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Abstract

Numerous direct numerical simulations of soap film flows yield a large amount of
data on two-dimensional turbulence. The analysis of such data is very sensitive to
the analysis tools and the way they are used. On the one hand, some of the possible
errors obtained by a misuse of the analysis tools are reported. On the other hand, a
rigorous use of wavelet packets analysis reveals surprising results that slightly differ
from the KLB theory for the flow considered. A careful wavelet packets filtering and
a good computation of the energy and enstrophy fluxes show the role of the solid
rotation vortices and the vorticity filaments to both the inverse energy cascade and
the direct enstrophy cascade.
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1 Introduction

The application of wavelets to fluid dynamics has been the topic of many pa-
pers [1–4] for the last sixteen years 1 . The main idea developed in these papers
is that the vorticity field of a turbulent flow can be easily decomposed in co-
herent and incoherent parts thanks to an orthogonal wavelet decomposition.
The coherent part, corresponding to the strongest wavelet coefficients, is in
fact composed by vortices and the so-called incoherent part, corresponding to
the weakest coefficients, is mainly composed by vorticity filaments. The part
composed by the vorticity filaments is often considered as a background that
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can be neglected in the computations [4]. However, as it has been shown in [5],
these filaments play a fundamental role in the creation of the direct enstrophy
cascade, and cannot be removed from the main flow in numerical simulations.
It has been shown in [5,6] that the wavelet packets filtering can be successfully
applied for analyzing two-dimensional turbulence. This technique allows the
highlighting of the two main structures: the vortices and the filaments. The
wavelet packets filtering leads to continuous filtered fields and thus avoids the
discontinuities that would be created by the filtering method. This is particu-
larly true for the direct filtering proposed by [7,8] and later developed by [9].
The spurious effects due to this kind of discontinuities created by a direct fil-
tering have been pointed out in [10], and are also discussed in this paper. It is
shown in particular that these discontinuities are responsible for the creation
of spurious coefficients in Fourier space that alter the corresponding energy
and enstrophy spectra. The energy and enstrophy fluxes are also computed
to better understand the energy and enstrophy transfer processes through the
scales.
The paper is organized as follows. The theoretical background is recalled in
section 2 where we make some remarks about the Danilov inequality. The
experimental setup, the mathematical modeling and the filtering process are
described in section 3. The filtering algorithm leading to continuous filtered
fields is described but the theory of wavelet packets is not recalled here. In
the fourth section, windowing methods for the computation of spectra in non
periodic domains are discussed. Numerical results showing the effects of the
filtering process are given and commented in this section. The results about
the energy and the enstrophy spectra and fluxes are given in section 5. It
is shown that the two-dimensional turbulence admits two distinct structures:
vortical structures and filamentary structures. The first ones are responsible
for the inverse transfers of energy while the second ones are responsible for
the forward transfer of enstrophy. A detailed description of the cascades using
various injection scales is reported in section 6. Conclusions and remarks are
given in section 7.

2 The theoretical background

The two-dimensional turbulence, in a finite but periodic domain, is governed
by two invariants, the energy and the enstrophy. The mean energy per unit
mass E is defined by,

E ≡
〈

1

2
|U |2

〉
=

1

2

1

S(ΩL)

∫

ΩL
|U(x)|2dx (1)

where U denotes the velocity vector, x = (x1, x2) the two-dimensional variable,
ΩL the physical domain and S(ΩL) its corresponding surface. If one considers
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now the velocity U as a L-periodic function, it can be decomposed as a Fourier
series:

U(x) =
∑

k

Û(k)e
2iπ
L
k.x, k ∈ Z2. (2)

The low-pass filtered velocity function is then defined as

U<
K(x) =

∑

|k|≤K
Û(k)e

2iπ
L
k.x (3)

and the high-pass filtered velocity function as

U>
K(x) =

∑

|k|>K
Û(k)e

2iπ
L
k.x. (4)

This decomposition of the velocity,

U(x) = U<
K(x) + U>

K(x), (5)

was used for the first time by Obukhov [11,12]. Introducing this splitting in the
Navier-Stokes equations, one obtain a scale-by-scale energy budget equation
described by Frisch [13]:

∂tE(K) + ΠE(K) = DE(K) + FE(K) (6)

where

E(K) ≡
〈

1

2
|U<

K |2
〉

=
1

2

∑

|k|≤K
|Û(k)|2 (7)

denotes the cumulative energy, ΠE(K) the energy flux due to the nonlinear
terms through the wave number K, DE(K) the energy dissipation, and FE(K)
the energy injection. The energy spectrum is then defined by

E(k) ≡ dE(k)

dk
(8)

and the total energy can be rewritten as

E =
∫ ∞

0
E(k)dk. (9)

The same splitting can be used in the Navier-Stokes equation written for the
vorticity and a scale-by-scale enstrophy budget equation can be obtained:

∂tZ(K) + ΠZ(K) = DZ(K) + FZ(K) (10)

where Z(K) denotes the cumulative enstrophy, ΠZ(K) the enstrophy flux,
DZ(K) the enstrophy dissipation, and FZ(K) the enstrophy injection. The
enstrophy Z can be defined in the same way as the energy

Z ≡
〈

1

2
|ω|2

〉
=

1

2

1

S(BL)

∫

BL
|ω(x)|2dx (11)
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where ω = ∇ × U is the vorticity field. The relation between the enstrophy
and the enstrophy spectrum is then given by

Z =
∫ ∞

0
Z(k)dk (12)

where Z(k) stands for the enstrophy spectrum. The energy and enstrophy
spectra are linked to each other in Fourier space by the relation

Z(k) =

(
2πk

L

)2

E(k) (13)

which reduces to

Z(k) = k2E(k) (14)

in a 2π-periodic bounded domain. Using the same notation as Tung and
Gkioulekas in [14] this relation can be written in a more general form

Z(k) = Λ(k)E(k). (15)

The fluxes are also related to each other by such a relation

∂ΠZ(k)

∂k
= Λ(k)

∂ΠE(k)

∂k
. (16)

Outside the forcing range, the fluxes should verify the following Danilov in-
equality

Λ(k)ΠE(k) < ΠZ(k). (17)

This inequality is a consequence of the classical frame of the KLB theory in a
periodic or infinite domain. However, our experiments consist in the numerical
simulation of two-dimensional channel flow perturbed by arrays of cylinders
with a no-slip boundary condition in the across-channel direction. A Poiseuille
flow is imposed on the entrance section of the channel, and a non reflecting
condition is imposed on the exit section. The numerical experiments give a
realistic picture of a fluid entering in a channel, perturbed by cylindrical ob-
stacles and exiting the channel. These simulations describe the behavior of a
shallow river or a real soap film experiment like in [15–18]. The spectra are
computed in a selected square located at the end of the channel. Thus we do
not have any periodic condition in any case, and the relations described above
between the energy and the enstrophy spectra do not hold anymore. It will be
shown in section 4 that the energy-enstrophy relation numerically diverges in
our particular case. This relation is verified only for a short range of frequen-
cies in the middle part of the spectra, approximately between k ≈ 2L (where
L is the width of the channel) and k ≈ kinj . A detailed study is performed,
and the results show that a windowed Fourier transform has to be used for
the spectra computations in order to remove the discontinuities created by the
boundary conditions.

4



3 The experimental setup, the mathematical modeling and the fil-
tering process

We present in this section the main tools used to compute the two-dimensional
turbulent flows and to analyze the flows.

3.1 The experimental setup

Many numerical experiments have been performed. All of them consist in
the numerical simulation of a two-dimensional channel flow perturbed by an
horizontal array of cylinders inducing a 50% blocage. Two vertical arrays of
additional cylinders have been added in order to increase the number of merg-
ing events, and thus to enhance the inverse energy cascade phenomenon [19].
The injection scale kinj is given by the diameter of cylinders and so various
sizes are considered as shown on Figure 1 to better capture the inverse en-
ergy cascade or the direct enstrophy cascade. The length of the rectangular

x
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x
1
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Fig. 1. Numerical experiments setup.

channel Ω is four times its width L and the Reynolds number based on the
cylinders diameter is Re = 50, 000. This diameter varies from L/8 to L/40
and consequently the injection scale varies from kinj = 8 to kinj = 40 ; the
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setups plotted on figure 1 correspond to kinj = 20 (left) and kinj = 8 (right).
As we shall see in the next section, the penalization method is used to solve the
flow around the obstacles. Consequently the Brinkman-Navier-Stokes equa-
tions are solved in the whole channel Ω including the solid obstacles Ωs and
the fluid domain Ωf . In all the simulations, the evolution in time of the velocity
U = (u1, u2), of the vorticity ω and of the pressure p have been recorded at six
monitoring points located on the vertical row x1 = 3L/8 between 5L/16 and
15L/16. These 1D temporal signals have been analyzed and used to compute
the energy spectra reported in [20,21].
The numerical results obtained through such direct numerical simulation can
be compared to those obtained by soap film experiments where the flow is
perturbed by analogous arrays of small cylinders [19].

3.2 The mathematical modeling

Let Ω be a rectangular bounded domain in R2. The union of all the solid
cylinders is denoted by Ωs and Ωf = Ω\Ωs is the incompressible fluid domain
in which the Navier-Stokes equations are prescribed. The boundary of Ωf is
defined by ∂Ωf = ∂Ωs∪ΓD∪ΓW ∪ΓN . A non homogeneous Dirichlet boundary
condition, namely a Poiseuille flow, is imposed at the entrance section ΓD and
a no-slip boundary condition is specified on the walls ΓW . The solid obstacles
are considered like a porous medium of very low permeability and taken into
account by a L2 penalization procedure which consists in adding a penalization
term U/κ in the equations which are now set on the whole domain Ω [22]. Let
σ be the stress tensor defined by

σ(U, p) =
1

Re
(∇U +∇U t)− pI (18)

where I is the identity tensor, we have to solve the following initial boundary
value problem for the primitive variables (U, p) as unknowns

∂tU + (U · ∇)U − divσ(U, p) + 1
κ
U = 0 in ΩT = Ω× (0, T )

divU = 0 in ΩT

U(x, 0) = U0(x) in Ω

U = UD on ΓD × (0, T )

U = 0 on ΓW × (0, T )

σ(U, p) · n+ 1
2
(U · n)−(U − U ref) = σ(U ref , pref) · n on ΓN

(19)
where U0 stands for the initial datum, UD for the Poiseuille flow and
(U ref , pref) for a reference flow that is supposed to have the same traction

6



at the exit section than the studied flow [23]. In this Brinkman-Navier-Stokes
model, the scalar function κ is the non dimensional permeability coefficient of
the porous medium. In the fluid domain κ goes to infinity and the penalization
term vanishes to get the Navier-Stokes equations while in the solid domain κ
goes to zero and the Darcy equations are recovered [22]. For numerical exper-
iments we set κ = 10−8 in the cylinders and κ = 1016 elsewhere. This problem
(19) has been theoretically studied in [24].
The equations are discretized in time by a second order Gear scheme with
an implicit treatment of the linear terms and an explicit treatment of the
convection term. The spatial approximation is performed on uniform stag-
gered grids using second-order centered finite differences for the linear terms
and a third-order upwind scheme for the convection term [25]. The location
of the unknowns enforce the divergence-free equation which is discretized on
the pressure points and the choice of uniform grids is necessary to maintain
the accuracy of the finite differences schemes. The whole problem is solved
by a multigrid method with a cell by cell Gauss-Seidel iterative procedure as
smoother. A sequence of grid from 4× 16 cells up to 1024× 4096 cells or from
5× 20 cells up to 640× 2560 cells is used on the domain Ω = (0, 1)× (0, 4) to
get accurate results.

3.3 The filtering process

The theory concerning the wavelet packets has been detailed in [6] and will not
be repeated here. The same Daubechies type wavelets are used in the current
paper to build the packets array, and the entropy criterion is used in the best
basis selection process. In [6], a few tests were performed in order to get the
best wavelet mother, and to determine the number of scales necessary for an
efficient representation of the flow. The criterion was then the minimization
of the entropy. It had been shown that it was not necessary to perform the
wavelet packets decomposition over more than 3 scales when the finest scale
corresponds to a 320 × 1280 grid. It has to be reminded here that the scale
sequence goes from finest scales to coarsest scales. It leads to the most efficient
representation according to the entropy criterion but not to the smoothest
fields after filtering. Indeed, to smooth the discontinuities, it is necessary to
go over at least 4 scales for such a grid [10]. That means that in [6], where only
3 scales were considered, some spurious coefficients due to the discontinuities
remained in the spectra, and the slopes detected in the figures were partly
altered. So in this paper, all the decompositions have been performed over 5
scales for a 640× 2560 or a 1024× 4096 grid.
The overall filtering process can be summarized as follows:

(1) Computation of the wavelet packets decomposition of the two components
of the velocity U = (u1, u2) over 5 scales.
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Fig. 2. Snapshot of the vorticity field with the selected domain of analysis at the
end of the channel delimited by a dotted line.

(2) Separation of the velocity fields into two subfields: the first subfield
Us = (u1s, u2s) corresponds to the wavelet packet coefficients with a mod-
ulus larger than a given threshold ε, and the second one Uf = (u1f , u2f )
corresponds to the wavelet packet coefficients with a modulus smaller
than ε.

(3) Construction of the corresponding vorticity fields, ωs and ωf . The filtered
field ωs is then essentially composed by the solid rotation part of the
vortices, and the filtered field ωf by the vorticity filaments in between
that roll up in spirals inside the vortices.

(4) Computations of the physical data: energy and enstrophy spectra and
fluxes.

4 Numerical pitfalls in windowing process and filtering methods

A snapshot of the vorticity field in the wake of the cylinders for the first
numerical experiment setup of Figure 1 is plotted on Figure 2. To compute
the energy and enstrophy spectra, we select the square of size L = 1 located
at the end of the channel (delimited by a thin dotted line on Figure 2) as
domain of analysis.

4.1 Numerical pitfalls in windowing process

The cutting process to select this domain creates many discontinuities in the
velocity and vorticity fields at the boundaries, and thus introduces essentially
high frequency coefficients in Fourier space. This phenomenon, well known
from people using the classical FFT algorithm, is described in [26] and [27]
but its negative consequence for interpreting the two-dimensional turbulence
spectra has never been enlightened. One can avoid this problem by using a
windowed Fourier transform that removes the spurious coefficients created
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Fig. 3. Various windowed energy spectra.

by the discontinuities. Some of the windows generally used, as the Hanning
window often applied in energy spectrum computations, remove a significant
part of the energy and enstrophy contained in the fields.
The Tukey windows use a parameter allowing to vary the size of the horizontal
plateau in order to increase the percentage of the energy kept in the analysis
process. The resulting energy spectra computed using such windows on the
coarse mesh of 320× 1280 cells are shown on Figure 3. It can be noticed that
the slope detected between k ≈ 10 and k ≈ 70 is the same for the Hanning,
Tukey (0.5) and Tukey (0.1) windows. The three curves are parallel and the
only difference is the level of energy kept by the windowing process. The best
level is given by a Tukey window with a quite small parameter equal to 0.1.
A Tukey window with a larger plateau (smaller parameter equal to 0.02 for
instance) does not smooth enough the discontinuities and the spectrum is
closer to the non windowed spectrum which is completely wrong beyond the
injection scale. The first bound of this slope is close to the injection scale while
the second bound is linked to the grid, the finer the computational grid is the
larger this bound is. The energy decrease is around k−5.5 and so far from the
KLB theory that predicts a decrease in k−3. But the simulations correspond to
a real flow in a bounded domain with various boundary conditions completely
different from the periodic case.

These results show that the discontinuities alter drastically the energy or en-
strophy spectra by generating many spurious coefficients not linked to the real
frequency content. They show also that some windows like Hanning window
are relevant to compute the spectra but can not be used for other purposes
like the computation of the fluxes as they cancel a too large amount of the
energy or the enstrophy.
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Fig. 4. Windowed average Z(k)/E(k).

Computing the energy and enstrophy spectra in the selected domain of anal-
ysis, one can check the validity of the relation (13) which writes

Z(k) = 4π2k2E(k) (20)

in our case.
The results show that without windowing the results are not correct and the
relation above is satisfied only in a range from k ≈ 2 to k ≈ 20 (see Figure
4 where the average ratio Z(k)/E(k) is plotted). The first bound corresponds
to the biggest possible structure and the second bound to the injection scale.
Once again these results show the need of windowing to get reliable results.
Then the relation is satisfied in the whole significant spectrum where the upper
bound can be pushed forward using a finer approximation as it corresponds to
the smaller structures captured on the given mesh. The curve for the Hanning
windowing has not been reproduced in Figure 4 since it was exactly the same
as for the Tukey (0.5) windowing.

4.2 Numerical pitfalls in filtering methods

We have discussed in the previous subsection the effects of the discontinuities
created by the selection of a domain of analysis within a velocity or vortic-
ity field. Here we focus on the discontinuities created by a filtering process
allowing to separate the vortices from the vorticity filaments. The goal of the
present section is to reveal the real frequency content of the filtered fields. A
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cut-off filtering and a wavelet packet decomposition are considered in the se-
quel. All the computations in this section have been performed on a 640×2560
grid.
It is shown on Figure 5 the two cut-off filtered vorticity fields corresponding
to the particular snapshot studied. This cut-off filtering is done directly on
the vorticity function splitted into two parts according to a chosen thresh-
old. For a good threshold the vortices are clearly extracted from the whole
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(a) Vortices field
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(c) Global vorticity field

Fig. 5. Cut-off filtering of a snapshot at the end of the channel (kinj ≈ 20).

flow, the remaining is the complementary part with the background showing
vorticity filaments. The vortices and the filaments fields, as described in [9],
should lead to different energy spectra. The average energy spectra computed
with 80 snapshots for the filtered fields are plotted on Figure 6. According to
the previous section, these spectra are computed using a windowed Fourier
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Fig. 6. Energy spectra obtained thanks to a cut-off filtering.

transform with a Tukey (0.1) window to remove the spurious coefficients gen-
erated by the boundary conditions. As expected, the spectrum of the fields
with only the vortices does not present the same decrease as the spectrum
of the filaments fields. A slope around −3 is observed for the vortices, and
around −5/3 for the filaments before the injection scale. The theoretical value
of −5/3 has been explained by Vassilicos and Hunt, and numerically observed
by Borue. However, if one carefully observes the spectra, one can notice that
both fields have the same behavior from the injection scale kinj = 20 to the
end of the spectra. This range is exactly the same as the one enlightened in
the previous section. But here the slopes observed in this range are only due
to the discontinuities created by the filtering process instead of the bound-
ary cutting. So it is not surprising that both fields present the same behavior
in this spectral range since the discontinuities are the same in both filtered
fields. In order to better understand the phenomenon, we propose to study the
problem on a one-dimensional cut of the field located for instance along the
row 250 of the global vorticity field of Figure 5. This one-dimensional curve
is plotted on Figure 7. This cut contains four vortices, and the corresponding
one-dimensional Fourier spectrum is given in Figure 8. This spectrum is obvi-
ously very noisy since it has been computed with only one signal. To remove
the discontinuities, we can use a continuous Gaussian fit of the signal very
close to the original cut as seen on Figure 7. The main difference between
these two curves is the smoothing of the discontinuities. One can compare the
spectrum of the Gaussian fit to the spectrum of the original cut previously
computed (see Figure 8). Both spectra are identical in the beginning of the
frequency range and differ only from the injection scale, where the continu-
ous approximation spectrum presents a very fast decay to zero as expected as

12



0 50 100 150 200 250 300 350
−150

−100

−50

0

50

100

150

Discontinuous original signal
Continuous Gaussian fit

Fig. 7. Gaussian fit of the one-dimensional cut.
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Fig. 8. One-dimensional cut spectra.

there are no high frequencies in the signal. The conclusion is that many spuri-
ous coefficients due to the discontinuities are hiding the real spectral behavior
beyond the injection scale and consequently the direct enstrophy cascade can
not be studied properly. The same phenomenon obviously occurs during the
computation of two-dimensional spectra of filtered fields. A nice solution to
avoid this problem consists in substituting a smooth filtering wavelet packets
decomposition to the discontinuous cut-off process.
This section mainly points out two technical pitfalls when computing energy
or enstrophy spectra and filtering velocity or vorticity fields. These pitfalls
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can lead to a misinterpretation of the physical contents. Of course the above
discussion does not affect the results of the literature in the periodic case or in
the non periodic case when a window is properly used but could affect some
results obtained with a discontinuous filtering.

5 Computation of the physical spectra and fluxes

In this section is presented the main result of the paper concerning the anal-
ysis of the role of each filtered subfield to the two-dimensional turbulence
mechanism.

5.1 Computation of the energy and enstrophy spectra

The velocity decomposition U = Us + Uf obtained with the wavelet packets
based filtering is orthogonal and leads to the energy spectrum decomposition

E(k) = Es(k) + Ef(k), (21)

where Es is the energy of the solid rotation vortices and Ef is the energy of
the vorticity filaments, as can be verified on Figure 9. We observe that both

100 101 102
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100

 

 

Total energy E
Filtered energy Es
Filtered energy Ef

Slope k−2

Slope k−5.5

Fig. 9. Energy spectra of the original and filtered fields obtained by a 5 scales wavelet
packets decomposition (kinj ≈ 20).

subfields are multiscale even if the Es spectrum dominates before the injection
scale and the Ef spectrum dominates after the injection scale. And the filtered
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energy spectra are superimposed to the global energy spectrum when they
dominate. As the spurious coefficients due to the discontinuities have been
removed by the wavelet packets filtering, a first decreased in k−2 and a second
decreased in k−5.5 on both sides of the injection scale are obtained. The first
slope is not really clear as it is short but the second one is obvious.
The same decomposition of the enstrophy spectrum yields a behavior in k0 and
k−3.5 respectively as can be observed on Figure 10. The decomposition into
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Total enstrophy Z
Filtered enstrophy Zs
Filtered enstrophy Zf

Slope k0

Slope k−3.5

Fig. 10. Original and filtered (WP 5 scales) enstrophy spectra (kinj ≈ 20).

the two subfields obtained by the wavelet packets filtering process is given in
Figure 11. The solid rotation subfield ωs reveals all the vortices with a smooth
transition and the vorticity filaments subfield ωf shows the vorticity filaments
between the vortices that end up in spirals inside the vortices. Both subfields
are continuous and multiscale. The first subfield is obtained with less than 1%
of the coefficients of the decomposition. It contains more than 95% of the total
energy and around 70% of the enstrophy while the second one contains less
than 5% of the total energy but around 30% of the enstrophy. This share-out of
the enstrophy shows that unfortunately the whole flow can not be represented
properly only by the first subfield. Indeed, when the vorticity filaments subfield
is neglected, the global motion cannot be correct.

15



100 200 300 400 500 600

100

200

300

400

500

600

(a) Solid rotations subfield

100 200 300 400 500 600

100

200

300

400

500

600

(b) Filaments subfield

100 200 300 400 500 600

100

200

300

400

500

600

(c) Global vorticity field

Fig. 11. Wavelet packets filtering of a snapshot at the end of the channel (kinj ≈ 20).

5.2 Computation of the energy and enstrophy fluxes

We recall that the energy flux is computed from the nonlinear term in the
Navier-Stokes equation written in Fourier space

ΠE(k) =
∫ +∞

k
TE(k′)dk′ (22)

where TE(k) is the nonlinear energy transfer function, and is obtained by

angular integration of Û∗(k). ̂(U.∇)U(k). The enstrophy flux is obtained in
the same way

ΠZ(k) =
∫ +∞

k
TZ(k′)dk′ (23)
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where TZ(k) is the enstrophy transfer function, and is obtained by angular

integration of ŵ∗(k). ̂(U.∇)w(k).
The energy and enstrophy fluxes corresponding to the numerical experiments
above with kinj = 20 are respectively given in Figures 12 and 13. The energy
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ΠE
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Fig. 12. Energy fluxes of the whole flow and of the filtered subfields (kinj ≈ 20).

flux of the whole flow is negative for wave numbers k below the injection scale
20 and almost zero above. The enstrophy flux is on the other hand positive
beyond the injection scale, and negative below. The zero crossing corresponds
approximately to the injection scale. These results show the existence of lead-
ing cascades, upscales for the inverse energy cascade and downscales for the
direct enstrophy cascade; but also the existence of subleading cascades as the-
oretically shown by Tung and Gkioulekas in [28,29] and [14]. Let us remark
that, as the injection scale is relatively large, the energy cascade cannot be
completely developed. A priori, if the turbulence is inertial, the energy flux
should present a plateau in the small wave number range. Our simulations do
not produce a large plateau but an explanation for this is the limitation of
the range of scales probed and the presence of the boundaries. However, both
the energy flux and the enstrophy flux show that the classical picture of 2D
turbulence is valid for the flow considered.
In order to study in detail the energy transfer, we focus now on the nonlinear
energy transfer function which, due to the orthogonal decomposition, can be
written as
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Fig. 13. Enstrophy fluxes of the whole flow and of the separate structures (kinj ≈ 20).

TE(k) = Û∗(k). ̂(U.∇)U(k)

= Û∗s (k). ̂(U.∇)Us(k) + Û∗s (k). ̂(U.∇)Uf(k) (24)

+ Û∗f (k). ̂(U.∇)Us(k) + Û∗f (k). ̂(U.∇)Uf (k).

The global energy transfer can be split into four parts corresponding to the
multiscale transfers from one subfield to itself or to the other one. For instance,

Ûs
∗
(k). ̂(U.∇)Uf(k) is the energy transfer from the vorticity filaments subfield

to the solid rotation subfield. The fluxes corresponding to each term in the
expression for the total energy transfer function will be denoted as for example
Πf→s
E which is the flux corresponding to the transfer term previously described.

In the same way, the nonlinear enstrophy transfer term is also split into four
parts

TZ(k) = ω̂∗(k). ̂(U.∇)ω(k)

= ω̂∗s(k). ̂(U.∇)ωs(k) + ω̂∗s(k). ̂(U.∇)ωf(k) (25)

+ ω̂∗f (k). ̂(U.∇)ωs(k) + ω̂∗f (k). ̂(U.∇)ωf(k).

Using these decompositions, the fluxes associated with each structure as well
as the fluxes associated with the interactions of the two structures can be
obtained. Let us first consider the energy fluxes of the whole flow and of the
separate structures in Figure 12. The energy flux for the vortices shows a
large negative part at small k which is similar to the total flux. The energy
flux associated with the filaments is almost zero everywhere. The enstrophy
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flux for the vortices is negative at small k and becomes close to zero beyond
the injection scale as shown in Figure 13. The enstrophy flux for the filaments
is on the other hand large and positive for the high k after the injection scale
and is very close to the value of the total flux in this region of wave numbers.
This preliminary examination of the fluxes indicates that the main part of the
energy flux comes from the solid rotations while the main part of the enstro-
phy flux comes from the filamentary structures.
It is however possible to give a more detailed analysis of the energy and en-
strophy transfers looking at the cross fluxes. The energy flux from the vortices
to the filaments and vice versa are an order of magnitude smaller than the
flux due to the filaments or the flux due to the vortices. But it is shown on
Figure 14 that the cross enstrophy fluxes Πf→s

Z and Πs→f
Z are of opposite sign

and have amplitudes comparable to the total enstrophy flux. However, the
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Fig. 14. Cross fluxes of enstrophy (kinj ≈ 20).

sum of these two fluxes Πf→s
Z + Πs→f

Z turns out to be close to zero. While the
transfer from the filaments to the vortices is negative at small k and very close
to zero beyond the injection scale, the flux of enstrophy from the vortices to
the filaments is positive at small k and goes to zero at high k. Concerning the
enstrophy, there is a clear interaction between the two different structures.
The vortices transfer enstrophy to the filaments from the large scales to the
small scales up to kinj while the filaments transfer enstrophy to the vortices
from the injection scale to the large scales.
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6 Further analysis of the cascades

In order to improve the generation of each cascade separately, one can try
to move the injection scale kinj from one side of the spectrum to the other
one. However, the possible shifts are limited due to numerical constraints. The
penalization method used to take into account the obstacles in the equations
and the discretization step size do not allow the use of very small cylinders.
Another interesting point is to see what are locally the events or the interac-
tions responsible of strong energy or enstrophy transfers.

6.1 The inverse energy cascade

To better study the inverse energy cascade, it is useful to move the injection
scale to a smaller scale, for instance by taking obstacles of size corresponding
to an injection scale of kinj ≈ 40. The Reynolds number is still kept equal
to 50, 000 in these new numerical computations. The computations have been
performed on a grid of size 1024 × 4096. A snapshot corresponding to this
new geometry is given in Figure 15. The statistics to compute the fluxes have
been performed only on 20 snapshots in order to limit the size of the data.
Consequently the fluxes are less smooth than in the previous case. The energy

Fig. 15. Snapshot of the vorticity field

flux shown on Figure 16 behaves globally like for the previous geometry. How-
ever, as expected, the inverse energy cascade has more room to take place.
The energy flux tends to go to zero at the largest scales and goes back to zero
close to the injection scale k ≈ 40 instead of k ≈ 20 as seen in the previous
section. The energy flux of the solid rotations is very close to the global flux
while the energy flux of the filaments is very low.
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Fig. 16. Energy fluxes of the whole flow and of the separate structures (kinj ≈ 40).

6.2 The direct enstrophy cascade

In order to study the direct enstrophy cascade, the geometry of the numerical
experiment has been modified again. The turbulence is now created by three
arrays of big cylinders. This setup produces an injection scale kinj ≈ 8. The
computations have been performed on a grid of size 512 × 2048 for the same
Reynolds number Re = 50000. A snapshot of the vorticity field corresponding
to this setup is given in Figure 17. The enstrophy flux is plotted on Figure 18

Fig. 17. Snapshot of the vorticity field

and the global behavior is the same than for the original setup of the previous
section. There is a large positive region beyond the injection scale revealing
the direct enstrophy cascade. But it can also be observed a strong enstrophy
transfer from the injection scale toward the largest scales linked to the inverse
energy cascade. One notice again that the enstrophy flux crosses the zero axis
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around the injection scale. The enstrophy flux of the filaments is close to the
global flux beyond the injection scale and reach another plateau for the large
scales. The enstrophy flux of the solid rotations is close to zero beyond the
injection scale and shows a negative plateau at large scales. The positive pic
just before the injection scale should probably disappear with higher statistics.
The modification of the geometry shows that the global features of the flow
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Fig. 18. Enstrophy fluxes of the whole flow and of the separate structures (kinj ≈ 8).

are always the same and proves the direct link between the diameter of the
cylinders and the injection scale.

6.3 The local analysis

Now we have established there are two subfields that have a clear role on the
turbulence cascades and that interact strongly as we have seen on Figure 14,
it is necessary to understand the mechanism of the transfers. The filamen-
tary subfield is made of vorticity filaments that roll-up in spirals inside the
vortices and so the interaction with the solid part of the vortices is obvious.
Nevertheless it is important to well understand what is going on in the strain
regions. When two vortices interact, if the vortices move aside then the vor-
ticity filament in between is stretched and if the vortices move closer then
the vorticity filament in between is confined like a yo-yo. This suggests that
the whole balance is zero and this is true as the sum of the cross fluxes of
enstrophy is effectively close to zero.
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To have a complete understanding of the mechanisms it would be necessary to
analyse each kind of structure, namely a single vortex convected and diffused
by the flow without interactions, a dipole or more complex structures also
convected and diffused by the flow without interactions with the rest of the
flow, the merging of two or more vortices of the same sign, the interaction of
several vortices of different sign and so on. Here we restrict the analysis to the
two first events above. To avoid numerical pitfalls, the vortex for instance is
embedded into a two-dimensional gaussian function sharing the same center.
The contribution to the fluxes of such a single vortex is plotted on Figure 19,
it is in accordance with the global result for the inverse energy cascade but
not for the direct enstrophy cascade as the enstrophy flux is strongly negative
all way long. The same fluxes are plotted on Figure 20 for a single dipole with
a bigger size that does not interact with the rest of the flow. This time there
is a positive maximum and the negative energy flux moves to the large scales
as the size of the structure is bigger, this corresponds to what we have seen
above with bigger cylinders. But now the enstrophy flux is always positive. In
both cases we see that the solid rotation subfield follows the total field for the
energy whereas the filamentary subfield follows the total field for the enstro-
phy and the contribution of the other subfield is very low. Repeated analysis
of these two events gives always the same kind of results. The total flux for one
snapshot is the sum of the local fluxes corresponding to the various structures
that compose the flow.
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Fig. 19. Energy fluxes (left) and enstrophy fluxes (right) corresponding to a single
vortex of diameter ≈ L/20.

7 Conclusions

Good direct numerical simulations give a realistic approximation of two-
dimensional turbulent flows corresponding to soap film experiments. The flows
perturbed by arrays of cylinders reveal an injection scale directly linked to the
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Fig. 20. Energy fluxes (left) and enstrophy fluxes (right) corresponding to a dipole
of size ≈ L/6.

diameter of the cylinders.
A careful analysis of the flows using wavelet packets filtering on sufficient lev-
els yields relevant results one can trust. Using an adapted threshold on the
wavelet coefficients allows to separate the flow into two continuous and multi-
scale subfields, on one hand the solid rotation of the vortices and on the other
hand the vorticity filaments that connect the vortices and roll up in spirals
inside the vortices. The second subfield cannot be neglected as it contains
around 30% of the enstrophy and contributes for a significant part of the mo-
tion of the whole flow.
The computation of energy and enstrophy spectra and fluxes reveal that the
first subfield contributes significantly to the inverse energy cascade while the
second subfield contributes significantly to the direct enstrophy cascade. Fur-
ther local analysis should reveal the contribution of the various structures to
the global dynamics.
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