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Abstract

Benchmark results are reported of two separate sets of numerical experiments on the collision of a dipole

with a no-slip boundary at several Reynolds numbers. One set of numerical simulations is performed with a

finite differences code while the other set concerns simulations conducted with a Chebyshev pseudospectral

code. Well-defined initial and boundary conditions are used and the accuracy and convergence of the

numerical solutions have been investigated by inspection of several global quantities like the total kinetic

energy, the enstrophy and the total angular momentum of the flow, and the vorticity distribution and vor-
ticity flux at the no-slip boundaries. It is found that the collision of the dipole with the no-slip wall and the

subsequent flow evolution is dramatically influenced by small-scale vorticity produced during and after the

collision process. The trajectories of several coherent vortices are tracked during the simulation and show

that in particular underresolved high-amplitude vorticity patches near the no-slip walls are potentially

responsible for deteriorating accuracy of the computations in the course of time. Our numerical simulations

clearly indicate that it is extremely difficult to obtain mode- or grid-convergence for this seemingly rather

simple two-dimensional vortex–wall interaction problem.
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1. Introduction

Direct numerical simulations (DNS) of two-dimensional (2D) turbulence in bounded domains
have recently elucidated the importance of the role of no-slip boundaries in general, and vortex–
wall interactions in particular. For example, the evolution of the number of coherent vortices dur-
ing the decay of 2D turbulence in a container with rigid boundaries is strongly modified by the
formation of vortices that originate from thin detached boundary layers [1]. The boundaries thus
act as a source of relatively small-scale vortices. In an attempt to quantify the amount of vorticity
produced near the no-slip walls Clercx and van Heijst [2] proposed to set up a relatively simple
numerical experiment: create a self-propelling dipole in a square container with no-slip walls, that
unavoidably moves to one of the boundaries, and analyse the vorticity production in the boun-
dary layers. This study was restricted to the accurate simulation of the primary collision of a di-
pole with a no-slip wall, and was therefore not extremely CPU and memory demanding as long as
the integral-scale Reynolds number Re ¼ UW

m K 10; 000 (with U and W characteristic velocity and
length scales of the flow and m the kinematic viscosity of the fluid). After the formation of the
boundary layers and the subsequent detachment, a complicated sequence of vortex–wall interac-
tions is observed to take place. Such events have been reported already one decade ago by Orlandi
[3], but our numerical experiments discussed in the present paper revealed the enormous difficulty
to obtain a well-resolved interaction scenario of the dipole with the no-slip wall, usually including
a sequence of vortex–vortex and secondary vortex–wall interactions.

The observation that the proposed simple 2D dipole-wall collision experiment represents an ex-
tremely tough numerical test case for benchmark purposes, which will be further substantiated in
this paper, underlines the need for a better understanding of the relevant physical mechanisms.
This is not only important for the relatively simple 2D flows, but also for 3D bounded flows or
flows around bluff bodies. Moreover, one should be aware of the possible lack of resolution of
the boundary layers in many 3D flows. It should be mentioned, however, that in 2D flows the
energy preferably moves from small scales towards large scales (as a result of the inverse energy
cascade). Therefore, it might be expected that 2D flows will be more sensitive to small-scale details
of the flow and back-scatter phenomena than 3D flows.

The perpendicular dipole-wall collision experiment has also become a test case to investigate the
reliability of several numerical codes such as those for 2D incompressible bounded flows and for
open 2D flows with obstacles. For example, Ould-Salihi et al. [4] used the dipole-wall collision to
validate particle methods against finite-difference methods and Cottet et al. [5] used the dipole as a
benchmark to validate mesh adaptation techniques that allow using refined vortex methods in
both directions near the wall. The dipole-wall collision has also been used to investigate the per-
formance of a B-spline based numerical method on a zonal embedded grid [6]. The normal dipole-
wall collisions in these numerical experiments were conducted at a much more qualitative level
than reported in the present paper. In our opinion the dipole-wall collision has, however, never
got the status of a mature benchmark experiment, as it should be, to validate quantitatively alter-
native numerical techniques. A few examples of these techniques, suitable for problems requiring
well-resolvedness of the thin boundary layers near no-slip walls, are vortex methods [4,5,7], the
recently successfully applied penalisation techniques for finite differences and pseudospectral
Navier–Stokes solvers [8,9], and immersed boundary methods [10]. In particular, the accurate pre-
diction of the vorticity produced near these boundaries is found to be essential for the accurate
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prediction of vortex trajectories, and the subsequent secondary vortex–wall collisions for example.
In this paper we investigate the normal and oblique dipole-wall collision, where the latter one con-
cerns the collision of a dipole with the boundary near one of the corners of the square domain,
with two completely different numerical methods that were available �on-the-shelf � for this pur-
pose: a finite differences scheme using a V-cycles multigrid procedure, and a pseudospectral
Chebyshev method. As will be seen, a well-resolved flow evolution1 beyond the primary dipole-
wall collision is found to be extremely CPU and memory demanding despite the simplicity of
the flow problem. Benchmark data are provided for a series of numerical experiments, including
predictions of the vorticity and vorticity gradients during the interaction process and the vortex
trajectories.
2. Numerical methods

The present investigations concern numerical studies of the normal and oblique collision of a
dipole with a no-slip wall. The 2D incompressible Navier–Stokes equations have been solved
numerically by a finite differences scheme (in the primitive variable formulation) and by a pseudo-
spectral scheme (in the velocity-vorticity formulation).

2.1. Finite differences numerical simulation in primitive variables

We solve the 2D unsteady Navier–Stokes equations written in primitive variables for an incom-
pressible flow in a square domain D ¼ ð�1; 1Þ � ð�1; 1Þ with the no-slip condition at the bound-
ary oD. The Cartesian coordinates in a frame of reference are denoted by x = (x,y). The
dimensionless formulation reads
1 In

Cheby

comp
ou
ot þ ðu � rÞu� 1

Rer
2uþrp ¼ 0 in DT ¼ D� ð0; T Þ;

r � u ¼ 0 in DT ;

uð�; 0Þ ¼ u0 in D;

u ¼ 0 on oDT ;

8>>><
>>>:

ð1Þ
where u = (u,v) and p are the dimensionless velocity and pressure, respectively, Re = UW/m is the
integral-scale Reynolds number (where U is a characteristic velocity of the flow, W the half width
of the domain and m the kinematic viscosity of the fluid) and u0 is the initial datum that checks
numerically the boundary condition (see Section 3). Time has been made dimensionless by the
advection time scale W/U.

The evolution problem is approximated by a second-order Gear scheme with explicit treatment
of the convection term,
other words, and used throughout this paper, mode-convergence when pseudospectral methods with sufficient

shev polynomials in both coordinate directions are used, or grid-convergence when using a sufficiently fine

utational grid for the finite differences method.



Fig. 1. A staggered cell as used in our finite difference computations (see text for more details).
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3un

2Dt � 1
Rer

2un þrpn ¼ 4un�1�un�2

2Dt � 2ðun�1 � rÞun�1 þ ðun�2 � rÞun�2 in D;

r � un ¼ 0 in D;

un ¼ 0 on oD.

8><
>: ð2Þ
The use of a second-order scheme is crucial as the first-order Euler scheme for instance does not
describe properly the evolution of the solution unless a very low CFL number is used.

The primitive unknowns velocity and pressure are set on staggered grids as illustrated on Fig. 1.
The space approximation is then performed using second-order centered finite differences for the lin-
ear terms anda third-orderupwindMurman scheme for the convection termasdescribedbyBruneau
and Saad [11] andBruneau and Jouron [12]. The schemes aremodified at the boundary to better inte-
grate the no-slip condition and keep the second-order accuracy. The location of the unknowns
enforce the divergence-free equation which is discretized on the pressure points inside a cell. The
equations are solved by a strongly coupled method where the discretized equations in velocity and
pressure are solved simultaneously. The pressure is computed directly with the velocity and no cor-
rection is needed. As the pressure is knownwith respect to a constant, it is chosen to shift the pressure
field in order to have p = 0 at the center (0,0) of the domain. DNS are performed using a V-cycles
multigrid algorithmwith a cell by cell relaxation procedure as smoother. That means that a 5 · 5 lin-
ear system for the five unknowns of a cell is solved before going to the next cell [11]. The coarsest grid
is chosen very coarse (a 4 · 4 or a 6 · 6 uniformmesh) in order to get easily themeanflowandadiadic
refinement is used to construct the finer grids. A set of nine or ten grids is currently used to solve this
problem.As an examplewe canhave a 6 · 6 grid as gridone, a 12 · 12 grid as grid twoand soonup to
a 3072 · 3072 grid as grid tenwhich is the finest grid onwhichwepresent the results. Sowhenwe refer
to a 3072 · 3072 grid solution thatmeans thatwe have the previous set of grids andwhenwe refer to a
2048 · 2048 grid solution that means that we have a set of ten grids starting from the coarsest 4 · 4
grid. In the followingwe shall refer to a finite differences approximation by giving the numberNFD of
equidistant cells in each direction on the finest grid; for instance NFD = 2048.

2.2. A 2D pseudospectral Chebyshev method in the (u,x) formulation

Pseudospectral simulations were performed with a numerical code developed by Clercx [13].
The pseudospectral scheme is based on an expansion of the flow variables in Chebyshev polyno-
mials, allowing the application to flows in bounded domains with no-slip boundaries. On the
domain D, the vorticity problem can be written in the dimensionless form [14]
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ox
ot þ ðu � rÞx ¼ 1

Rer
2x in DT ;

xð�; 0Þ ¼ x0 in D;

x ¼ r� u on oDT ;

8><
>: ð3Þ
where x = ov/ox � ou/oy is the dimensionless (scalar) vorticity and x0 the initial datum. The inte-
gral-scale Reynolds number is defined as before, Re = UW/m. The vorticity problem (3) has to be
solved in combination with the Poisson problem
r2u ¼ k̂�rx in DT ;

u ¼ 0 on oDT

(
ð4Þ
with k̂ the unit vector perpendicular to the plane of the flow. The time discretization of the vor-
ticity equation (3) consists of the second-order explicit Adams–Bashforth scheme for the advec-
tion term and the implicit Crank–Nicolson procedure for the diffusion term. Application of
this semi-implicit scheme to Eq. (3) yields
ðr2 � kÞxnþ1 ¼ �ðr2 þ kÞxn þ Re½3ðu � rxÞn � ðu � rxÞn�1� in D ð5Þ

with k = 2Re/Dt. Once the new value xn+1 of the vorticity at time step n + 1 is calculated by means
of (5), the Poisson equations for the velocity field are solved straightforwardly: r2unþ1 ¼
k̂�rxnþ1 in D with un+1 = 0 on oD. An alternative discretization scheme, based on a Runga–
Kutta procedure, is used for the first time step in order to keep the overall time integration scheme
second-order accurate.

The spatial structure of the flow field is approximated by expanding the vorticity and both com-
ponents of the velocity in a doubly-truncated series of Chebyshev polynomials, for instance:
xðx; y; tÞ ¼
XN
n¼0

XM
m¼0

x̂nmðtÞT nðxÞT mðyÞ; ð6Þ
where the Chebyshev polynomials Tn are defined as T nðxÞ ¼ cosðnhÞ with h ¼ cos�1ðxÞ. On a
square domain, it is often appropriate (but not necessary) to choose M = N. In the following
we shall refer to a pseudospectral approximation by giving the number NSM designating the num-
ber of collocation points in each direction on the finest grid; for instance NSM = 512.

All numerical calculations, except the evaluation of the non-linear terms, are performed in spec-
tral space, i.e. the coefficients x̂nmðtÞ and ûnmðtÞ are marched in time. FFT methods are used to
evaluate the non-linear terms following the procedure designed by Orszag [15], where the padding
technique has been used for de-aliasing. In order to solve Eq. (5), we need to evaluate the bound-
ary values of the vorticity by means of an influence matrix technique [13]. These boundary con-
ditions and those for the Poisson equations of the velocity field are imposed by means of the
Lanczos tau method [16].
3. Initial and boundary conditions

Two different dipole-wall collision experiments are considered: a normal collision, i.e. the trans-
lation of the dipole being perpendicular to the no-slip wall, and a collision with an angle of



250 H.J.H. Clercx, C.-H. Bruneau / Computers & Fluids 35 (2006) 245–279
incidence of 30�. Numerical experiments have been conducted with a range of integral-scale Rey-
nolds numbers: Re = 625, 1250, 2500 and 5000. The integral-scale Reynolds number is a well-
defined number for our simulations, in contrast with Red the Reynolds number based on the char-
acteristic velocity and length scale of the dipole, which can only be estimated after the dipole has
been formed (around t = 0.1). As will be shown later on, for the present runs the two Reynolds
numbers are of the same order.

The initial (scalar) vorticity field x0 and velocity field u0 should vanish at the boundary, which
guarantees absence of artificial boundary layers due to enforcing the no-slip condition at t = 0. In
order to satisfy these constraints, two equally strong, oppositely signed, isolated monopoles are
put close to each other near the center of the container. The vorticity distribution of the isolated
monopoles is chosen as
x0 ¼ xeð1� ðr=r0Þ2Þ expð�ðr=r0Þ2Þ ð7Þ

with r the distance from the center of the monopole, r0 its dimensionless �radius� (at which the vor-
ticity changes sign) and xe its dimensionless extremum vorticity value (in r = 0). In the present
simulations the exact numerical value for the radius of the monopoles is r0 = 0.1, and
xe � ±320. With this value of r0 the vorticity at the boundary (at r � 1) is virtually zero, as
can be concluded by substituting the numerical value of the ratio r/r0 in Eq. (7).

The value of xe � ±320 is determined by the condition that the total kinetic energy of the dipo-
lar flow field,
EðtÞ ¼ 1

2

Z 1

�1

Z 1

�1

u2ðx; tÞdxdy; ð8Þ
is normalised to E(0) = 2 for all runs (or, alternatively, U ¼ 1=4
R
D
u2 dxdy ¼ 1). As a conse-

quence, both U and W are fixed and increasing the Reynolds number is achieved by decreasing
the kinematic viscosity m only. The initial total enstrophy of the dipolar flow field,
XðtÞ ¼ 1

2

Z 1

�1

Z 1

�1

x2ðx; tÞdxdy; ð9Þ
is X(0) � 800. The exact numerical values for the initial position of the two isolated monopoles is
{(x1,y1), (x2,y2)} = {(0,0.1), (0,�0.1)} for the normal collision experiment, and {(0.0839746,
0.08660254), (0.1839746,�0.08660254)} for the oblique collision experiment. Note that the vortex
located at (x1,y1) has a positive core vorticity, with xe � 320, and the vortex located at (x2,y2) has
xe � �320. This particular choice of initial positions yields similar collision times t1 for the first
collision of the dipole with the wall (0.32[ t1 [ 0.37, depending on the Reynolds number) for
both sets of numerical experiments.

The initial datum u0 = (u0,v0) for the integration of the Navier–Stokes equations in primitive
variables can be derived straightforwardly for a couple of isolated monopoles, satisfying Eq.
(7) and with the vortex centers on {(x1,y1), (x2,y2)}, and is then given by
u0 ¼ � 1

2
jxejðy � y1Þ expð�ðr1=r0Þ2Þ þ

1

2
jxejðy � y2Þ expð�ðr2=r0Þ2Þ;

v0 ¼ � 1

2
jxejðx� x1Þ expð�ðr1=r0Þ2Þ þ

1

2
jxejðx� x2Þ expð�ðr2=r0Þ2Þ

ð10Þ
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and r21 ¼ ðx� x1Þ2 þ ðy � y1Þ
2
and r22 ¼ ðx� x2Þ2 þ ðy � y2Þ

2
. This initial datum also proves that

the no-slip condition is sufficiently well guaranteed by our choice r0 = 0.1 (note that
e�ðr=r0Þ2 � e�100 � 10�44). For the finite differences simulations the initial pressure is set equal to
zero in the whole domain and is updated by the simulation itself within the first iterations. The
pseudospectral simulations of the 2D Navier–Stokes equations in the (u,x) formulation are con-
ducted without any reference to a pressure field.

An issue so far untouched is the relation between Re ¼ UW
m and Red ¼ UdD

m , the Reynolds number
based on the dipole translation speed Ud and the diameter D of the dipole half. The dipole shown
in Fig. 3a can be modelled reasonably well by a Lamb dipole moving with a constant velocity Ud

[17]. The stream function distribution w(r,h), with r and h representing cylindrical coordinates, for
the Lamb dipole is given by
wðr; hÞ ¼ ½2UdJ 1ðkrÞ=kJ 0
1ðkDÞ� sin h for r < D ð11Þ
and w(r,h) = 0 for r P D. The function J1(kr) is the Bessel function of the first kind (and of the
first order). Its derivative is denoted by J 0

1ðkrÞ ¼
dJ1ðkrÞ
k dr . From the definition of Lamb dipole it fol-

lows that J1(kD) = 0, or, assuming that the first zero of J1(kr) should be used, kD � 3.83. Evalu-
ation of the dimensionless energy and enstrophy yields: E ¼ p UdD

UW

� �2
and X ¼ pðkDÞ2 Ud

U

� �2
(using

W and U as characteristic length and velocity scales). Assuming E = 2 and X = 800 we obtain
D
W � 0.19 and Ud

U � 4.2, which results in: Red ¼ UdD
UW Re � 0.80Re. It is important to note that only

an approximate value for Red can be found for a moving dipole in a numerical simulation (it is not
an exact Lamb dipole), and thus introducing some arbitrariness. Hence we found it preferable
to use the well-defined integral-scale Reynolds number Re, even if direct comparison with some
literature data [3–5,18] is then not possible.

As an alternative, the Lamb dipole might be used as an initial condition for the simulations.
This initial condition should then facilitate a direct comparison with the benchmark simulations
reported by Orlandi [3] (although not much numerical data are available from that study for a
quantitative comparison). We refrained from conducting this type of numerical experiments.
The lack of smoothness of the vorticity field of the Lamb dipole, since the derivative of the vor-
ticity field at the edge r = D of the dipole is discontinuous, might eventually spoil the accuracy of
the pseudospectral calculations. Keeping in mind the lack of exhaustive numerical data for bench-
mark purposes in the literature [3–5,18] the initial conditions for the vorticity and velocity field,
based on isolated vortices as introduced in Eqs. (7) and (10), in square bounded domains can in
our view serve as the best starting point for extensive benchmark computations.
4. Normal dipole-wall collision

During the last two decades several investigations have been reported on the interaction of a
dipole with a boundary. For example, the growth and the eventual separation of a boundary
layer due to the (oblique) approach of a vortex pair, in an essentially inviscid flow above a plane
no-slip wall, has been studied analytically and numerically by Ersoy and Walker [19]. To our
knowledge, the first accurate numerical simulation of 2D vortex dipoles impinging perpendicu-
larly on either a flat no-slip (u = 0 at the wall) or a flat stress-free boundary (x = 0 at the wall)
were reported by Orlandi [3]. These numerical experiments were based on DNS of the
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Navier–Stokes equations, thus implying the presence of viscous dissipation away from the flat
plate, although the flow above the plate is essentially advection dominated. The Reynolds num-
ber in his simulations were Red = 800, 1600 and 3200 and 256 · 256 grid points were used in the
computations. The following observations were reported for the run with Red = 800: The primary
vortex induces a sheet with high-amplitude opposite vorticity near the flat plate which detaches
from the boundary. Subsequently the vorticity filament rolls up and forms a secondary vortex
that forms together with the primary vortex an asymmetric dipole. The asymmetric dipole travels
with a curved trajectory, first away from the flat plate and later on it approaches the plate again
and the primary vortex will collide for the second time with the boundary and produces a tertiary
vortex. The secondary vortex is left near the flat plate. The run with Red = 1600 shows a much
more violent vortex–wall interaction, but the scenario resembles the one observed for Red = 800.
However, during the third collision of the primary vortex with the boundary (thus forming a
quartiary vortex) the secondary vortex, sitting stationary near the no-slip wall, merges with
the tertiary vortex. With its antisymmetric counterpart opposite of the symmetry line (remember
that the perpendicular dipole-wall collision is symmetric with respect to the dipole axis) a strong
secondary dipole has been formed which is able to escape from the collision region. This dipole
moves away from the wall, a distinct difference with the Red = 800 experiment. A similar numer-
ical experiment with Red = 3200 revealed persistence of the multiple wall impingement, but the
migration of the secondary dipole from the no-slip wall is absent. However, due to the lack of
grid-independence it was at that time not clear if the migration of the secondary dipole indeed
does not occur.

Similar numerical experiments have been carried out for 2D channel flows by Coutsias and
Lynov [18]. They also observed the migration process away from the wall of the secondary dipole,
although this time the migration starts directly after the pairing process of the secondary vortices.
Similar collision experiments, but now with curved no-slip walls have been presented by Coutsias
et al. [20], and by Verzicco et al. [21]. The latter paper concerns an experimental and numerical
study of the interaction between a vortex dipole and a circular cylinder.

Recently, the role of no-slip boundaries as an enstrophy source in dipole-wall collisions has
been investigated for high Reynolds numbers with DNS in square bounded domains [2]. The Rey-
nolds numbers have been gradually increased up to Re = 1.6 · 105 in these numerical experiments,
and it was revealed that the enstrophy production nearby the no-slip boundary during the dipole-
wall collision is proportional to

ffiffiffiffiffiffi
Re

p
, and is one-to-two-orders of magnitude larger than the ens-

trophy of the dipole itself. It might be expected that very fine grid spacings near the no-slip wall is
essential for a well-resolved DNS of the collision. Indeed, with a fine approximation it is possible
to give a realistic scenario as well as a good estimate of the energy dissipation and the enstrophy
production during the first collision [2,22]. However, as we shall see in the following, even for
medium-range integral-scale Reynolds numbers, an extremely fine discretization is required to
describe accurately several consecutive collisions and to get quantitative results for substantially
larger integration times, viz T � 10t1, with t1 the time of the primary and most severe collision.

In this paper, we have conducted a serie of numerical experiments in order to answer the fol-
lowing key question: What is the required resolution, for a certain range of Reynolds numbers, for
a well-resolved numerical simulation of the dipole-wall collision? The answer on this question is
based on the analysis of the time evolution of E(t), X(t) and the palinstrophy P(t), which is a
measure for the vorticity gradients in the flow,



Table 1

An overview of the pseudospectral and finite differences simulations of the normal and oblique dipole-wall collision

experiments

Dt Re = 625 Re = 1250 Re = 2500 Re = 5000

NSM

128 2.50 · 10�4 · · – –

192 1.25 · 10�4 · – – –

256 6.25 · 10�5 · · · ·
384 3.33 · 10�5 – · · ·
512 2.00 · 10�5 – – · ·
640 1.25 · 10�5 – – · ·

NFD

768 8.00 · 10�5 · – – –

1024 6.25 · 10�5 · · · –

1536 4.00 · 10�5 + · · –

2048 3.13 · 10�5 – + · ·
3072 2.00 · 10�5 – – + ·

The first two columns indicate the resolution (NSM or NFD) and the time step (Dt). The conducted numerical experi-

ments are indicated by a · for both tests and by a + for oblique collision only.
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PðtÞ ¼ 1

2

Z 1

�1

Z 1

�1

ðrxðx; tÞÞ2 dxdy; ð12Þ
on the vorticity distributions along the no-slip boundaries (i.e. xjoDT
) and the vorticity fluxes

ox=onjoDT
, with o/on denoting the normal derivative with respect to the boundary, and on the

detailed vortex trajectories before, and more importantly, after the primary collision. The numer-
ical experiments that have been conducted are summarized in Table 1.

The time steps for the pseudospectral runs, shown in Table 1, were chosen to be Dt � 9=ð2N 2
SMÞ

(satisfying the stability limit DtK 9=N 2
SM [16]) for NSM 6 384. We have relaxed this condition

somewhat for the runs with NSM = 512 and 640 to reduce the total computation time of the runs,
and the lack of scaling with the minimal grid-spacing for high resolutions has thus no special
significance (still DtK 9=N 2

SM).
Inspection of the time evolution of E(t),X(t) and P(t) for t 6 2 revealed the following estimates

for the minimum resolution for mode-convergence: NSM = 256 for Re = 625, NSM = 384 for
Re = 1250, and NSM = 512 for Re = 2500. The data for the runs with Re = 5000 indicate that
mode-convergence is not easily obtained. We found that a minimum resolution of NSM = 640 is
necessary to obtain a mode-convergence up to t � 0.75 only. For t J 0.75 the difference between
the data obtained for NSM = 512 and NSM = 640 start to diverge considerably. This indicates that
initially small-scale flow features, produced during intense vortex–wall interactions, are not fully
resolved yet. Although this does not appreciably affect the flow evolution for t [ 0.75, the inverse
energy cascade and back-scatter phenomena characteristic for 2D flows eventually yields a slightly
modified flow evolution in course of time (as shown by the pseudospectral runs with NSM = 512
and 640). The well-resolved simulations for Re = 625–2500 indicates that mode-convergence
might be achieved for the run with Re = 5000 when NSM � 768. However, the computational
costs keeps us from conducting these simulations. The present observations for the resolutions
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associated with mode-convergence for simulations of dipole-wall collisions is rather disappoint-
ing. We expected initially that a substantially smaller number of Chebyshev polynomials would
suffice, because the grid spacing normal to the boundary is inversely proportional to the total
number of degrees of freedom, N 2

SM. For an equidistant finite differences grid the grid spacing
is only inversely proportional to NFD, the number of grid cells per coordinate direction. Grid-con-
vergence for short-time runs (up to t = 1) is found to occur with NFD = 1024 for Re = 625,
NFD = 1536 for Re = 1250, NFD = 2048 for Re = 2500, and NFD = 3072 for Re = 5000. This res-
olution appears to be consistent with the thickness of the boundary layer. A posteriori estimates
of the boundary layer thickness d, based on the ratio xjoDT

=ðox=onjoDT
Þ indicates that d � 1

4
ffiffiffiffi
Re

p

(for example, dRe=625 � 0.01 and dRe=2500 � 0.005). These results show that the mesh size has to
be five times smaller than the (estimated) boundary layer thickness to achieve grid-convergence.
With the collocation points it is a little bit less clear as the grid is non-uniform and for an accurate
approximation of small-scale vortices and vorticity filaments aligned perpendicularly to the
no-slip wall a small mesh size might be necessary in each direction. This condition is not always
completely fulfilled. The observation that the need of grid refinement is not exclusively in the
direction normal to the wall in turbulent flows is not new; it has long been recognized in the
CFD community, see, for instance, Refs. [6,23].

In Fig. 2a we have plotted E(t) for the runs with Re = 2500. The data from the simulations with
NSM = 384, 512 and 640 collapse onto one curve.2 The data obtained for the run with NSM = 256
shows a somewhat faster dissipation of kinetic energy which becomes visible for t J 0.8, and is a
result from a slightly different flow evolution. The sharp decrease of E(t) at t � 0.33 is due to a
strong dissipation when the dipole collides with the no-slip boundary. A second collision occurs
for t � 0.61 where again an increased dissipation can be observed. In Fig. 2b we have plotted X(t)
for the same set of runs. All data for NSM P 384 collapse onto one curve, but not surprisingly the
enstrophy evolution for the run with NSM = 256 clearly shows an enhanced enstrophy (and an in-
creased dissipation via dEðtÞ

dt ¼ � 2
ReXðtÞ) during the final stage of the computed flow evolution.

Note that the two enstrophy peaks at t � 0.33 and 0.61 signals the first and second collision of
the primary vortices with the boundary. To illustrate the flow evolution we have plotted a se-
quence of vorticity contour plots in Fig. 3 clearly showing the production of small-scale vorticity
patches, and the migration of a secondary vortex dipole. In Fig. 4 we have plotted vorticity con-
tours for the final stage (at t = 2) of our simulation with Re = 2500. In (a) we show the final stage
for the run with NSM = 256 and in (b) for the run with NSM = 640 (which is also representative for
the simulations with NSM = 384 and 512). The different migration process of secondary dipoles is
apparent. The same grid-converged solution is obtained with finite differences (NFD = 2048) and a
similar change in flow behaviour is observed when changing the resolution from NFD = 1024 to
NFD = 2048, indicating that NFD = 1024 results in a too coarse mesh for the present simulation.

The vorticity profiles at the boundary x = 1 and the vorticity flux, i.e. the normal derivative of
the vorticity, at the boundary x = 1 (both shown for �0.6 6 y 6 0) are plotted in Figs. 5 and 6 for
the runs with Re = 625 (NSM = 256), 1250 (NSM = 384), and 2500 (NSM = 640). The data represent
2 Note that NSM = 384, 512, and 640 correspond to expansions with 385, 513, and 641 Chebyshev polynomials per

coordinate direction, respectively.



Fig. 3. Vorticity contour plots of the normal dipole-wall collision experiment with Re = 2500. The pseudospectral

simulations are performed with a resolution NSM = 640. The contour levels are drawn for . . .,�50,�30,�10,10,

30,50, . . . (representing dimensionless vorticity values).

Fig. 2. From left to right: (a) the kinetic energy E(t), (b) the enstrophy X(t), and (c) the palinstrophy P(t) for the normal

dipole-wall collision with Re = 2500 and different resolutions NSM = 256 (dotted), NSM = 384 (dashed), and NSM = 640

(solid) of the pseudospectral simulations.
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Fig. 4. Comparison of the vorticity contour plots of the normal dipole-wall collision experiment for an underresolved

and a well-resolved simulation with Re = 2500. The pseudospectral simulations are performed with a resolution

NSM = 256 (left) and NSM = 640 (right). The contour levels are drawn for . . .,�50,�30,�10,10,30,50, . . . (representing
dimensionless vorticity values).

Fig. 5. Vorticity at the boundary x = 1 for t = 0.4 (solid), t = 0.6 (dashed) and t = 1.0 (dotted) for the normal dipole-

wall collision experiment from pseudospectral simulations. The resolution for the different runs is: (a) NSM = 256, (b)

NSM = 384, and (c) NSM = 640.
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the vorticity and the vorticity flux at the boundary for t = 0.4 (solid), 0.6 (dashed) and 1.0 (dot-
ted). The vorticity distributions and the normal vorticity gradients at the boundary are well-re-
solved; no changes were observed when the resolution was increased further. This is consistent
with the results from the finite differences calculations that show the same vorticity distributions
at the boundary (for the finest grid solutions) for the simulations with Re = 625, 1250 and 2500.
The vorticity flux from finite differences calculations shows similar distributions at the boundary,



Fig. 6. Vorticity flux at the boundary x = 1 for t = 0.4 (solid), t = 0.6 (dashed) and t = 1.0 (dotted) for the normal

dipole-wall collision experiment from pseudospectral simulations. The resolution for the different runs is: (a)

NSM = 256, (b) NSM = 384, and (c) NSM = 640.
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but the computed extrema are found to be less pronounced due to the a posteriori computation of
vorticity gradients on a grid that is coarse compared to the spectral collocation grid.

In Tables 2 and 3 we have summarized the value of the first two maxima of X(t) and P(t),
respectively, and the times at which these maxima occur (t1 and t2 denote the first and second
maximum, respectively) for the runs with Re = 625, 1250, 2500, and 5000. These data are obtained
from the well-resolved simulations based on both the finite differences (FD) and the spectral (SM)
computations. For both simulations the highest values of NSM or NFD, as indicated in Table 1, are
used. Let us point out to the reader that the vorticity is not an unknown in the FD simulations
Table 2

A summary of the values of the first two maxima of the enstrophy for the normal collision experiment, which occur at t1
and t2, respectively

Re Method t1 X(t1) t2 X(t2)

625 SM 0.3711 933.6 0.6479 305.2

FD 0.371 932.8 0.647 305.2

1250 SM 0.3414 1899 0.6162 725.3

FD 0.341 1891 0.616 724.9

2500 SM 0.3279 3313 0.6089 1418

FD 0.328 3270 0.608 1408

5000 SM 0.3234 5536 0.6035 3733

FD 0.323 5435 0.605 3667

SM and FD denote spectral method and finite differences, respectively.



Table 3

A summary of the values of the first two maxima of the palinstrophy for the normal collision experiment, which occur

at t1 and t2, respectively

Re Method t1 P(t1) t2 P(t2)

625 SM 0.3624 1.386 · 107 0.6521 6.777 · 105

FD 0.363 1.296 · 107 0.653 6.561 · 105

1250 SM 0.3326 8.710 · 107 0.6234 7.159 · 106

FD 0.333 7.744 · 107 0.623 6.739 · 106

2500 SM 0.3195 3.968 · 108 0.6046 5.021 · 107

FD 0.320 3.285 · 108 0.604 4.431 · 107

5000 SM 0.3219 1.778 · 109 0.5992 1.04 · 109

FD 0.322 1.397 · 109 0.601 8.102 · 108

SM and FD denote spectral method and finite differences, respectively.
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and is computed a posteriori at the vertices of the meshes by a second-order centered scheme.
Consequently, the computation of the palinstrophy requires a double approximation to compute
the gradients that is not straightforward and could smooth the function.

The formation of secondary dipoles as reported by Orlandi [3] occurs for a certain range of
Reynolds numbers. As can be observed in Fig. 7, where vorticity contour plots are shown for
the flow at t = 1 for runs with Re = 625, 1250, 2500, and 5000, it occurred for the run with
Re = 2500 only. (Here, only a small part of the computational domain has been shown,
0.4 6 x 6 1 and 0 6 y 6 0.6, where we evidently employed the symmetry of the present normal
dipole-wall collision experiment.) Indeed as can be seen on Fig. 3, when the initial dipole collides
into the wall it produces two symmetric dipoles that turn round and collide again into the wall.
According to their distance at the second collision, the dipoles can behave like a rolling-mill and
produce a new dipole that is ejected away. That is the case at Re = 2500 whereas for Re = 5000 the
dipoles are too far away from each other to interact. The vorticity contours computed with the
finite differences method are identical to those obtained with the spectral method, but we can take
benefit of the use of the primitive variables to plot the pressure to see the correlation between the
two quantities (Fig. 8).

By analysing the trajectories and vortex strengths of the primary vortices (the two vortices con-
stituting the dipole before the collision with the wall) we can draw a few conclusions. In Fig. 9a we
have shown the y-position of the primary vortex (with positive vorticity) as function of the dimen-
sion-less time t, and in Fig. 9b the x-position is depicted. The x-coordinate of the primary vortex
indicates that for higher Reynolds number the vortex core approaches the boundary more closely,
but the distance from the boundary after the first collision depends hardly on the Reynolds num-
ber (except for the low-Reynolds number experiment where the vortex core drifts away from the
boundary). The y-coordinate of the primary vortex after the first collision shows distinctly differ-
ent behaviour. The Re = 625 and 1250 experiments show similar evolution of the y-coordinate of
the vortex position, and thus similar primary vortex trajectories. The formation of a secondary
vortex pair after the vortex–wall collision in the simulation with Re = 2500 results in a decreasing
primary vortex separation in course of time (open squares in Fig. 9). Apparently, the removal of
boundary layer vorticity enables the primary vortex cores to approach each other. The run with



Fig. 7. Vorticity contour plots of the normal dipole-wall collision experiment at t = 1 with Re = 625 (a), 1250 (b), 2500

(c), and 5000 (d). Only a small part of the computational domain has been shown: 0.4 6 x 6 1 and 0 6 y 6 0.6. The

pseudospectral simulations are performed with a resolution NSM = 256, 384, 640, and 640, respectively. The contour

levels are drawn for . . .,�50,�30,�10,10,30,50, . . . (representing dimensionless vorticity values).
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Re = 5000 shows separation of the primary vortex cores (filled circles in Fig. 9). No vigorous inter-
action between secondary and tertiary vortices will occur, and no secondary dipole will be formed
which travels away from the right boundary. We have also measured the maximum vorticity xmax

in the (positive) primary vortex. It decays approximately exponentially in course of time, but no
appreciable effects are found that are directly a result of the vortex–wall interaction. In particular,
a more vigorous vortex–wall interaction for the runs with higher Reynolds number does not auto-
matically lead to enhanced vorticity dissipation in the core of the primary vortices. It is even pos-
sible to collect all data reasonably well on a master curve by suitably rescaling time, taking into
account the viscous decay.

Finally, we have collected some numerical data which might be used for benchmarking pur-
poses. These data are obtained from the well-resolved simulations (highest values of NSM and
NFD as indicated in Table 1). In Table 4 are given the primary vortex position and vortex strength
xmax at different times. We provide also for the finite differences simulations the pressure at the
core of the primary vortex. Let us note that the pressure is shifted in such a way that it is kept



Fig. 8. Pressure contour plots of the normal dipole-wall collision experiment in the window (0.4,1) · (0,0.6) at t = 1

with Re = 625 (a), 1250 (b), 2500 (c), and 5000 (d). The finite difference simulations are performed with a resolution

NFD = 1024, 1536, 2048, and 3072, respectively. The contour levels are drawn for . . .,�3,�2,�1,0,1,2,3, . . . and the

contour line 0 goes through the origin of the domain.
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equal to zero at the origin of the domain. The pseudospectral runs with Re = 5000 are slightly
contaminated by residual high-frequency oscillations. These are due to slight under-resolvedness
of the details of the boundary layer formed during the first (and undoubtedly strongest) vortex–
wall interaction, and this affects accurate determination of the position and strength of the
primary vortices. The data from the finite differences runs are based on previously performed
numerical experiments, that were conducted up to t = 1. Moreover, no vorticity data were avail-
able for t = 0.6 [22]. In Table 5 we have summarized the computed values of the global quantities
E(t), X(t), and P(t) at t = 0.25, 0.50, and 0.75, thus before, in between, and after the first two col-



Fig. 9. The trajectory and amplitude of the primary (positive) vortex as function of time. The y-position is displayed in

(a), the x-position in (b), and the vortex amplitude in (c). Data are shown for Re = 625 (open circles), 1250 (filled

squares), 2500 (open squares), and 5000 (filled circles).

Table 4

An overview of the x- and y-coordinate, the maximum strength xmax and the pressure pFD at this maximum of the

positive primary vortex for different times t = 0.6, 0.625, 1.0 and 1.4

Re t (x,y)SM (x,y)FD xmax,SM xmax,FD pFD

625 0.6 (0.818,0.165) – 158.9 – –

0.625 – (0.832,0.166) – 154.2 �14.57

1.0 (0.805,0.254) (0.805,0.254) 102.6 102.6 �8.48

1.4 (0.769,0.307) – 71.0 – –

1250 0.6 (0.874,0.151) – 219.4 – –

0.625 – (0.885,0.174) – 216.1 �26.86

1.0 (0.848,0.257) (0.848,0.258) 170.3 170.3 �17.53

1.4 (0.809,0.292) – 132.7 – –

2500 0.6 (0.896,0.165) – 261.9 – –

0.625 – (0.896,0.199) – 260.0 �34.81

1.0 (0.826,0.219) (0.826,0.217) 231.4 231.4 �27.05

1.4 (0.798,0.195) – 201.6 – –

5000 0.6 (0.903,0.244) – 286.9 – –

0.625 – (0.884,0.275) – 285.9 �39.37

1.0 (0.811,0.366) (0.811,0.367) 269.1 268.6 �29.60

SM and FD indicate spectral method and finite differences, respectively (the pressure is shifted so that p = 0 at the origin

of the domain).
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lisions (at t1 and t2, respectively) of the dipole with the no-slip wall. This table allows to quantify
in particular the energy dissipation before the first collision with respect to the Reynolds number.



Table 5

A summary of the values of the global quantities for the normal collision experiment at times t = 0.25, t = 0.50 and

t = 0.75

Re t ESM(t) XSM(t) PSM(t) EFD(t) XFD(t) PFD(t)

625 0.25 1.5022 472.6 3.99 · 105 1.502 472.7 3.91 · 105

0.50 1.0130 380.6 5.53 · 105 1.013 380.4 5.49 · 105

0.75 0.7673 255.2 4.87 · 105 0.767 255.0 4.73 · 105

1250 0.25 1.7209 615.0 1.13 · 106 1.721 615.0 1.04 · 106

0.50 1.3132 611.9 1.32 · 106 1.313 611.3 1.29 · 106

0.75 1.0613 484.7 1.66 · 106 1.061 484.4 1.60 · 106

2500 0.25 1.8509 728.2 4.22 · 106 1.851 727.8 3.52 · 106

0.50 1.5416 920.5 3.83 · 106 1.541 916.6 3.56 · 106

0.75 1.3262 808.1 3.79 · 106 1.326 805.5 3.56 · 106

5000 0.25 1.9225 823.1 1.57 · 107 1.923 822.8 1.29 · 107

0.50 1.6924 1340 1.56 · 107 1.692 1328 1.35 · 107

0.75 1.4980 1517 1.95 · 108 1.495 1659 1.86 · 108

Reference values at time t = 0 are E = 2, X = 800 and P = 4.42 · 105. The indices SM and FD denote spectral method

and finite differences, respectively.
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5. Oblique dipole-wall collision

Besides the traditional normal dipole-wall collision experiment we have conducted numerical
experiments of an oblique dipole-wall collision. The initial trajectory of the dipole has an angle
of 30� with the positive x-axis, and collides with the no-slip boundary at x = 1 and y � 0.5 (the
collision time is similar as in the previous section: 0.32[ t[ 0.37, with t � 0.32 for the high Rey-
nolds number cases). After the first collision the primary vortex with positive circulation interacts
with both the right (at x = 1) and the upper (at y = 1) no-slip boundary. As an illustration of the
flow evolution we show in Figs. 10 and 11 some snapshots of vorticity and pressure contours
of runs conducted at Re = 2500 with the spectral method (NSM = 640) and the finite differences
method (NFD = 3072). Both methods give exactly the same solution.

The numerical study of the oblique dipole-wall collision revealed again that an extremely large
number of Chebyshev polynomials or a very dense grid have to be used in order to obtain mode-
convergence or grid-convergence for the dipole-wall collision and its subsequent evolution (see
Table 1). The time evolution of the global quantities such as E(t), X(t) and P(t) can be predicted
with high accuracy up to t = 6 (we did not extend our simulations to t > 6) for Re = 625
(NSM = 256, NFD = 1536) and 1250 (NSM = 384, NFD = 2048). The remnants of the dipole with
Re = 2500 has fully been captured up to t � 3 in a simulation with NSM = 640 or NFD = 3072.
However, it appeared to be much more difficult to obtain mode-convergence or grid-convergence
for the runs with Re = 5000, mainly due to the large fragmentation of the primary dipole after the
collision. Reliable converged results are obtained for t [ 0.8 for both methods, although we
expect that the numerical data from our experiments with NSM = 640 are sufficiently converged
for t [ 1.2. To illustrate the flow evolution for these four different cases we have plotted in Figs.
12 and 13 the vorticity contours, and in Fig. 14 the pressure contours (for the finite differences
calculations only) obtained after the collision of the dipole with the wall (the snapshots are taken



Fig. 10. Vorticity contour plots of the oblique dipole-wall collision experiment with Re = 2500. The pseudospectral

simulations are performed with a resolution NSM = 640. The contour levels are drawn for . . .,�50,�30,�10,10,

30,50, . . . (representing dimensionless vorticity values).
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at t = 1). Contour plots are only shown for the right top corner of the computational domain, i.e.
0 6 x 6 1 and 0 6 y 6 1. The solution for Re = 5000 is not the same with the two methods as the
position of the secondary vortices around the positive primary vortex is different (compare the
vortices and their locations in Figs. 12d and 13d).

The vorticity contour plot of the finite differences calculation with Re = 1250 shows minute dif-
ferences with the pseudospectral computation (virtually no differences were observed for the glo-
bal quantities like energy and enstrophy). The finite differences calculation with Re = 1250 should
probably need a slightly larger resolution, NFD � 2200, but with the available numerical algo-
rithm we had to choose either NFD = 2048 or 3072. Keeping in mind that our aim is not to decide
which numerical method performs best, but to show how difficult it is to simulate a seemingly sim-
ple time-dependent flow problem and to provide well-resolved flow solutions, we concluded that
for this purpose NFD = 2048 is sufficient (whereas the spectral simulation with NSM = 384 yields
the well-resolved simulation).

In Fig. 15 we have plotted E(t), X(t), and P(t) for several runs with Re = 2500. The data are
obtained from spectral simulations performed with 257, 385 and 513 Chebyshev polynomials
per coordinate direction, and the curves displaying the time evolution for the energy and enstro-
phy for NSM = 384 and 512 collapse onto one curve. Also for the oblique collision experiment the
sharp decrease of the kinetic energy at t � 0.32 is due to the strong dissipation when the dipole
collides with the boundary. The palinstrophy is an indicator for (small-scale) vorticity gradients



Fig. 11. Pressure contour plots of the oblique dipole-wall collision experiment with Re = 2500. The finite differences

simulations are performed with a resolution NFD = 3072. The contour levels are drawn for . . .,�3,�2,�1,0,1,2,3, . . .
and the contour line 0 goes through the origin of the domain.
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which are abundant in the boundary layers and produced during the vortex–wall interaction, and
requires a larger numerical effort to obtain mode-convergence for P(t). However, the numerical
data obtained for P(t) in the run with NSM = 512 is representative for the converged flow evolu-
tion and does not differ from the computation with NSM = 640.

The use of the energy, enstrophy and palinstrophy to test the convergence of the flow evolution
has one potential drawback: two seemingly similar curves, for instance the palinstrophy, might
represent slightly different configurations of vorticity patches. As an alternative we have measured
the total angular momentum L of the flow. This quantity, defined with respect to the origin of the
container, has the following form:
LðtÞ ¼
Z 1

�1

Z 1

�1

ðxvðx; tÞ � yuðx; tÞÞdxdy ¼ � 1

2

Z 1

�1

Z 1

�1

r2xðx; tÞdxdy ð13Þ
with r2 = x2 + y2. We have plotted the angular momentum L for the runs at Re = 2500 with the
spectral method (NSM = 256, 384, and 512, respectively) in Fig. 16a and we can conclude that
the convergence of L is a delicate issue. The data obtained in a simulation with NSM = 512 shows
indeed mode-convergence, what is supported by a similar computation with the finite differences
code with NFD = 3072. The agreement of both methods is excellent (see Fig. 16b), and in our view
our simulations fully capture the flow evolution of the dipole-wall collision experiment for
Re = 2500.



Fig. 12. Vorticity contour plots of the oblique dipole-wall collision experiment at t = 1 with Re = 625 (a), 1250 (b), 2500

(c), and 5000 (d). Only the right top part of the computational domain has been shown: 0 6 x 6 1 and 0 6 y 6 1. The

pseudospectral simulations are performed with a resolution NSM = 256, 384, 640, and 640, respectively. The contour

levels are drawn for . . .,�50,�30,�10,10,30,50, . . . (representing dimensionless vorticity values).
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To support this statement we have collapsed the 2DChebyshev spectra of the vorticity onto a 1D
graph and inspect these spectra on exponential decay for large wave numbers. The following proce-
dure has been carried out to compute the 1D spectrumof a function f ðx; yÞ ¼

P
n

P
mf̂ nmT nðxÞT mðyÞ.

We define the wave number p = 1,2,3, . . . ,NSM, the annular domains Pp with boundaries
oPp;inner ¼ p � 1

2
and oPp;outer ¼ p þ 1

2
and compute the spectrum Sf(p) according to
SfðpÞ ¼
1

P

X
n;m2Pp

jf̂ nmj ð14Þ



Fig. 13. Vorticity contour plots of the oblique dipole-wall collision experiment in the window (0,1) · (0,1) at t = 1 with

Re = 625 (a), 1250 (b), 2500 (c), and 5000 (d). The finite differences simulations are performed with a resolution

NFD = 1536, 2048, 3072, and 3072, respectively. The contour levels are drawn for . . .,�50,�30,�10,10,10,30,50, . . .
(representing dimensionless vorticity values).
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with P ¼
P

n;m2Pp
the number of Chebyshev wave numbers in the annular domain Pp. In Fig. 17

we have plotted Sx(p) for runs with Re = 2500 and NSM = 384, 512, and 640. The spectra are
obtained for the vorticity fields at t = 0.4 and t = 1.0. The different spectra are virtually on top
of each other for a wide range of wave numbers, and an increase of NSM affects the highest wave
number range only. These spectra show power-law decay of the intermediate wave number expan-
sion coefficients and a clear exponential decay of high wave number expansion coefficients indi-
cating well-resolvedness of the flow. The difference in slope for the spectra at t = 0.4 and
t = 1.0 is most likely attributed to the different dominant flow phenomena represented by both



Fig. 14. Pressure contour plots of the oblique dipole-wall collision experiment in the window (0,1) · (0,1) at t = 1 with

Re = 625 (a), 1250 (b), 2500 (c), and 5000 (d). The finite difference simulations are performed with a resolution

NFD = 1536, 2048, 3072, and 3072, respectively. The contour levels are drawn for . . .,�3,�2,�1,0,1,2,3, . . . and the

contour line 0 goes through the origin of the domain.

H.J.H. Clercx, C.-H. Bruneau / Computers & Fluids 35 (2006) 245–279 267
vorticity spectra. At t = 0.4 the violent vortex–wall interaction produces many small-scale vortices
and vorticity filaments and the inverse energy cascade is assumed to be the dominant process in
the energy spectrum (note that Eq. (14) does not represent the energy spectrum itself, thus report-
ing precise power laws are meaningless). At later times the flow is more or less dominated by
decay processes and a direct enstrophy cascade will dominate the kinetic energy spectrum (see,
for instance, Refs. [24,25]). We assume that these differences in power-law behaviour of the iner-
tial range of the energy spectrum might also be reflected in the vorticity spectrum as defined by
Eq. (14), which seems to be the case.



Fig. 15. From left to right: (a) the kinetic energy E(t), (b) the enstrophy X(t), and (c) the palinstrophy P(t) for the

oblique dipole-wall collision with Re = 2500 and different resolutions NSM = 256 (dotted), NSM = 384 (dashed), and

NSM = 512 (solid) of the pseudospectral simulations.

Fig. 16. The angular momentum for the oblique-wall collision with Re = 2500. The left panel shows the angular

momentum obtained with the pseudospectral method and three different resolution: NSM = 256 (dotted), 384 (dashed),

and 512 (solid). The right panel shows the same quantity obtained with the pseudospectral (NSM = 512) and the finite

differences (NFD = 3072) methods. These data are indistinguishable from each other.
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Exponential convergence of our spectral simulations has been checked for runs with Re = 625
(oblique collision) and 1250 (normal collision). For this purpose we have carried out for each
Reynolds number a series of simulations with a fixed time step and computed E, X, and P at



Fig. 17. The 1D Chebyshev spectra Sx(p) from the oblique dipole-wall collision experiment with Re = 2500. The left

and right panel display the spectra at t = 0.4 and t = 1.0, respectively, for simulations with NSM = 384 (dotted),

NSM = 512 (dashed), and NSM = 640 (solid).
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t = 0.4 just after maximum vorticity and vorticity gradient production at the no-slip walls. For
this series of simulations we used a higher maximum resolution than apparent from Table 1,
NSM,max = 384 for Re = 625 and NSM,max = 512 for Re = 1250. The fixed time step used in these
tests was: Dt = 3.33 · 10�5 for Re = 625 and Dt = 2.00 · 10�5 for Re = 1250. In Fig. 18 we show
a semi-logarithmic plot of the relative error �ct = jE(NSM) � E(NSM,max)j/E(NSM,max) (and similar
definitions for the relative errors of X and P). These estimated errors show indeed exponential
decay for increasing resolution.

The agreement between the computational results from the SM and FD runs is also confirmed
by a comparison of X(t) and P(t) as shown in Fig. 19.

The slight differences observed for the palinstrophy is most likely due to the computation of the
large vorticity gradients in the boundary layers, which is probably not well computed with the fi-
nite differences method (see remarks made in Section 4). This is also illustrated by Figs. 20 and 21
where the contour plots of the vorticity field and the pressure are displayed for three instants in
time for the Re = 2500 simulations. We can see in particular that the pressure localizes the primary
vortices, i.e. the vortices constituting the dipole before the collision (but more local pressure ex-
trema might eventually be formed). The contour plots for t = 1.0 and 2.0 are on top of each other,
consistent with the conclusions drawn on the basis of Figs. 16b and 19. However, it should be
stated again what the price actually is, a spectral computation with 641 · 641 Chebyshev colloca-
tion points or a finite difference calculation with 3072 · 3072 grid cells that require several weeks
of CPU time on a work station. Small differences between the SM and FD results are found in the
vorticity contour plots displayed in Figs. 20c and 21c (at time t = 3). (See the discussion in Section
4 where similar discrepancies have been observed for the normal collision experiment with
Re = 5000, but in that case for t J 0.75.) This indicates that mode- or grid-convergence is not
fully obtained yet, but we would like to emphasize that the data for t [ 2.6 are not affected (in



Fig. 18. The relative error �ct = jf(NSM) � f(NSM,max)j/f(NSM,max) of the energy (f = E, open square), enstrophy (f = X,
filled squares) and palinstrophy (f = P, open circles) of the flow field at t = 0.4 as a function of the resolution NSM.

NSM,max = 384 for Re = 625 (oblique collision), and NSM,max = 512 for Re = 1250 (normal collision). The solid lines

represent exponential functions.

Fig. 19. The enstrophy (left) and palinstrophy (right) for the oblique dipole-wall collision at Re = 2500 obtained with

the pseudospectral (NSM = 512, solid line) and the finite differences (NFD = 3072, dashed line) methods. The data for the

enstrophy are indistinguishable from each other. The small discrepancies observed for the palinstrophy are discussed in

the text.
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Fig. 20. Vorticity contour plots of the oblique dipole-wall collision experiment with Re = 2500 for t = 1.0, 2.0, and 3.0

computed with the pseudospectral method with NSM = 640. Only the right top part of the computational domain has

been shown: 0 6 x 6 1 and 0 6 y 6 1. The contour levels are drawn for . . .,�50,�30,�10,10,30,50, . . . (representing
dimensionless vorticity values) for t = 1.0, and for . . .,�20,�12,�4,4,12,20, . . . for the other vorticity snapshots.

Fig. 21. Vorticity (top) and pressure (bottom) contour plots in the window (0,1) · (0,1) of the oblique dipole-wall

collision experiment with Re = 2500 for t = 1.0, 2.0, and 3.0 computed with the finite differences method with

NFD = 3072. The vorticity contour levels are drawn for . . .,�50,�30,�10,10,30,50, . . . for t = 1.0, and for . . .,�20,

�12,�4,4,12,20, . . . for the other times. The pressure contour levels are drawn for . . .,�3,�2,�1,0,1,2,3, . . . for
t = 1.0, and for . . .,�1.2,�0.8,�0.4,0,0.4,0.8,1.2, . . . for the other times (the contour line 0 goes through the origin of

the domain).
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particular for the pseudospectral calculations). Finally, we have shown plots of X(t), P(t), and L(t)
obtained by the pseudospectral and the finite differences computations for Re = 625, 1250, and
2500 until time t = 2 and Re = 5000 until time t = 1 in Fig. 22. The data are on top of each other,
except for Re = 5000 and tJ 0.75.
Fig. 22. From left to right: X(t), P(t) and L(t) for Re = 625, 1250, 2500, and 5000 computed with the pseudospectral

(solid lines) and the finite differences (dashed lines) method.

Fig. 23. Vorticity at the boundary x = 1 (with �0.5 6 y 6 1) and y = 1 (with 0 6 x 6 1) for t = 0.4 (solid), t = 0.6

(dashed) and t = 1.0 (dotted) for the oblique dipole-wall collision experiment from pseudospectral simulations. The

resolution for the different runs is: (a) NSM = 256, (b) NSM = 384, and (c) NSM = 640.



H.J.H. Clercx, C.-H. Bruneau / Computers & Fluids 35 (2006) 245–279 273
For the oblique collision experiment we have plotted in Figs. 23 and 24 the vorticity profiles
and vorticity fluxes, respectively, at the boundary x = 1 (�0.5 6 y 6 1) and at the boundary
y = 1 (0 6 x 6 1) for the runs with Re = 625 (NSM = 256), 1250 (NSM = 384), and 2500
(NSM = 640). The data represent the vorticity at the boundary for t = 0.4 (solid), 0.6 (dashed)
and 1.0 (dotted). Also for the oblique-collision case the vorticity distributions and the normal vor-
ticity gradients at the boundaries are well-resolved; no changes were observed when the resolution
was increased further.

In Tables 6 and 7 we have summarized the value of the first two maxima of the enstrophy and
the palinstrophy, respectively, and the times at which the maxima occurs for the runs with
Fig. 24. Vorticity flux ox
ox at the boundary x = 1 (with �0.5 6 y 6 1) and the vorticity flux ox

oy at y = 1 (with 0 6 x 6 1) for

t = 0.4 (solid), t = 0.6 (dashed) and t = 1.0 (dotted) for the oblique dipole-wall collision experiment from pseudospectral

simulations. The resolution for the different runs is: (a) NSM = 256, (b) NSM = 384, and (c) NSM = 640.

Table 6

A summary of the values of the first two maxima of the enstrophy for the oblique collision experiment, which occur at t1
and t2, respectively

Re Method t1 X(t1) t2 X(t2)

625 SM 0.3597 768.0 0.6441 304.5

FD 0.360 766.6 0.6435 304.5

1250 SM 0.3351 1478 0.5819 688.8

FD 0.335 1473 0.581 689.4

2500 SM 0.3230 2447 0.5692 1024

FD 0.323 2435 0.569 1024

5000 SM 0.3173 3825 0.5936 1683

FD 0.317 3769 0.591 1707

SM and FD denote spectral method and finite differences, respectively.



Table 7

A summary of the values of the first two maxima of the palinstrophy for the oblique collision experiment, which occur

at t1 and t2, respectively

Re Method t1 P(t1) t2 P(t2)

625 SM 0.3525 9.722 · 106 0.6471 1.290 · 106

FD 0.353 8.887 · 106 0.6475 1.214 · 106

1250 SM 0.3261 5.797 · 107 0.5776 1.142 · 107

FD 0.327 5.166 · 107 0.578 1.056 · 107

2500 SM 0.3150 2.545 · 108 0.5680 2.921 · 107

FD 0.315 2.252 · 108 0.568 2.748 · 107

5000 SM 0.3111 1.029 · 109 0.5941 2.976 · 108

FD 0.311 8.345 · 108 0.591 2.383 · 108

SM and FD denote spectral method and finite differences, respectively.
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Re = 625, 1250, 2500, and 5000. These data are obtained from the well-resolved simulations based
on the FD and SM computations (see Table 1).

The trajectories and vortex strengths jxmaxj as well as the pressure at the core pFD have been com-
puted for the positive and negative primary vortices. The trajectories are shown in Fig. 25; the
x-position of the vortices are shown in Fig. 25a (Re = 625 and 1250) and Fig. 25c (Re = 2500
and 5000). The open symbols denote the positive primary vortices, and the filled symbols represent
the negative ones. Similarly, in Fig. 25b and d the y-position of the primary vortices is displayed. As
can be seen in Fig. 25c and d, no reliable trajectories of the negative primary vortices could be iden-
tified for the simulation withRe = 5000, which is not a surprise keeping the vorticity contour plot of
Fig. 12d inmind: a lot of vortical structures emerge, andwewere not able to identify the remnants of
the vortex of the original dipole with negative circulation. Moreover, the results for the position of
the positive primary vortex could only be determined with sufficient accuracy up to t � 1.2. It is
interesting to see that the trajectory of the positive vortex is only weakly influenced by the Reynolds
number of the flow. This is slightly different for the negative primary vortex. For smaller Reynolds
numbers (Re = 625 and 1250) the negative primary vortex is destroyedwhen it moves in between the
positive primary vortex and the top wall, but forRe = 2500 it survives the passage between the dom-
inant vortex with positive circulation and the no-slip boundary, and it subsequently moves like a
satellite around the much stronger positive vortex.

We have also measured the maximum vorticity jxmaxj of the positive and negative primary vor-
tices in course of time. From these data it is obvious that the negative part of the dipole is more
strongly affected by the no-slip wall, due to a stronger vortex–wall interaction, than its positive
counterpart (see, for instance, Fig. 10). An interesting observation can be made for the vortex
strength in the high Reynolds number runs. Consider the open and filled circles in Fig. 26. The
decrease of the vorticity amplitude xmax of the positive vortex (open circles) suddenly decreases
and behaves virtually linearly as function of time (t J 0.8). This behaviour is absent for the runs
with Re = 625 and 1250, where the decrease is approximately exponential. The contour plots
shown in Fig. 10 indicate a possible mechanism: the positive vortex core is surrounded by small
vortices and vorticity filaments with opposite sign of vorticity. This ring of opposite vorticity
seems to shield the strong positive vortex core from the no-slip walls, thereby reducing the dissi-



Fig. 25. The trajectory of the primary positive and negative vortices as function of time for the oblique collision

experiment. The x- and y-position of the primary vortices is displayed for Re = 625 (circles) and 1250 (squares) in (a, b),

respectively, and for Re = 2500 (circles) and 5000 (squares) in (c, d), respectively. The open symbols denote the positive

primary vortices, and the filled symbols represent the negative primary vortices.

H.J.H. Clercx, C.-H. Bruneau / Computers & Fluids 35 (2006) 245–279 275
pation of the vortex. Another feature is given by the pressure pFD at the core of the primary vor-
tices (Fig. 27). We can see in particular that the evolution of the pressure for the positive primary
vortex is slowed down and even reversed after the collisions.

In Tables 8 and 9 we have collected numerical data on primary vortex position, vortex strength
xmax and pressure at the core pFD which might be used for benchmarking purposes. These data
are obtained from the well-resolved simulations (highest values of NSM and NFD as indicated in
Table 1). As already mentioned in Section 4, the pseudospectral runs with Re = 5000 are slightly



Fig. 26. The (absolute value of the) vortex amplitude jxmaxj of the primary positive and negative vortices as function of

time for the oblique collision experiment. The vortex amplitude of the primary vortices is displayed for Re = 625

(circles) and 1250 (squares) in (a), and for Re = 2500 (circles) and 5000 (squares) in (b). The open symbols denote the

amplitude of the positive primary vortex, and the filled symbols represent the amplitude of the negative primary vortex.

Fig. 27. The pressure pFD at the core of the primary positive and negative vortices as function of time for the oblique

collision experiment. The pressure of the primary vortices is displayed for Re = 625 (circles) and 1250 (squares) in (a),

and for Re = 2500 (circles) and 5000 (squares) in (b). The open symbols denote the positive primary vortex, and the

filled symbols represent the amplitude of the negative primary vortex.
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contaminated by residual high-frequency oscillations. These are due to slight under-resolvedness
of the details of the boundary layer formed during the first (and undoubtedly strongest) vortex–
wall interaction, and affect accurate determination of the position and strength of the primary
vortices (in particular for t = 1.2 in Tables 8 and 9). It appears that the oblique test requires more
modes (SM) or points (FD) to fully converge.



Table 8

An overview of the x- and y-coordinate, the maximum strength xmax and the pressure at this maximum of the positive

primary vortex for four different times t = 0.6, 1.2, 1.8, and 2.4

Re t (x,y)SM (x,y)FD xmax,SM xmax,FD pFD

625 0.6 (0.740,0.659) (0.740,0.659) 161.5 161.4 �19.54

1.2 (0.712,0.772) (0.711,0.771) 93.80 93.74 �10.03

1.8 (0.592,0.717) (0.591,0.716) 63.0 63.0 �5.88

2.4 (0.523,0.693) (0.523,0.693) 46.2 46.2 �3.77

1250 0.6 (0.807,0.607) (0.807,0.607) 220 220 �28.67

1.2 (0.691,0.779) (0.691,0.779) 157.0 157.0 �21.40

1.8 (0.550,0.753) (0.551,0.754) 119.7 119.6 �15.04

2.4 (0.475,0.745) (0.477,0.746) 95.52 95.44 �11.31

2500 0.6 (0.899,0.689) (0.900,0.690) 258.7 258.7 �33.60

1.2 (0.608,0.788) (0.609,0.789) 217.0 216.6 �39.10

1.8 (0.560,0.691) (0.555,0.694) 191.6 191.2 �30.80

2.4 (0.499,0.743) (0.500,0.734) 167.5 167.2 �25.89

5000 0.6 (0.797,0.684) (0.794,0.680) 288 288 �48.02

1.2 (0.612,0.712) (0.643,0.710) 264 264 �43.05

SM and FD indicate spectral method and finite differences, respectively (the pressure is shifted so that p = 0 at the origin

of the domain).

Table 9

An overview of the x- and y-coordinate, the maximum strength xmax and the pressure at this maximum of the negative

primary vortex for four different times t = 0.6, 1.2, 1.8, and 2.4

Re t (x,y)SM (x,y)FD xmax,SM xmax,FD pFD

625 0.6 (0.898,0.364) (0.898,0.365) �151.9 �151.8 �9.26

1.2 (0.872,0.436) (0.872,0.435) �59.9 �59.9 �2.28

1.8 (0.887,0.685) (0.888,0.685) �29.1 �29.2 �0.62

2.4 (0.778,0.898) (0.779,0.896) �15.8 �15.8 �0.23

1250 0.6 (0.928,0.381) (0.928,0.381) �212.7 �212.5 �13.41

1.2 (0.877,0.513) (0.877,0.514) �108.0 �108.3 �5.34

1.8 (0.812,0.865) (0.811,0.867) �63.00 �63.16 �2.60

2500 0.6 (0.923,0.368) (0.923,0.368) �248.3 �248.2 �14.94

1.2 (0.907,0.492) (0.906,0.484) �154.9 �155.1 �7.06

1.8 (0.841,0.746) (0.841,0.738) �103.7 �104.0 �4.46

2.4 (0.40,0.90) (0.448,0.928) �73.9 �74.5 �2.50

5000 0.6 (0.894,0.319) (0.892,0.320) �278 �278 �19.89

1.2 – (0.909,0.470) – �224 �12.83

SM and FD indicate spectral method and finite differences, respectively (the pressure is shifted so that p = 0 at the origin

of the domain).
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6. Discussion and conclusions

We have presented numerical experiments on normal and oblique dipole-wall collisions. This
study was not primarily aimed at investigating the dynamics of dipoles colliding with a no-slip wall,
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but to provide some, at least in our view, reliable data that might be used to test numerical algo-
rithms. This study originated from 2D turbulence simulations on bounded domains where it was
found that the impact of the presence of a no-slip wall has serious consequences for the evolution of
2D turbulence. Moreover, a detailed study on the enstrophy and palinstrophy production by
dipoles colliding with no-slip walls (with Reynolds numbers up to 1.6 · 105) revealed the necessity
of an extremely high resolution of the flow near the boundaries to capture the collision process as
accurate as possible. This could be achieved reasonably well, although the dynamics of the pro-
duced and remaining vortices could not be predicted very well. In this study we focussed therefore
on the relatively low Reynolds number case (Re 6 5000). We used a finite differences and a pseudo-
spectral code for the flow simulation and determined the minimum necessary number of grid cells
or Chebyshev collocation points to capture the flow dynamics as accurate as possible. This mini-
mum number turned out to be extremely large, at least much larger than expected by us. For exam-
ple, the two low Reynolds number examples required at least 257 (Re = 625) and 385 (Re = 1250)
Chebyshev modes per coordinate direction in the pseudospectral simulations and 15362 and 20482

grid cells, respectively, in the finite differences simulations to obtain converged results up to t = 6.
The required resolution for mode- or grid-convergence turned out to be consistent. Consider,

for example, the convergence for the oblique dipole-wall collision with Re 6 2500 up to t � 2.6.
We needed 257, 385, and 513 Chebyshev polynomials (per coordinate direction) for the pseudo-
spectral runs with Re = 625, 1250, and 2500, respectively, and 1536, 2048, and 3072 grid cells per
coordinate direction for the finite differences simulations. This is consistent with the boundary
layer thickness which is proportional to 1=

ffiffiffiffiffiffi
Re

p
.

We expect that the present results might be useful as a benchmark for testing different numer-
ical algorithms. It concerns simple flow problems, with well-defined initial conditions, in a flow
domain with a simple geometry bounded by no-slip walls. This test case might thus be very suit-
able for simulations with vortex methods (see, e.g., Refs. [4,5,7]), penalisation techniques [8,9],
wavelets [26,27], immersed boundary methods [10] and adaptive schemes.
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[21] Verzicco R, Flór JB, van Heijst GJF, Orlandi P. Numerical and experimental study of the interaction between a

vortex dipole and a circular cylinder. Exp Fluids 1995;18:153–63.

[22] Bruneau Ch-H. On the large-Reynolds-number 2D dipole-wall collision benchmark. In: Proceedings of BAIL2002,

Perth, Australia, 2002, p. 55–60.

[23] Kravchenko AG, Moin P, Shariff K. B-spline method and zonal grids for simulations of complex turbulent flows.

J Comput Phys 1999;151:757–89.

[24] Clercx HJH, van Heijst GJF. Energy spectra for decaying two-dimensional turbulence in a bounded domain. Phys

Rev Lett 2000;85:306–9.

[25] Wells MG, Clercx HJH, van Heijst GJF. Vortices in oscillating spin-up. J Fluid Mech, submitted for publication.

[26] Schneider K, Farge M. Coherent vortex simulation of an impulsively started cylinder at Re = 3000 using an

adaptive wavelet method with penalisation. In: Castro IP, Hancock PE, Thomas TG, editors. Advances in

turbulence IX. Barcelona: CIMNE; 2002. p. 471–4.

[27] Schneider K, Paget-Goy M, Pellegrino G, Verga A, Farge M. Direct numerical simulation of an impulsively

started, or uniformly accelerated, plate using adaptive wavelet and Fourier methods with penalisation. In:

Proceedings of the Third International Symposium on Turbulence and Shear Flow Phenomena, Sendai, Japan,

2003. p. 407–12.

http://dx.doi.org/10.1016/j.compfluid.2004.12.004
http://dx.doi.org/10.1016/j.compfluid.2004.12.004

	The normal and oblique collision of a dipole with a no-slip boundary
	Introduction
	Numerical methods
	Finite differences numerical simulation in primitive variables
	A 2D pseudospectral Chebyshev method in the (u, omega ) formulation

	Initial and boundary conditions
	Normal dipole-wall collision
	Oblique dipole-wall collision
	Discussion and conclusions
	Acknowledgments
	References


