIG. 5. Shu and Osher’s test case. 300 points. Exact solution (solid line) and fourth-order
P? approximate solution (o). The resulting density contours of employing the new limiter (top)

and the Biswas et al. limiter (bottom)
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Notations for the neighbours of the triangle Ky
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Notations for the limiting procedure at solid walls
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FIG. 10. Shu and Osher’s test case. The resulting density contours of employing the
new limiter defined for the two-dimensionnal method. Second-order P! (top) and third-order P?

(bottom) approximate solutions. 300 points in the direction of the flow field
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FIG. 11. Shu and Osher’s test case. A third-order P? approximate solution in regions of
regularity and second-order P! approximation near solution discontinuities (top) and a P? ap-
proximate solution without applying the regularity criterion (bottom). Two-dimensional solution,

300 points in the direction of the flow field
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FIG. 12. The coarsest uniform mesh for test accuracy with the linear transport equation
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FIG. 13. The coarsest nonuniform mesh for test accuracy with the linear transport equation
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FIG. 16. Forward-facing step problem. Second-order P! results with mesh A (top) and

mesh B (bottom). Density p : 30 equally spaced contour lines from p = 0.090338 to p = 6.2365.
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FIG. 17. Forward-facing step problem. Second-order P! results with mesh A (top) and

mesh B (bottom). Mach number : 25 equally spaced contour lines from 0.02 to 3.82.
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FIG. 18. Forward-facing step problem. Second-order P! results with mesh A (top) and
mesh B (bottom). Entropy production near the step corner : 17 equally spaced contour lines from

0.63 to 1.5.
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FIG. 19. Forward-facing step problem. Second-order P! results with the minmod limiter
and mesh B. Density p : 30 equally spaced contour lines from p = 0.090338 to p = 6.2365 (top).
Mach number : 25 equally spaced contour lines from 0.02 to 3.82 (middle). Entropy production

near the step corner : 17 equally spaced contour lines from 0.63 to 1.5 (bottom).
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FIG. 20. Forward-facing step problem. Third-order P? results with mesh A (top) and

mesh B (bottom). Density p : 30 equally spaced contour lines from p = 0.090338 to p = 6.2365.
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FIG. 21. Forward-facing step problem. Third-order P? results with mesh A (top) and

mesh B (bottom). Mach number : 25 equally spaced contour lines from 0.02 to 3.82.
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FIG. 22. Forward-facing step problem. Third-order P? results with mesh A (top) and
mesh B (bottom). Entropy production near the step corner : 17 equally spaced contour lines from

0.63 to 1.5.
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FIG. 23. Shock passing a backward-facing corner. Details of the triangulation around the
corner for the coarse mesh (top). Third-order P? results with new limiter on the coarse mesh
(middle) and the fine one (bottom). Density p : 25 equally spaced contour lines from p = 0.066

to p = 7.06.



