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In this paper, a numerical method in order to study the fluid dynamics of dipha-
sic flows evolving in micro channels is presented. These flows are characterized
by the predominance of the interfacial phenomenons because of the surface ten-
sion effects. Technically, the Stokes equations are solved for the hydrodynamic
part and the interface is moved thanks to the Level Set method introduced by
Osher and Sethian. The results are compared with experimental data and the
three dimensional effects are commented. In addition, the numerical techniques
employed are emphasized.

1.1. Introduction

Microfluidics deal with the manipulation and the control of liquids in channels about
a hundred of microns in the cross flows directions14 . The typical velocity of such
flows is about one centimeter per second. As a consequence, the Reynolds number
is small, the flows are laminar and the motion of the interface between the two fluids
is controlled by the effect of the surface tension. Since there are no turbulent effects,
the experimental researcher developed experimental tools to mix the flows and to
control their evolution. Two different configurations are considered in this paper.
The first one is composed by two coaxial cylinders of circular and square sections.
Since the two flows are non miscible and Newtonian, this leads to several regimes of
flows: jets and droplets9 . The use of coflows or drippings find his interest in various
industrial8 and biological applications19 like ink jet printing or spray atomization for
example. It is then necessary to control the evolution of the diphasic flow in order
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to produce droplets of different shape and volume. The created micro droplets are
often employed for their internal dynamics to mix products that are generally toxic
and expensive. The second configuration corresponds to square micro channels with
a T-junction. The use of such capillaries allows to control the evolution of the micro
droplets and to optimize the mixing of the substances inside the micro droplets by
changing their shape. In addition, it is possible to measure the shear rates of the
flows. In a T-junction, the flows are parallel. If the flow rates, the position of the
interface between both flows and the viscosity of one fluid are known, it is possible to
deduce the viscosity of the other fluid. Such a configuration is named a rheometer8

. In this context, the numerical difficulties are due to the fact that it is necessary
to follow the interface between two flows knowing that the three dimensional effects
must be put forward. It is well-known that the breaking jet phenomenon, due to
the Plateau-Rayleigh instability, is only observable thanks to a three dimensional
modeling. The numerical simulation of two phases is nowadays a topic research
largely investigated. The main challenge is to follow a moving interface between two
fluids, knowing that it will undergo significant changes. There exist many interface
tracking methods, classically divided into two main categories: the Lagrangian
and the Eulerian methods. It is possible to quote among them, the front tracking
method, the moving grid method, the Volume-Of-Fluid method and the Level Set
method. Each of these methods have drawbacks and advantages. In this study, it
is important that the method takes into account the topological changes and allow
a precise calculation of the curvature at the front. The moving grid method takes
into account the jump conditions at the interface and it is possible to combine it
with high order schemes. But its use is limited to flows that do not show large
strains. The Front Tracking method solves well the interface problem, but a poor
distribution of particles yields a loss of accuracy. Moreover, the topological changes
require a redistribution of the particles that makes difficult the extension to the three
dimensional case. The literature shows that the VOF methods, introduces by DeBar
in 19744 , are largely used and give interesting results18 . However, these methods
present a main drawback as the interface is diffuse, besides its implementation is
costly in three dimensional configurations. The Level Set method introduces by
Osher and Sethian15,16 has many advantages, the first of all is the ease to extend
it to the three dimensional case. Besides, the geometric property of the Level Set
function allows to compute precisely algebraic terms like the normal vector and the
curvature at the interface. When this method is coupled with a careful computation
of the distance of the mesh points20 , the topological changes are well managed.

This paper is organized as follows. The second section is dedicated to the presen-
tation of the governing equations. The Stokes equations with interface and the level
Set method are presented. Discretizations and schemes employed are the subject
of the third part. At this stage, is discussed the required stability condition when
capillary effects are considered. The fourth part is devoted to the presentation of
the numerical results. Finally, the numerical aspects linked to the development of
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a three dimensional tool for complex geometries with a specific boundary condition
between the wall of the micro channel and the inside flows are detailed.

1.2. Modelling

1.2.1. The Stokes equations for diphasic flows in microfluidic

We consider the Navier-Stokes equation for each Newtonian flow

ρ

(
∂U

∂t
+ (U.∇)U

)
= ρf −∇P +∇.[η∇U ] (1.1)

where U is the velocity of the flow, ρ the density, η the viscosity, P the pressure
and f denotes the external forces like the gravity and the interface condition

[σ(U,P )n] = γκn (1.2)

where γ is the surface tension, n the unit normal vector pointing outside of the
considered flow to the interface and κ the average curvature.

The characteristic dimensions L and V associated respectively to the length
of the micro channel and the main velocity are introduced. With this notations,
we consider the classical dimensionless numbers: Re the Reynolds number, Ca the
capillary number and Bo the Bond number defined by

Re =
ρV L

η
, Ca =

ηV

γ
and Bo =

ρgL

γ
.

For the microfluidic geometries considered, the sections of the capillary are about
a hundred of micrometers and the flows velocities are around a centimeter per
second. The Reynolds number is generally fewer than one hundred, the capillary
number is contained between 10−6 and 10−2 and the Bond number between 10−9

and 10−1. These low Reynolds numbers make the inertial effects small in front
of the viscous ones. In this paper, we consider only flows where the Reynolds
number is close to one so that the unsteady term is negligible. In addition, the
gravitational effects are also negligible. Thus, with these hypothesis, the Navier-
Stokes equations reduce to the linear Stokes equations. Moreover, the value of the
capillary number induces that the surface tension effect dominates the viscous one
meaning that the interface phenomenon is driven by the capillary effects. Thanks
to the previous considerations, we consider now the Stokes equations for two fluids
in a bounded domain Ω ⊂ R3. The two fluids, respectively called internal (i) and
external (e), occupy respectively at each time t the domains Ωi(t) and Ωe(t) such
that Ω = Ωi(t) ∪ Ωe(t) ∪ Γ(t). The interface Γ(t) between the two fluids is defined
by Γ(t) = Ω̄i(t) ∩ Ω̄e(t).

So, the hydrodynamic model is the following{
div(2ηD(U)) = ∇P + γκδΓnΓ in Ω
∇.U = 0 in Ω

(1.3)
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where D(U) is the deformation rate tensor given by D(U) = ∇U+(∇U)T

2 , η is the
dynamic viscosity such that

η =
{
ηi in the internal flow
ηe in the external flow

(1.4)

and γκδΓnΓ denotes the surface tension contribution at the interface with δΓ the
Dirac mass on Γ

∀h ∈ C0
0 (Ω), < δΓ, h >=

∫
Γ

h(x)dσ (1.5)

and nΓ is the unit vector normal to the interface Γ.

1.2.2. The boundary conditions

The Stokes equations are associated to boundary conditions. At the entrance section
of the micro channel, the velocity profile is imposed

U.nΓ1 = uinj (1.6)

where nΓ1 is the unit normal vector. The details concerning the computation of the
velocity uinj are given in the section devoted to the numerical results.

At the solid wall, the imposed condition is a Robin condition{
U.τ = α(η)∂U.τ∂n ,

U.n = 0,
(1.7)

with α(η) an experimental data and τ the tangent vector. This condition allows
the fluid to slip on the wall.

The output condition is more difficult to define because in some cases two fluids
come out of the canal. Drawing on the work of Bruneau2,3 , an alternative solution
was to calculate for each time step the velocity profile. Knowing the position of the
interface a few cells before the exit section, the resolution of a 2D Stokes equation
(like at the entrance condition) gives us a velocity profile to impose.

1.2.3. The Level Set method: parameterization of the interface

Our objective is to follow the evolution in the time interval (0, T ) of the interface
between the two fluids. In our work, the interface is represented thanks to the level
function φ(t, x, y, z)21 . At the initial time, φ is zero at the interface, negative in
one phase and positive in the other

φ(0, x, y, z) =


< 0 in flow i,
> 0 in flow e,
0 at the interface Γ.

(1.8)

Its motion is governed by an advection equation{
∂tφ+ (U.∇)φ = 0 in Ω× (0, T ),
φ(t = 0) = φ(0, x, y, z) in Ω.

(1.9)
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Such a modelling implies the properties of the Level Set function to be respected
at each time step. In particular, the fact that the interface is represented by the
zero value of the function φ

∀t ≥ 0, Γ(t) = {(x, y, z), φ(t, x, y, z) = 0} . (1.10)

When φ is known, the unit normal nΓ at the interface and the curvature κ are
computed as follow

nΓ =
∇φ
|∇φ|

∣∣∣∣
φ=0

and κ = ∇.
(
∇φ
|∇φ|

)∣∣∣∣
φ=0

. (1.11)

1.3. The numerical method

Now, we proceed to the discretization of the equations introduced in the previous
section. For the presentation of the whole algorithm, we refer the reader to22 .

1.3.1. The advection equation

The time discretization of the advection equation (1.9) is explicit and a classical
Euler scheme is used

φn+1 = φn −∆t(Un.∇)φn (1.12)

where ∆t is the time step and n + 1 denotes the new iteration at time tn+1 =
(n+ 1)∆t. This choice is associated to a restriction on the time step (the classical
CFL condition) in order to ensure the stability and so the convergence.

The space discretization is made with a five order WENO scheme12 . The
WENO schemes are based on the ENO ones introduced by Harten et al. in 1987.
The main idea is to use the more regular stencil between several one in order to
approximate the flux at the edge of two cells. The aim is to increase the accuracy
and to prevent the oscillations around the shocks.

The different steps of the construction of the scheme are now recalled. For the
sake of simplicity, the one dimensional case is presented below. First of all, the
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following coefficients are computed

v−1 =
φi−2,j,k − φi−3,j,k

∆x
, v+

1 =
φi+3,j,k − φi+2,j,k

∆x

v−2 =
φi−1,j,k − φi−2,j,k

∆x
, v+

2 − =
φi+2,j,k − φi+1,j,k

∆x

v−3 =
φi,j,k − φi−1,j,k

∆x
, v+

3 =
φi+1,j,k − φi,j,k

∆x

v−4 =
φi+1,j,k − φi,j,k

∆x
, v+

4 =
φi,j,k − φi−1,j,k

∆x

v−5 =
φi+2,j,k − φi+1,j,k

∆x
, v+

5 =
φi−1,j,k − φi−2,j,k

∆x

where the exponents + and - are associated to the derivatives
∂φ−

∂x
et
∂φ+

∂x
. In the

three dimensional case, the formula are the same in the other directions. Then, the
expression of the derivative ∂φ

∂x is obtained by

∂φ

∂x
= w1

(
v1

3
− 7v2

6
+

11v3

6

)
+ w2

(
−v2

6
+

5v3

6
+
v4

3

)
+ w3

(
v3

3
+

5v4

6
− v5

6

)
(1.13)

where the weight are

w1 =
a1

a1 + a2 + a3
, w2

a2

a1 + a2 + a3
, w3 =

a3

a1 + a2 + a3

with

a1 =
1
10

1
(ε+ S1)2

, a2 =
6
10

1
(ε+ S2)2

, a3 =
3
10

1
(ε+ S3)2

,

ε = 10−6max(v2
1 , v

2
2 , v

2
3 , v

2
4 , v

2
5) + 10−15,

and

S1 =
13
12

(v1 − 2v2 + v3)2 +
1
4

(v1 − 4v2 + 3v3)2,

S2 =
13
12

(v2 − 2v3 + v4)2 +
1
4

(v2 − v4)2,

S3 =
13
12

(v3 − 2v4 + v5)2 +
1
4

(3v3 − 4v4 + v5)2.

To conclude, the derivative is computed like in the case of the upwind scheme
according to the direction of propagation.

∂φ

∂x
=
∂φ+

∂x
if ui,j,k < 0,

∂φ

∂x
=
∂φ−

∂x
if ui,j,k > 0.

(1.14)
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The implementation of the WENO scheme requires the knowledge of the values
of φi,j,k out of the domain Ω. These valuess will be evaluated thanks to linear
extrapolations of the known values inside Ω.

1.3.2. The hydrodynamic part

The discretization of the incompressible Stokes equations is classical. The finite
volume method on structured staggered grids is considered (Patankar, 1980). The
idea is to associate different control volumes grids to the different unknowns5 . Each
unknown is located at the center of the control volumes of the associated meshes.
In our Cartesian three-dimensional case, the cells consist in cubes. A typical grid
is composed by a main grid associated to the pressure and three secondary grids
associated to the three components of the velocity. The mesh associated to the first
component of the velocity is represented on Fig.1.1 . The three Stokes equations are

P(i,j,k)

Y

Z

X

u(i+1,j,k)

v(i,j+1,k)

w(i,j,k+1)

Fig. 1.1. MAC mesh cell (solid line) with a control volume (dashed line) of the first component
of the velocity vector u(i + 1, j, k).

associated to a component of the velocity and thus integrated over the considered
control volumes. The continuity equation is integrated over the control volumes of
the pressure (the original mesh). Although, the Stokes equations are steady, the
time discretization of the capillary unknowns is explicit and so the following scheme
is used

∇.(2ηnD(Un+1)) = ∇Pn+1 + γκnδ(φn)∇φn,

∇.Un+1 = 0.
(1.15)

This explicit choice introduces an usual CFL condition on the time step. This
point is the subject of the next subsection. To compute (Un+1, Pn+1), the Aug-
mented Lagrangian method6 is used. This algorithm presents numerous advantages:
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the ease of the implementation, the reduction of the size of the linear system and
an improvement of the shape of the matrix. The whole algorithm is the following:

(1) Initial data
At tn the known variables are Un, Pn, ηn and φn.

(2) Computation of Un+1 and Pn+1

(a) We assume V 0
U = Un and V 0

P = Pn and V kU , V
k
P denote the intermediate

variables the Lagrangian step k.
(b) Then, we solve the following linear system until the convergence criterion is

achieved.

∇.
(
2ηnD(V k+1

U )
)

+ r∇
(
∇.V k+1

U

)
= ∇V kP + γκnδ(φn)∇φn,

V k+1
P = V kP − s(∇.V

k+1
U ),

(1.16)

with r and s two fixed parameters that are fixed here to 1 (r = s = 1).
(c) When the criterion ∇.V k+1

U < ε (with ε ≈ 1.e−04) is achieved, we set

Un+1 = V k+1
U , Pn+1 = V k+1

P .

(3) Computation of φn+1

The Level Set function is moved

φn+1 = φn −∆tUn+1(∇φn).

(4) Updating of the viscosity η

ηn+1 = η1 + (η2 − η1)H(φn+1),

with the Heaviside distribution H defined as

H(x) =
{

1 if x > 0,
0 if x ≤ 0.

(1.17)

1.3.3. A restrictive stability condition

In the Stokes equations, the explicit treatment of the term associated to the surface
tension required a stability criterion to maintain the convergence of the method.
Commonly, the criterion proposed by Brackbill, Kote and Zemach is used1

∆t =

√
1/2(ρ1 + ρ2)(∆x)3

2πγ
, (1.18)

where ρ1, ρ2 are the densities of the fluids. However, it turns out that for the
microfluidic applications, this condition becomes very restrictive. Indeed, the space
step is generally about 10−6 m. As a consequence, the time step takes values close
to 10−8s.
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The derivation of the Brackbill condition is based on the study of the contri-
bution of the unsteady and inertial terms. The contribution of the densities of the
two fluids in the condition (1.18) is a consequence of the analysis. Recently, a less
restrictive stability condition was proposed by Galusinski and Vigneaux7

∆tγ ≤ c2
min(η1, η2)

γ
∆x (1.19)

where c2 is a constant that does not depend on the discrete parameters. This new
condition takes into account the characteristics of the microfluidics flows. Indeed,
the flows belong to the low Reynolds numbers hydrodynamics and the shape of the
interface is generally quickly obtained. The derivation of the new condition is based
on the estimation of the velocity induced by a small perturbation of the interface. If
the displacement of the interface is high, the perturbation will be increased and will
oscillate around the interface. The condition (1.19) assumes that if the displacement
of the interface is lower than the amplitude of the perturbation then the oscillations
are deleted. Finally, in the numerical computations, the time step ∆t is chosen
as the minimum value between the value given by the classical CFL condition and
those given by the above condition due to the explicit treatment of the surface
tension term

∆t = min(∆tcfl,∆tγ). (1.20)

1.4. Numerical results in a square micro channel

1.4.1. Experimental considerations

The numerical simulations proposed are based on the following experimental con-
figuration9 . The jet is generated with a cylindrical capillary centred in a square
capillary as shown in the Fig.1.2.

Fig. 1.2. Experimental configuration: cutting of a representative configuration of two non miscible

flows named internal and external.
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The external flow is injected by the external micro channel and the internal flow
by the internal one. In this configuration, several kinds of micro droplets can be
observed varying the internal or the external flow rate of the fluids. The numerical
configuration reproduces the experimental setup.
The two flows are supposed to be injected separately. In a three dimensional config-
uration, the profile for the internal flow is analytically known since it is of parabolic
type in a cylindrical channel (a classical Poiseuille flow). However, the external
profile is a little more complicated. First, the corresponding domain is defined on
the Cartesian mesh by penalising the injector in the square section, the more the
meshing is fine, the more the representation of the injector is precise. Then, we
have to compute the velocity profile solving the discrete simplified Stokes equations
since the flow is supposed to be unidirectional11 .

A typical profile employed to simulate the injection of the two flows is proposed
in Fig.1.3 . The internal and external flows rates take the following values: Qe =
4500µL/h and Qi = 2500µL/h, the external micro channel has a square section
Sc = 500 µm and the radius of the cylindrical tube is Ri = 100 µm. The outlet

Fig. 1.3. Typical profile employed to simulate the experimental configuration of coaxial cylinders.

condition is obtained with a similar method than the one proposed in2 and3 . It
consists to use at each time step the solution obtained at the previous time step.

Numerically, the consideration of such an injection condition requires a special
treatment. The Fig.1.4 presents the first steps of the numerical computation. The
representation of the injection needs to fix the velocity of the flow on several meshes.
As it is shown on Fig.1.4, the evolution of the injection condition creates a singular-
ity on the profile of the Level Set function at the interface (solid line). The presence
of this singularity is fatal during the resolution of Stokes equations since the Level
Set function is used to evaluate the curvature at the interface. To overcome this
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Fig. 1.4. From left to right: evolution of the injection in a square capillary of two fluids initially

separated by a circular one .

difficulty, the hydrodynamic part is not solved on the all domain but only where
the Level Set function is smooth as shown in Fig.1.5.

Advection 

Hydrodynamic

SINGULARITY

Fig. 1.5. Numerical representation of the injector.

1.4.2. Jets, droplets and plugs

The break-up of one fluid into another one is a complex phenomenon due to the
Rayleigh-Plateau instability17 . This instability is an hydrodynamic instability
linked to the surface tension effects. So, to minimize its exposed surface a cylin-
der of liquid at rest will naturally break to create cheaper energy droplets. This
phenomenon is of course only observable in three dimensions10 . Let us focus
on the numerical results. Here, the external micro channel has a square section
Sc = 550 µm and the radius of the cylindrical tube is Ri = 105 µm. The inner fluid
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has a viscosity ηi = 55mPa.s and the outer one ηe = 235mPa.s. The surface ten-
sion between the two fluids is γ = 24mN/m. In Fig.1.6, three sets of flow rates are
considered: (Qi = 7500µL/h, Qe = 6000µL/h), (Qi = 2500µL/h, Qe = 3000µL/h)
and (Qi = 2500µL/h, Qe = 5500µL/h). According to these flow rates, different
regimes are observed as in the experiments.

The first set corresponds to the case of an oscillating jet: the internal fluid
oscillates in the external one by is not pinched. Then, the second regime leads
to the formation of a succession of droplets with the same shape and that are
periodically created. Finally, a confined droplet, named a plug, is observed for the
third set.

Fig. 1.6. From left to right: an oscillating jet, a succession of droplets and a plug (the internal
flow alone is represented).

In microfluidic experiments, the droplets are confined and the surface tension
drives their shape. These droplets are used as micro reactors or micro mixers. To
understand their internal dynamics, it is interesting to know the droplets velocity
field in their own referential. To do so, it is necessary to calculate the speed of
the drop in its own frame of reference. When a droplet moves in a straight micro
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channel, it stabilises so that his movement is associated with a known speed of
translation. So the total velocity of the flow can be written as the sum of the
translation velocity and the velocity of the droplet in its frame of reference. In
other word, we write

U = UT + V (1.21)

where the translation velocity UT is a parallel vector to the wall of the capillary
and V is the velocity of the droplet. For more details, we refer the reader to7 . The
shape of the previous plug is plotted on Fig.1.7. It shows the effects due to the
square section of the external capillary. In the plane (x,y), the shape of the plug is
not anymore circular Fig.1.7 on the right and the external flow circulates only by
the corners of the square micro channel.

Fig. 1.7. Example of the use of droplets as micro mixers (shape of the droplets in different slices,
velocity field in the droplet frame of reference and few streamlines). Left: shape and velocity field

in the plane(x,z); right: view of the plug in the plane(x,y).

1.4.3. Discussions

In22 , using an approach based on the linear theory of stability, a stability criterion
is proposed. Thanks to this one, the flow regime (jet or droplets) can be predicted
knowing the dimension of the external capillary, the flow rates and the properties
of the two fluids. In addition, the stability length corresponding to the length of
the jet just before the creation of the micro droplet can be computed. However,
the study is based on the knowledge of the steady state and the perturbation of
this one. In order to be as realistic as possible, it could be necessary to take into
account the radius of the internal injector. In Fig.1.8, three representations of
the flow are plotted. The properties of the two fluids are defined in subsection
1.4.2. The external capillary is about 650µm of section and the diameter of the
injector is respectively 60µm, 120µm and 273µm with the same flow rate. These
numerical results show that there exists a stability area since the stability length is
approximately the same in each case. Generally, for this kind of configuration, the
jet tends towards the steady state solution before breaking-up. It is clear that the
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diameter of the stable jet is about the same whatever the diameter of the injector
is. Here, as the diameter of the stable jet is around 180µm, the diameter of the
flow increases or decreases according to the diameter of the injector to reach this
value. Then, the jet breaks to give rise to droplets of diameters twice as large as its
own diameter. On Fig.1.8, the droplets are plotted at the same position but do not
correspond to the same time of simulation. Indeed, the flow rate being constant, the
velocity of the jet is very different and so are the time of formation of the droplets
and the distance between them. The higher the velocity is, the shorter the distance
is.

Fig. 1.8. Relation between the section of the injector and the volume of the created droplet:

representation of the three different configurations at the same position.

1.5. The particular case of a T-junction

1.5.1. The physical constraints and the numerical point of view

The computation of fluids dynamics in micro channels with junctions is required
to simulate the variety of experimental configurations. However, this task turns
out delicate in the three dimensional case for two reasons. The first difficulty is
due to the fact that a finite volume method on structured grid is employed and
the second is induced by the different boundary conditions (Neumann, Dirichlet,
Robin..) used.

If the simulations are made in a simple capillary, the implementation is quite easy
when we choose to solve the linear system with an iterative procedure. Indeed, the
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domain of computation can be meshed quickly with a local numbering (at a position
(i, j, k) the neighbours are known automatically) and the boundary conditions are
taken into account just by adding a layer of cells. In the case of the capillaries with
junctions, the cells have to be numbered globally. Indeed, it is difficult to work with
a local numbering since the various boundary conditions requires a lot of particular
cases.

To handle the global numbering an identity card is associated to each cell of the
mesh as follows:

type mesh
logical :: wall
integer :: FNDBC, FHDBC
integer :: FNBC
integer :: indcl
integer :: ip, in, jp, jn, kp, kn
integer, dimension(1:3) :: indvar
end type mesh

The key words have the following meaning:

• wall localizes the cell in the geometry (true if the cell is on the wall, false
otherwise)

• The three variables FNDBC (face with non homogeneous Dirichlet boundary
condition), FHDBC (face with homogeneous Dirichlet boundary condition)
and FNBC (face with homogeneous Neumann boundary condition) stand to
identify the kind of boundary conditions on a face of the cell. These variables
take for example the value 0 for none, 2i if face i is concerned or 2i + 2j if faces
i and j are concerned.

• indcl gives the number of the face of the cell that is on the wall. This variable
is required to detect the faces of the cell that are on the boundary.

• ip, in, jp, jn, kp, kp give the increment to access to the neighbours
• indvar numbers the components (u, v, w) of the velocity U .

The following pictures illustrate the principle of identification of the cells. To achieve
this goal, we remember the discretize variables (with local numbering, Fig.1.9) and
we consider a very simple case, a T-junction composed by four cells (with global
numbering). On the Fig.1.10, the fluids enter through the first and third cells and
exits by the fourth one. A fictitious layer of cells is also required but it is not
represented on Fig.1.10.

In this case, the declaration of the variables writes in Fortran 90

type(mesh),dimension(:) :: c

and the variable c takes the following values:
c(1:4)%wall= True
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u(i+1,j,k−1)

P(i,j,k) P(i+1,j,k)

u(i+1,j,k)u(i,j,k) u(i+2,j,k)

w(i,jk+1)

w(i,j,k)

u(i+1,j,k+1)

Fig. 1.9. Representation of the variables involved for the computation of u(i + 1, j, k) with the

first equation of momentum.
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Z
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4

Fig. 1.10. Representation of a 3D cell (left) and of the four cells T-junction in the plane (x,z)

(right).

c(1)%FNDBC =20 c(1)%FHDBC =22 + 23 + 24 + 25

c(2)%FNDBC =0 c(2)%FHDBC =22 + 23 + 24

c(3)%FNDBC =21 c(3)%FHDBC =22 + 23 + 24 + 25

c(4)%FNDBC =0 c(4)%FHDBC =20 + 21 + 22 + 23
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c(1)%FCN =0 c(1)%indcl =20 + 22 + 23 + 24 + 25

c(2)%FCN =0 c(2)%indcl =22 + 23 + 24 + 25

c(3)%FCN =0 c(3)%indcl =21 + 22 + 23 + 24 + 25

c(4)%FCN =25 c(4)%indcl =20 + 21 + 22 + 23 + 25

for i=1:4
c(i)%indvar(1) = 3*(i-1)+1
c(i)%indvar(2) = 3*(i-1)+2
c(i)%indvar(3) = 3*(i-1)+3

and we make up the numbering of the fictitious domain by a classical incremen-
tation.

Once these informations are set, Stokes equations are solved for each component
of the velocity integrating them on the associated control volume. Then we get a
sparse matrix containing the coefficients given by the Stokes equations in which the
boundary conditions are specified. The advantage of this approach is that equations
and boundary conditions are written in a generic way. Taking them into account
depends on the data contained in the variable of type ”mesh”. The exploitation of
such data is then made through the ”Btest” function of the Fortran 90 language.

1.5.2. Coalescence of droplets in a T-junction

The analysis of the break-up of a diphasic jet shows that the Level Set method
manages well the topological changes. The study of the micro droplets is expanded
to the well-known bench: the coalescence of the droplets in a T-junction. The con-
tinuous phase is injected by the two branches of the T-junction (Fig.1.11). Initially,
two droplets are arranged symmetrically in the T-junction. Figs. 1.11 and 1.12
present their evolution into the micro channel.

Fig. 1.11. Coalescence of two microdroplets in a T-junction (2D slices in the flow direction).
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Fig. 1.12. Coalescence of two microdroplets in a T-junction (3D view).

1.5.3. Parallel flows in a T-junction

We are now interested in the location of the interface, at a junction between two
fluids moving in parallel. The ratio of the viscosity is about 7.5 and the flow rates
are identical. The interface moves into the channel according to their respective
viscosity even if the computation does not reflect a realistic wetting condition on
the top wall. The experimental set-up is used as a rheometer. Knowing one flow,
the location of the interface allows to derive the viscosity of the other flow. Here,
we want to quantify the impact of a defect on the surface of the channel on the
location of this interface. On Fig.1.13 is represented the flow in presence of a
defect. The difference between the two solid lines shows the impact of this defect
on the location and consequently to the determination of the unknown viscosity
which is not negligible. However this difference is significant only in the vicinity of
the defect, elsewhere the interfaces are superimposed.

Fig. 1.13. Flows in the exit channel of the T-junction in presence of a defect on the surface of

the channel. Global view (left), zoom around the defect in the x-z plane (middle) and in the x-y
plane (right). The solid lines represent the interface without (left one) and with (right one) the
defect.
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1.5.4. Performance and parallelization

As it has been seen in the section dealing with the numerical stability, the stability
condition is very restrictive in microfluidics. The computational times are extremely
long. To get an idea, simulating a series of drops in a micro channel with eight
hundred thousand unknowns takes about 720 hours. This computational time is
given in the best case when the field is numbered locally. The same simulation with
the global structure is drastically longer. Indeed, the approach has advantages in
terms of the numerical implementation because once the code structure is set, it
is easy to treat a variety of geometries. However, the main drawback is the need
for indirect access machine that induces an increase of the computational time. In
order to decrease this time, the code is parallelized using the libraries OpenMP.
Therefore, the code sequence includes parallel regions for operations such Blas(1)
and Blas(2). For the version of the code using the local numbering, the speed up
obtained is around 2.5 with 4 threads, on 64 bits Opteron processors. Unfortunately,
the performances are not improved on 8 threads. Moreover the parallelization with
OpenMP is ineffective in the case where a global numbering is realized as the storage
of the matrices is realized in the compressed row storage format. The works of
Kotakemori et al.13 on the subject show that there is a dependency between the
storage format used for the matrices and the memory architecture of the machines.

1.6. Conclusion

The Level Set method proposed by Osher and Sethian is used in order to follow the
interface between two flows such that their motion is mostly governed by the pres-
sure gradient and the surface tension. This method gives results in good agreement
with the experiments as the main quantities like the curvature and the unit normal
are well computed. This study allows to analyze the breaking jet phenomenon and
gives access to quantities like the pressure and the velocity of the droplet when it is
created. A special care on the representation of the internal capillary employed as
an injector allows to compare the volumes of the micro droplets for several radius of
injectors. The influence of the capillaries of square section on the form of the created
micro droplets is highlighted. In addition, the analysis of the internal dynamics of
droplets show that playing on the physical parameters the shape of the droplets
is changed as well as the areas of internal recirculations. Results concerning the
coalescence of two micro droplets in a T-junction are proposed showing again that
the Level Set method is perfectly suited to study these problems.
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