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SUMMARY

A new artificial boundary condition for 2D subsonic flows governed by the compressible
Navier—Stokes equations is derived. It is based on the hyperbolic part of the equations,
according to the way of propagation of the characteristic waves. A reference flow as well
as a convection velocity are used to properly discretize the terms corresponding to the
entering waves. Numerical tests on various classical model problems whose solution is
known and comparisons with other boundary conditions show the efficiency of the bound-
ary condition. Direct numerical simulations of more complex flows over a dihedral plate
are simulated, without creation of acoustic waves going back in the flow.

KEY WORDS : Compressible Navier—Stokes equations, Artificial boundary conditions,
Subsonic evolution.

1. INTRODUCTION

In open flow simulations, the fluid evolves in an infinite domain and thus the computing
domain must be obviously truncated. An artificial boundary T is then introduced, on
which appropriate artificial Boundary Conditions (BC) have to be imposed. If the so-
lution obtained on a given truncated domain €2 is equal to the restriction of the infinite
solution on the domain €2, then the artificial BC is perfect, and called transparent BC.
Unfortunately, such a configuration is only an ideal case. A luxurious literature has been
dealing with this subject for more than twenty years. We first propose in this introduction
to quote some papers, focussing on compressible, subsonic and viscous flows evolutions,
governed by the unsteady compressible Navier—-Stokes equations.

On one hand, a good BC should lead to a well-posed mathematical problem. Roughly
speaking, leading to a stable solution with respect to the initial datum. Following the work
of Kreiss for the purely hyperbolic systems [1], Strikwerda established the number and the
kind of BCs to impose on an artificial frontier for incompletely parabolic systems in order
to ensure well-posedness [2]. The proof relies on several simplifying hypothesis which
allow to work on the linearized system with constant coefficients in the half space. With a
Fourier-Laplace transformation in space-time, an Ordinary Differential Equation (ODE)
is obtained. The number of BCs to impose on a given artificial boundary is then equal
to the solutions space dimension of the previous ODE. Non viscous BCs, coming from



the hyperbolic part of the equation, are distinguished from the viscous BCs, coming from
the diffusive part, which have to vanish when the diffusion terms do. This very technical
approach is based on the pseudo-differential opertor’s theory, but Higdon [3] gives a more
simple physical interpretation of it. By using an energy method on the linearized equa-
tions, Gustafsson and Sundstrom [4] and Oliger and Sundstrom [5] propose a new BC for
artificial boundaries. Dutt [6] works on the non—linearized equations, but with the help of
simplifying hypothesis. More recently, Hesthaven and Gottlieb [7] derive an artificial BC
to reach a mathematically well-posed problem. In conclusion, if these artificial BCs are
mathematically relevant, numerical results are not always satisfying. For instance, Oliger
and Sundstrom [5] prove that imposing the pressure on a subsonic compressible outflow
leads to a well-posed problem. Unfortunately, such a crude BC gives rise to strong reflec-
tions in the flow when hydrodynamic disturbances cross the boundary [8].

On the other hand, another way to define artificial BCs is the concept of non-reflecting
BC, which inhibit the reflection of disturbances on the boundary. They are deduced from
the compressible Euler equations, considered as a first approximation of the compressible
Navier—Stokes equations. In the work of Hedstrom [9] and Thompson [10], the principle
is to cancel the wave entering the computational domain. Rudy and Strikwerda [8] adapt
the work of Enquist and Majda [11] and Hedstrom [9] to the compressible Navier—Stokes
equations, and improve it to find a partially non—reflecting BC. In fact, they give a way
to specify the static pressure through a subsonic outflow, which is physically determined
by the outside of the computational domain. Other methods exist to specify artificial BCs
based on physical arguments, like for example the radiative BC of Bayliss and Turkel,
at a subsonic but stationary outflow [12]. More recently, another artificial BC for the
compressible Navier—Stokes equation has been developped by Tourette [13],[14], following
the work of Halpern [15], [16]. Finally, Thompson derived artificial BCs [17], like the
force—free BC, when the non-reflecting BC is not appropriate. It is the case when the
“correct” solution implicitly contains an incoming wave which must not be suppressed.
This situation arises when the solution outside the domain is changing in time and its
behaviour has to be specified inside the domain through the boundaries.

When the BCs needed for solving the problem are obtained, which are called here physical
BCs, it is necessary to adapt them to the numerical implementation and it is also needed
to complete them with further BCs, called this time numerical BCs. These extra BCs are
not required by the physics of the problem, but only by the resolution algorithm which
needs to have the value of all the variables on the boundary. They have to be chosen
in a good way. One of the simplest way is to use extrapolations [18], to deduce missing
variables by using their values inside the computational domain. Another possibility is to
choose numerical BCs consistent with the physical BCs [19],]20],[21].

Nowadays, there are not yet artificial BC for a subsonic compressible outflow which are
transparent for all configurations. We shall see that if some of them are successful with the
vorticity, they generate in return significant acoustic reflections [22],[23]. These reflected
waves can sometimes be responsible for important changes in the behaviour of the flow
[24], and even lead to non-physical solutions [25]. To avoid such phenomena, another way
is to use a buffer zone, adjacent to the physical zone of interest, in which the solution
and/or the equations are gradually modified, so as to reduce disturbances at the outflow
boundary. A first type of problems found in the literature using this technique is the
boundary layer evolution simulation. For it, Street and Macaraeg [26] and Liu et al [27]



for incompressible flows, and latter Pruett et al [28] for compressible ones use a parabo-
lization procedure. Wasistho et al [29] bring the flow to a reference one, using a rather
crude method. A second type of poblems is to make a vortex leaving the computational
domain with as little acoustic reflections as possible. Colonius et al [23] stretch the mesh in
the flow direction and filter the solution, making the perturbations less and less resolved,
hoping that they will be nearly canceled before interacting with the outflow boundary.
This method is efficient, but very costly from the numerical point of view. More recently,
following Berenger for electromagnetics [30], Hu [31] and Tam et al [32] apply the perfectly
matched layer technique for the linearized Euler equations. This method is discussed by
Hesthaven [33]. As explained by Grinstein [24], the usefulness of the buffer approach is
restricted to isolating a region of the flow for relatively short timed unsteady simulations,
or for simulations that are either forced or mainly focussed on the initial shear flow dy-
namics. That’s why they are not reliable for all configurations.

The object of this paper is to make the artificial frontier as transparent as possible in
order to let the flow leaving the computational domain without any perturbation. In
particular, the vortices should not create strong reflections. So, our goal is to improve
the classical non-reflecting BC, in order to significantly decrease the acoustic reflections.
Instead of setting the amplitude of the entering characteristic waves equal to zero, we
propose to keep them and discretize them as accurately as possible. As these waves come
from outside the domain, we need the values of primitive variables at fictitious points
outside the domain to write down the discretization. So, the main work is to find a way
to get the best possible values at these fictitious nodes. This is done by using a steady
reference flow and a convection reference velocity of the flow at the artificial frontier.

We first recall the compressible Navier—Stokes equations, and the characteritic wave am-
plitude definition. The numerical approximation used is then precised, and the present BC
carefully explained. Classical and representative numerical tests are performed to show
its efficiency. Finally, a direct numerical simulation on a dihedral plate is performed.

2. GOVERNING EQUATIONS

The governing equations are the 2D compressible Navier—Stokes equations, given in their
non-dimensionalized formulation, in an orthonormal system and with usual notations by :
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v, k and Pr are respectively the perfect gaz constant, the thermal conductivity coefficient
and the Prandtl number, considered as constant for the simulations we are dealing with.
In order to close the system, the two following relations have to be added :

P = (y—=1)pT State equation

2 2
op = PLEU) b
2 v—1

The Reynolds number of the flow, Re, is defined by :

where u,, [ and v are respectively a characteristic velocity, a characteristic length and the
viscosity of the fluid.

As the domain is bounded, it is necessary to specify some BCs at the frontier. In this
work, three BCs are used :

e (1) A subsonic inflow with velocity and temperature imposed :
Uanaly (1’, y)

u
v Vanaly (1’, y)
T = T

e (2) An isothermal no slip wall :

S]
I
o

e (3) A subsonic outflow.

BC (1) and BC (2) are precisely described in [19]. The density p is computed from the
continuity equation on the boundary itself, and the pressure is deduced from the state
equation. It should be noted that for the BC (1), only three conditions are used while
Strikwerda claims that four conditions are needed for a two-dimensional subsonic inflow
[2]. This feature is picked out by Poinsot and Lele, and is coming from the NSCBC method
used to derive this subsonic inflow BC [19]. Thus, even if this BC is not in good agreement
with the theory, it will be used in this work because of its efficient numerical behaviour
in a lot of different configurations [19]. BC (3) is the main object of this work, and is



carefully described in the next sections.
3. CHARACTERISTIC WAVES

In order to simplify the expression, let us consider a node A, located on a boundary
r = constant, whose outward normal to the boundary is @ = (1,0)7. We reformulate
the equations at node A to derive the amplitude of the characteristic waves normal to the
boundary.

U, OF(U) , OF,U) 1 (aGm(U,VU) . aGy(U,VU))
ot ox dy Re ox dy
— aa_zi . PP‘laFgch) .\ ang(/U) _ é <8Gm(gx,VU) . aGy(gy,VU))
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with A, = P~1Q,

A, is a diagonalisable matrix, thanks to the hyperbolic nature of the convective term in
the equations. Then, by noting A the diagonal matrix, and S the transformation matrix
whose columns are the A, right eigenvectors,

ou 0V oRWU) 1 (aGm(U,VU) aGy(U,VU))
= ot + PSAST Ox oy oy " Re ox + dy
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This last formulation points out the characteristic waves amplitudes vector L. By noting
c the local sound speed,

we can show that [19] :
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Ly, is called the amplitude of the k¥ characteristic wave. According to the sign of the
eigenvalues, the discretization at the boundary has to be done from inside or outside the
domain as we have :

e )\, > 0 means that the wave is leaving the computational domain. In other words,
the information carried by the characteristic is going out of the domain.

e )\, < 0 means that the wave is entering the computational domain. In other words,
the information carried by the characteristic is coming from outside the domain. As
a consequence, a non—viscous physical boundary condition is needed to evaluate Ly.

4. NUMERICAL APPROXIMATION
We perform a Direct Numerical Simulation, using a mixed finite volumes—finite elements
method, developped on an unstructured mesh with triangular cells. This section is de-

voted to briefly explain its implementation for an internal node, that is to say which is
not located on a boundary.

The convective derivative

0F, O0F,
Oz * 8—y
volumes method associated to Roe solver. Let C; be the control volume whose boundary
0Cj joins the middle of the cells and segments surrounding A;, and 7n; be the outward
normal to Cj, we note 9Cy,,, = 9C; N 9C,, (FIGURE 1) and we have :

The convective derivative at node A, < > , is evaluated by a vertex-based finite
l

OF, OF,
area(C) ( ZU) + a—‘”(U)) = Y B (U1 U i)
z Yy L AneK()
with :
K1) = U Am
Ay neighbour of 4,
Mm = faclm njdo = (X7 Y)T
and :

F(U) 4+ Fy(Up, U)+Fy(Up)\ 1 — _

O (U, U, i) = (X. (@) 5 Un) v B0 5 ( ))—52 Nl Swe T
k=1

where 7y is the k' right eigenvector associated with the k" eigenvalue )\k of the Roe

matrix A, evaluated at the well-known Roe averaged U (see for instance [34]) function of

U, and U, :
oF,

“oU

@)+ v @)

A= oU




If we note R the matrix whose columns are 7 (1 <k <4), dwy is the k' component of
the characteristic variations vector dw defined by :

sw=(R) " (U~ U0).

In order to get the second order accuracy in space, we replace the U; and U, variables in
D1, (Up, Uy i) by Ul+ and U, using a MUSCL method :

Uy = Up-\VU, 44,

The gradients are evaluated as in [35]. We first define :

(@».AlAm = (VO A Ay = Uy, — U,

NU), = Z AT
area(C’l nAE k,AgET

(7) S UV,
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where W, is the classical linear base function associated to the node A; in a P; finite
elements formulation. Then,

VU, = (1-B)(0), +BE0),

VUn = (1= B)(V0)m + BT

0<p<1

We choose 3 =1/3. No flux limiter is needed, because of the smoothness of the solutions
we are simulating.

The diffusive derivative

0G,  0Gy
o oy
finite elements method. This is a centered process, with the second order accuracy in
space. Let S; be the control volume made of the cells 7, surrounding the node A; and 7
be the outward normal to S; (FIGURE 1), we have :

1
The diffusive derivative at node Aj, Te ( ) , is evaluated by a classical P;
€ !

Rle (880 (U, VU) + %ﬁ(U VU)>I - areal(Sl) o = areal(Sl) Tm;:e% q>7m’
with : , ) 50 o1,
) = —Earea(Tm) (G (U,VU)— 83: +Gy(U,VU) 8@/)
where 8—a:l (resp.a—yl ) is the derivative in x (resp. y) inside 7, of the base function

associated to the node A;; G,(U,VU) and G, (U, VU) are constant quantities inside 7,



provided u and v are defined in 7, by :

1
Uiy = 3 U
k,ALETm
1
Umoy = 3 > Uk
k,ALETm
The integration in time
We denote U the solution at node A; and at time ¢". In order to compute Ul"H, we

use the Henn method to bring second order accuracy in time. We first begin to define the
full residual at node A; and at time t" :

RUM) =Ry = ()" = Y. @8 (U U, )
AmeK (1)

and the resolution of the ODE :

area(C)) (%_[i>l =R/
gives the value U™ at time t"*! = ¢" + At by
b = U area(C’l)Rl
At R+ Ry
n+l n 1 l
b = U area(CY) ( 2 )

where R} = R(U}").

Remark : The way to proceed is justified because of the mass—lumping approximation,
which can be written :

S U [ wndS = U [ S0, wds = U, [ wids
o s S 4 S\

Moreover, as the scheme is explicit, a CFL condition needs to be imposed [36].

5. THE PRESENT ARTIFICIAL BOUNDARY CONDITION

In order to simplify the explanation, we assume here that the mesh is an uniform cartesian
mesh, and note A; ; the current point on the outflow boundary I' at + = constant (FIGURE
2). As a consequence, the previous subscript [ is replaced by the couple of subscripts (4, 5).

n

OF,
e The tangential convective derivative at node A;; and at time ¢, (8—y> , is com-
Y /iy
puted in the same way than inside the computational domain, but degenerates to

n
one dimension. Here, the estimation of <—y) is evaluated with a 1D Roe scheme
hy

Ay
and a MUSCL technique, and the control volume C;; becomes a segment on the
boundary whose middle is A; ;.



e The diffusive residual ((I>ZV])” is computed in the same way than inside the com-
putational domain. More precisely, the control volume §;; is always made of the
cells surrounding A; ;. Moreover, a boundary term needs to be evaluated whose

expression is :
1

Re
Viscous boundary conditions are then imposed. Since these additional conditions
must have a negligible effect when the viscosity goes to zero, they are only used to

modify the conservation equations before to discretize them at the subsonic outflow
boundary nodes [19]. They are given by :

/ Gx(U, VU)\I’%]dO’
8Si,jﬂl“

o*T
Ox?
00y
= 0.
Oz
a n
The normal convective derivative (8—96) is completely defined by the evaluation of
T /g
(L)ij-

o If ()\k)?] > 0, then the characteristic curve is leaving the computational domain. As
a matter on fact, (Lk)?] is approximated from the solution inside the domain. For
an outflow subsonic boundary, this is the case for (L2)7;, (L3);; and (L4)7';. The
discretisation is then performed with a second order scheme as :

n  _ .n n \2Pio ~A0 1 1308 PE o AP T3P
(Lo = i ((ef) 28z Az

n o _ n ((Vicg, Al T3V
(Le)y; = e

n o _ n n Py g —4P7 1 ;T3P n on Yiig 4wl j+3ui;
(La)i; = (“i,jJFCz',j)( Az T PijCi; Az

o If ()\k)yj < 0, then the characteristic is coming from outside the computational
domain. Now, we can not approximate (Lk)?] from the solution inside the domain
because it would generate instabilities. Extrapolation methods are also inadapted.
For instance, a first order extrapolation on p and u in order to discretise (Lk)f]
would lead to the same gradients as inside the domain, what is unstable. For an
outflow subsonic boundary, this is the case for (L1);.

A first way to proceed is the Non—Reflecting Boundary Condition (NRBC) (see for
instance [19]):

(L1)f; =0 for a subsonic outflow ;
(L1)}; = (L2)}'; = (L3)i; = 0 for a subsonic inflow.

Nevertheless, a pressure drift can arise because the static pressure at infinity po, is
not specified to the flow. In order to avoid such a drawback, a pressure recall can
be added to obtain the Partially Non-Reflecting Boundary Condition (PNRBC) :

o(l - MQ)CZj(ij — Poo)
l

(L1)ity =
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with :
o : the reflection parameter
M : the maximum Mach number in the flow
e the local speed of sound
l : the computational domain characteristic length

The o coefficient needs to be adjusted [8]. As we shall see it, for several numerical
tests these BCs do not give good results. Indeed, if the hydrodynamic disturbances
are often well evacuated, strong acoustic reflections arise.

We now propose a new method to evaluate (Ll)Zj. Let Aj+1; (resp. Ajyo ;) be a fictitious
node, outside the domain, symmetric to A;_1; (resp. A;_o ;) with regards to I'. If Ut
and U/, ; were available, then we would write :

(L) = (ul' — ™) (—P?Jrz,j taApia, — 300 P o Vi T AU — 3“?3’)
1, ,J 1,J 2AT 2] 700 2Ax

Nevertheless, the pi'y5 ;. piitq ;, uiyo ; and uj; ; values are not known, and of course, these
exact values are unreachable. The goal of this section is to find a way to approximate
them, in order to derive a physically relevant value of (Ll)Zj which does not produce
strong acoustic waves.

1. We first determine a global reference steady state V, in the neighbourhood of T :

V=

SIS~ ST

V depends on the flow under consideration, and can be obtained either analytically
or numerically.

2. Then, (V/)" is defined in the computational domain as a perturbation of V :

! —
(V)yr=vr-Vv
and we write :
n o _ n n \ [ “Pit2,i t4Pit1,;—3Pi n on —Uit2 4y, =3
(L) = (uiy —ciy) ( Az ~ PijCij 27z
—(0 )70 @) 30 )T — () AP =3 )T
+ (U — ) P igo TP )ig1 ;79 )iy non i+2,j 41,5 iy
2, ,] 2Ax pm (%] 2Ax

!

= (Lu)i; + (L)
(L_l)?] is easily computed with the knowledge of V.

3. We assume that the perturbations around V at node A;; are convected with a
convection velocity ucony, which depends on the flow under consideration as we shall
see later. Mainly, this convection velocity is the mean flow velocity. Then, we make
the approximation :

/ _9 / _ / / _9 / _ /
(L2~ (ul; — ) —p)iy AP )i T 3W )Yy g T )i A ) 3w )Y
1) =~ U5 = G Az 1,515 Az



11

Ax —
with ¢t,_o = t, — aAt and « = ———. Since V is a steady state, we have :
uconvAt
1—2a n—o 1—2a 11—
(L' o (ul — ) —py; AR Y3t ﬂ.cﬂ._“;d +Au} T =3ul
Vi, g = \Pij i,J 2Az PijCi.; 2Az

The methodology presented above can easily be adapted to other approximations following
the same way to give values of the necessary quantities at the fictitious nodes. We point
out to the reader that ue.n, can not be equal to zero.

Remark : The Present Boundary Condition (PBC) can be used for a local subsonic
inflow. In this particular case, u;'; < 0, and (L2)}; and (L3);'; have also to be specified
and can not be approximated from the solution inside the domain. In fact, the way to
proceed is exactly the same than for (L1)};, and we would have :

(L2)7; = (L2)7; + (L)

(La)iy = ()i + (La)i
6. CLASSICAL NUMERICAL TESTS

6.1 The non—viscous vortex leaving the computational domain

A first relevant test is the non—viscous vortex leaving the computational domain. An
inviscid vortex is superimposed on a simple uniform translation flow. The vortex is de-
fined by its center, and the two velocity components u, and wug, expressed in the polar
coordinates by :

u, . the radial velocity
u = 0 ug : the tangential velocity
2r =r? with: r . the distance to the center
ug = —5Ppe a2 .
a2 a : the vortex radius
®y : the vortex amplitude

In order to entirely define the initialisation field, the pressure and the density have to be
consistent with the velocity. Indeed, imposing a constant pressure would not be satisfying,
because acoustic waves would leave the vortex core. In order to do it, pressure and density
fields are defined by the following system, which has to be integrated :

uj _ Op
'07"_87“
pr  _ Px
pY pdo

A very similar test is presented in several recent papers. Poinsot and Lele [19] first, with
a weakly supersonic main flow and a relative maximum velocity in the vortex of 0.18% of
the main flow convective velocity. Then, with a subsonic flow in Colonius et al [23], who
define a reflection coefficient by

vyl Ol
eollo
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where ||div(t)||oo is the Lo norm of the divergence field at time ¢ and |Jwp|loo is the Lo
norm of the initial vorticity field. Finally, two initialisations are presented by Nicoud [22]
in a subsonic context. The former with a relative maximum velocity in the vortex in the
order of 1% of the main flow velocity, the latter with a relative maximum velocity in the
vortex in the order of 90% of the main flow velocity. He compares the results obtained
with a reference solution, deduced either by the analytical resolution of the equations when
the amplitude is weak and allows the linearization, or by the same simulation on a longer
domain to avoid interaction between the vortex and the outflow boundary. We chose here
to present our results like Nicoud did.

The computational domain is a square of side [ = 1. The mesh contains 101 nodes in
each direction of space, and is made of 20000 triangular cells. The vortex is initially lo-
cated at the center of the domain, and on the (a),(b) and (c) boundaries (FIGURE 3), the
NRBC is imposed. The vortex radius is @ = 0.0751/2, and the Mach number is M = 0.2.
The main flow convection velocity is us, = 1. The simulation is performed up to t = 1.5.
The PBC and the NRBC are successively applied on the boundary (d). The two solutions
are compared to a Reference Solution (RS) obtained by a simulation on a longer domain,
to avoid that the vortex interacs with the outflow boundary. The first vortex amplitude,
®; = —0.1105, leads to a strong vortex Vi, with a relative maximum velocity in the vor-
tex in the order of 90% of the main flow velocity. During the evolution, the boundary
(d) is an outflow subsonic boundary. The second one, ®3 = —0.2210, leads to a very
strong vortex V5, with a relative maximum velocity in the vortex in the order of 180% of
the main flow velocity. As a consequence, the global horizontal velocity can become neg-
ative during the evolution, and the boundary (d) will have sometimes to treat local inflows.

The reference flow chosen to apply the PBC is here very simple, as it is taken equal
to the flow at infinity:
— v
V= 00y Uoo 9] T a. = r
[P , U 707p ] 8$ [0707070]

The reference convection velocity ucony is the velocity at infinity :

Uconv = Uco)

as the vortex is convected at this velocity. Whatever the vortex amplitude is , we can
see that the vorticity is well evacuated from the computational domain even if the PBC
solution is closer to the RS solution than the NRBC solution (FIGURE 4). However, the
NRBC gives rise to a reflection coefficient of the order of 2 %, whereas the PBC induces
a reflection coefficient in the same order as the one obtained with the RS, namely 0.05
% (FIGURE 5). This value is due to the numerical discretisation, and can be considered
as the smallest reflection coefficient we can get. Finally, qualitatively speaking, at time
t = 0.5, when the vortex center is exactly on the outflow boundary, the vorticity field is
a bit perturbed and the pressure field strongly altered by the NRBC, whereas the PBC
gives a pressure field nearly identical to the RS. This phenomenon occurs for both vortices
V1 and for V5, and is displayed for V; on FIGURE 6.

Remark : If we take a weak vortex with for instance &3 = —0.005, then the NRBC
provides results as good as the PBC as far as the vorticity field is concerned. Neverthe-
less, the acoustic field is also altered, like for stronger vortices.
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6.2 The Poiseuille flow

A second relevant flow is the Poiseuille flow. It is a steady viscous flow, that allows
to test the PBC efficiency in such a configuration. The computational domain is a rectan-
gle, with lenght L = 10 and half height [ = 1 (FIGURE 7). The mesh contains 101 nodes in
the horizontal direction and 21 in the vertical direction, it is then made of 4 000 triangular
cells. The Mach number is M = 0.1, and the Reynolds number is Re = 15.

(a) is a subsonic inflow boundary, with velocity and temperature imposed :

2
ul(0, ) = g ll,O—@)] L w0,y =0 T,y =T

(b) and (c) are isothermal no-slip walls :
wz,y) =0 5 ory) = ;o T(zy)=To
The initialisation is :
ple,y) =po 5 u(zy)=0 5 w(zy) =0 5 p@,y)=po

When the pressure difference between the inflow boundary and the outflow boundary is
sufficiently small compared to the averaged pressure in the flow, the incompressible model
can be considered as a good approximation of the compressible model, so an analytical
solution can be deduced to compare our results with. This is the case in our configuration,
and when the steady state is reached, the analytical solution is given by :

9 2

y Op 8 pou

Uanaly (T,y) = uo [1, 0— (_l> ] ; Vanaly(T,y) =0 ; <_8x> l = 3R06 10
anaty

The PBC is tested on (d), and compared to the NRBC and the PNRBC with o = 0.5.
The reference flow chosen to apply the PBC is here defined by:

_ ov dp
(V)m’ = [po, (uanaly)m,(),po]T <%> ‘ =[0,0,0, (%)(muly]T

,

The convection velocity ucony is taken equal to the average value of the velocity profile
imposed on the inflow boundary :
. 2u0
Uconv = 7
The mass flux evolution through the outflow boundary as a function of the time is first
analysed, in order to underline the convergence. In fact, The NRBC and the PBC prevent
the solution from converging towards a steady state. The static pressure, carried by the
entering characteristic, can not be specified to the flow, and pressure drift arises. Never-
theless, this pressure drift is far slower for the PBC than for the NRBC. Indeed, the line
slope relative to the PBC is in the order of 60 times less than the line slope relative to
the NRBC. On the other hand, the PNRBC allows the convergence. We then introduce
the NRBC-b (resp. PBC-b) which is similar to the NRBC (resp. PBC), but implemented
in a modified way : the density and the pressure are strongly specified at nodes I and J,
so that the convergence is ensured because the static pressure is specified. As we can see
(FIGURE 8), the velocity convergence towards the steady state is faster for the PBC-b than
for the NRBC-b. Finally, the results are compared between the PNRBC, the NRBC-b,
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and the PBC-b when the steady state is reached. The horizontal velocity profiles are well
evaluated, whatever the BC is (FIGURE 9-(a)). The longitudinal pressure gradient is al-
ways satisfactory , but the PBC-b provides a pressure value at the end of the computation
domain closer to the pressure value crudely imposed in nodes I and J than the PNRBC
and the NRBC-b (FIGURE 9-(b)), which is a more physical behaviour since the pressure
must be independant of y.

6.3 The boundary layer

The third flow we want to simulate is a boundary layer evolution on a flat plate (FIG-
URE 10).

The leading edge is located in O, and the computational domain is represented by the
dashed line. For each point inside it, the reduced distance is defined as :

Yy /
n=  + 2o Ryta

Uoo (T + X0
Rx+xo=¥'

with :

where v is the cinematic viscosity of the fluid, and u, the horizontal component of the
velocity very far from the plate. The theoritical velocity field can then also be deduced,
thanks to the resolution of the Blasius equations for incompressible flows. So we can take
as a first approximation for a laminar evolution :

P = Poo
U = Uco uanaly(n)
v = Lvanal (77)
vV Rx—l—mo Y
P = P
with :
uanaly(n) = .{/(T/)
Uanaly(n) = 5 (77 f/(n) - f(n))

where f and f’ are tabulated functions of 7 [39].

At abscissa x + z¢, the thickness of the boundary layer is approximated by :

5@ + xo\/V
daa ¥ —— =
o0

A characteristic Reynolds number of the flow can be defined as :

)
Res = Hoo
The parameters used in the simulation are :
r9g = 5.560, that istosay Res= 139
P
3

109

h = —

3
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The mesh is uniform with 61 nodes vertically and 51 nodes horizontally.
The (a) boundary is a subsonic inflow with velocity and temperature imposed :

Uso
w(0,y) = oo Uanaty(0,9), 3 0(0,y) = —==Vanay(n) ;  T(0,y) =T
y N y
The (b) boundary is an isothermal no—slip wall :
’LL(QZ‘,O) =0 ; ’U(‘/Ev 0) =0 ; T(l‘,O) =T
The (c¢) boundary is a PNRBC with o = 0.5.
The reference flow chosen for the PBC is :
op
z
P = P r
_ ou i —uooyw/RLerO "
T = UsoUanaly(n) 9 a4 )
v o= ==— Vanaly (1) o 1 ! nf” )y
Vhzors e = ey (o= (0 0 — 1) + 1
P = P >
v _
Ox

The convection velocity wueony is equal to the velocity very far from the plate :

Uconv = Uoo-

The PBC is tested on the (d) boundary and compared to the NRBC. The initialisation is
given by :

P = Poo ; u=v=0 ; P =D
The solution is analysed when the steady state is reached, for which .y, and vy, are
defined by :

u
Unum =
Uoso
RV
Unum = »
0

For each BC, 7 = f(upum) and n = f(vpum) are respectively compared to n = f(uanaiy)

250
andn = f (vamly), at the middle transverse section x = = and at the outflow transverse

5
section x = % (FIGURE 11).

As we can see, the PBC provides far better results than the NRBC, especially for the
vertical velocity profile. The PNRBC can give better results than the NRBC if the o
coefficient is well adjusted.

6.4 The Poiseuille flow with a sound source
Up to now, the PBC has been applied for vortex dominated flows, or for the compu-

tation and analysis of steady state solutions. Even if it is not the topic of this paper, it
would be interesting to make a numerical experiment involving a problem dominated by
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sound waves, to show the PBC behaviour for such an aeroacoustic test.

We so consider the established Poiseuille flow on the computational domain defined by a
rectangle with lenght L. = 1 and half height [ = 1. The mesh contains 101 nodes in the
horizontal direction and 201 in the vertical one; it is then made of 40000 triangular cells.
The Mach number is M = 0.1 and the Reynolds number is Re = 15. At time ¢ = 0, an
acoustic perturbation is superimposed in the flow, by replacing the pressure and density
values p and p in all the computational domain by p  and p defined as :

, _ (e—z0)+(y—yg)?

p = ptee o?

N\ Y

N

p = Poo
Poo

Poo and pso are respectively the static density and the static pressure at infinity. The
parameters used in the simulation are € = 0.2, g = 0.8, yo = 1.0 and a = 0.05.

Then, we compare the temporal evolution of the pressure perturbation when the NRBC
is used and when the PBC is used, to a reference solution obtained on a longer compu-
tational domain to avoid any interaction with the outflow boundary. There is no need
to strongly impose the pressure and the density somewhere in the flow like we did in
section 6.2, because of the shortness of the simulation which prevents the flow from
any pressure drift. Moreover, such an initialisation provides perturbations on the in-
flow and horizontal boundaries. Nevertheless, the results are analysed in the window
{(z,y); 0.6 <z <1and 0.6 <y < 1.4}, so that these perturbations don’t have enough
time to contaminate the flow in the window.

As we can see for this strong acoustic test case (FIGURE 12), none of the two BCs gives the
same isolines than the Reference Solution at time ¢ = 0.04. Nevertheless, the isolines distri-
bution seems better for the PBC than for the NRBC. If we take now teony, = 2%1 (1 + ﬁ),
which is closer to the theoritical velocity of the acoustic wave than the previous ucony, the
results are improved. All these observations are confirmed by the comparison of the longi-
tudinal pressure evolution along the axis y = 1 at time ¢ = 0.04 (FIGURE 13). Indeed, the

concavity of the profiles are respected by the PBC, and the PBC with u¢on, = 2% (1 + %)
gives clearly the closest profile to the reference one. Finally, we conclude that the PBC
gives better results than the NRBC on this test. The closer .oy is to the velocity of the
phenomena inside the computational domain, the better the results are. Thus, it appears
that even if the results are less good than for the purely hydrodynamic test cases above,

the PBC can be applied successfully to some aeroacoustic test cases.
7. NUMERICAL SIMULATION ON A PLAN DIHEDRAL

7.1 Presentation

The computational domain is displayed on FIGURE 14. Like for the boundary layer
test, d is the height of the boundary layer at point A on the inflow boundary (a), and d200
its value for Res = 200. The leading edge O is located at xg = 83299 in front of A. We get
a =10 (b) is a wall, and (c) and (d) are artificial boundaries. The m and n parameters
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will be fixed later, and allow to give the dimensions of the computational domain. § is
deduced from Res with the relation :

200
0= —10
Res 200
The non-dimensionalized variables are obtained by choosing I. = d9gp and u,. = Uy, S0 that
leu Re?
the numerical Reynolds number used for the equations resolution is Re = — = Wg'
v

The (a) boundary is a subsonic inflow with velocity and temperature imposed, similarly
to the boundary layer test. The (b) boundary is an isothermal no-slip wall. On the (c)
boundary, the PNRBC is applied : (L1)7; = O.l(pgfj — Poo)-

The mesh is a structured non uniform one. Geometrical progressions are used in or-
der to refine it in the boundary layer and around B, the point of discontinuity on the wall,
both vertically and horizontally as shown on (FIGURE 15). It should be noted that for the
higher Reynolds number involved in the following simulations, 11 nodes are still present
in the boundary layer’s height to ensure a sufficiently accurate spatial resolution.

7.2 The reference solution

We take here Res = 50, m=101 and n=72. In order to obtain a solution of the equa-
tions, a buffer zone adjacent to the computational domain in used. Inside this buffer, the
mesh is stretched in the horizontal direction [23], and the solution progressively brought
back to a blasius flow along the dihedral [29], which can be considered as a local solution.
Consequently, no BC is needed on the (d) boundary. The simulation converges towards
a steady state, which is denoted V59. No recirculation area, defined by a zone in which
horizontal velocities are negative, is noticed. Horizontal velocity and pressure isolines are
displayed above the plan dihedral (FIGURE 16). The solution remains the same if we take
m=150 instead of m=101, and also if the buffer zone size is twice longer. For higher
Reynolds numbers, we can take smaller values of m as the boundary layer becomes thiner.

7.3 The present BC

The buffer zone is then removed. The initialisation is made with V5p, and two simu-
lations are performed at Res = 50. The former with the NRBC on (d), the latter with the
PBC on (d) using V = Vso. Here, teony is equal to the horizontal velocity very far from
the dihedral :

Ucony = 1.

At the begining of the simulation, the NRBC gives rise to a small modification of the
horizontal velocity isolines distribution, and provides strong acoustic reflections coming
from the outflow boundary, which can be seen on the pressure field, whereas the PBC does
not (FIGURE 17).

During the simulation, the PBC does not change the solution. After a long time of
simulation, the NRBC converges towards a steady solution, but with a recirculation area,
and with the horizontal velocity isolines perpendicular to the outflow boundary (FIGURE
18), what is an unphysical behaviour.

i From the solution obtained with the PBC at Res = 50, we go on simulating the flow at
Res = 100, using V = Viq for the PBC implementation. At the begining of the simulation,
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no perturbation is detected on the outflow boundary and vortex dropping arises at point
B. It corresponds to a transition regime, because of the change of Res. The vortex are
then convected, and leave the computational domain. In order to illustrate this behaviour,
the Jeong and Hussain criterion [40] as well as the pressure isolines are plotted at two dif-
ferent times (FIGURE 19). After a long time of simulation, an established regime can be
analysed. the PBC provides a steady solution with a recirculation zone like obtained with
the use of the buffer zone at the same Res. On the other hand, the NRBC provides an
unsteady periodic solution (FIGURE 20), whose fundamental frequency depends on the n
parameter, like proved by Hernandez in a similar configuration [25].

A last simulation is then performed at Res = 400, using V = Vjgo computed above for
the PBC implementation. Whatever the type of the BC used, the solution is unsteady,
like obtained with the buffer zone at the same Res. We plot the pressure evolution in
the domain as a function of the time at a given point in the flow (FIGURE 21). We can
observe that the signal corresponding to the PBC is far closer to the signal obtained with
the buffer zone than the signal corresponding to the NRBC. Moreover, the energy spectra
of the signals show the presence of a low frequency for the NRBC solution, which is not
present for the PBC solution and for the the solution obtained with the buffer zone. This
low frequency is already present at Res = 100, and corresponds to the travel of acoustic
waves from the artificial boundary back to the corner. Finally, the pressure field obtained
after a simulation time equal to 600 is displayed on FIGURE 22. We see clearly that the
PBC provides about the same solution despite a small delay than the solution obtained
with the buffer zone. But the computation of the solution with the buffer zone requires
roughly 50 % more cpu time.

8. CONCLUSION
For subsonic compressible flows, specially when vortices cross the artificial frontiers of the
computational domain, it is not relevant to cancel the amplitude of the entering charac-
teristic waves. So, in this work the aim is to preserve these amplitudes in a stable way,
which can not be done for instance by a simple extrapolation procedure. In order to
do it, a reference flow as well as a convection velocity are used to take into account the
flow behaviour outside of the domain of simulation. The results show the efficiency of
this strategy as the computed flows in various configurations do not exhibit unphysical
phenomena due to the presence of artificial boundary.
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Figure 1: Control volumes C} and .S; around A;.
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Figure 3: Computational domain.
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Vortex V;

wlz, = f(?) Wiz = f(2)
vortex Vo

Figure 4: Vorticity evacuation.
Comparison of the NRBC solution (-.-.-.) and the PBC solution (- - -)
to the RS (plain line).
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Vortex V7, r= f(t) Vortex Vs, r= f(t)

Figure 5: Reflection coefficients.
Comparison of the NRBC solution (-.-.-.) and the PBC solution (- - -)
to the RS (plain line).
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Figure 6: V7 vortex convection, vorticity and pressure fields.
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Comparison of the NRBC solution (middle) and the PBC solution (right) to RS (left).
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Figure 7: Poiseuille flow.
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Figure 8: Mass flux through the outflow boundary.
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Figure 9: Steady state reached.
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Figure 10: Boundary layer.
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Figure 11: Boundary layer .
Comparison of the NRBC solution (-.-.-.) and the PBC solution (- - -)
to the Blasius solution (plain line).
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Figure 12: Pressure isolines evolution for the acoustic perturbation.
Comparison of the NRBC solution (middle) and the PBC solution (bottom) to the RS (top).
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Figure 13: Longitudinal pressure evolution along y = 1 at time ¢ = 0.04. Comparison of
the NRBC solution (-.-.-.), the PBC solution with %con, = 2% (- - -) and the PBC solution

with Ueony = @ (1 + %) (...) to the reference solution (plain line).

Figure 14: Dihedral plate configuration.

Figure 15: Mesh of the computational domain around point B.
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Figure 16: Res = 50, use of a buffer zone.
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\

Horizontal velocity field, PBC Pressure field, PBC

Figure 17: Res = 50, comparison between the NRBC (top) and the PBC (bottom).
Begining of the simulation.

Negative horizontal velocities Horizontal velocity isolines

Figure 18: Res = 50, NRBC.
Steady state reached.

30



to + 30 to + 30

10

)
o>

—

to + 120 to + 120
Jeong and Hussain isolines Pressure isolines

Figure 19: Res = 100, Begining of the simulation .
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Figure 20: Res = 100, established regime.
Temporal evolution of the J. and H. criterion at a given point in the flow.
Comparison of the NRBC solution (plotted line) to the PBC solution (plain line).
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Comparison of the NRBC solution (middle) and the PBC solution (right) to the buffer solution (left).
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Figure 21: Res = 400.
Temporal evolution of the pressure at a given point in the flow (top)
and energy spectra of the signals (bottom).
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Figure 22: Res = 400, pressure field at time t = 600.
Comparison of the NRBC solution (middle) and the PBC solution (bottom) to the buffer solution (top).
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