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Abstract – Two-dimensional turbulence admits two different ranges: an inverse energy cascade at
large scales and a cascade of enstrophy to the small scales. Here we show that two flow structures
govern the transfers of either enstrophy or energy. Vortical structures are responsible for the
transfers of energy upscale while filamentary structures are responsible for the forward transfer of
the enstrophy.
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While three-dimensional turbulence is governed by a
direct cascade of energy from the scale of injection to
the small scales where the energy is dissipated, two-
dimensional turbulence admits two different ranges [1,2].
The first one is governed by an inverse energy cascade
from the scale of injection to the large scales. The
second one is governed by a cascade of enstrophy from
the scale of injection to the small scales. This scenario,
proposed by Kraichnan and Batchelor over 40 years ago,
finds confirmation in different numerical simulations and
experimental realizations. However, if the scaling laws for
the different ranges have been found, the links between
the presence of structures and the transfer of energy or
enstrophy have not been completely identified. Very recent
work points out that the mechanism behind these two
cascades is related to the thinning of vortices, a dominant
structure in two-dimensional turbulence [3,4].
Two-dimensional turbulence has interested and contin-

ues to interest different scientific communities. Its rele-
vance to atmospheric and oceanic flows at large scales has
largely motivated its detailed study [5–7]. Its importance
for the understanding of turbulence in general due to the
existence of two cascades, as opposed to the direct cascade
of energy in three-dimensional turbulence, is another
reason to study this phenomenon. In the last decade,
several experiments have been carried out to test the ideas
of Kraichnan [1] and Batchelor [2] about 2D turbulence.
Numerical simulations have, for much longer, identified
several features of 2D turbulent flows. Now, it appears that
two cascades exist in a two-dimensional turbulent flow. An

inverse energy cascade, presumably due to the merging of
like sign vortices, transfers energy from the injection scale
to the large scales. At scales smaller than this injection
scale, an enstrophy cascade, whose origin is apparently the
straining of vorticity gradients, transfers enstrophy from
the large to the small scales. However, whereas the role
of vortices has been identified as crucial for 2D flows [8],
there has been only a few studies of the role of flow struc-
tures on the transfers of either energy or enstrophy. This
is precisely what we study here. Two-dimensional turbu-
lence admits two distinct structures: vortical structures
and filamentary structures. The first are responsible for
the inverse transfers of energy while the second are respon-
sible for the forward transfer of enstrophy.
Our direct numerical simulations are motivated by

experiments carried out with soap films where grid turbu-
lence was studied in detail [9–12]. The flow studied here
is obtained in a two-dimensional channel with a length of
either four or five times its width and where the turbulence
is generated by arrays of cylinders just like in the exper-
iments. There are three arrays of cylinders in the flow:
a first array composed of 10 cylinders placed one channel
width down from the entrance produces grid turbulence
while two arrays placed near the side walls of the chan-
nel and composed of 9 cylinders each reinforce the injec-
tion scale and inject even more vorticity into the flow.
This configuration has been studied recently and the
main results concerning the energy spectra have been
reported [13]. This flow admits two ranges: an inverse
cascade range and a direct enstrophy cascade range.
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A similar flow configuration was studied experimentally
by Rutgers showing the existence of the two cascades
simultaneously [10]. In order to keep a Cartesian mesh, on
which accurate finite difference schemes are written [14],
the solid obstacles are considered as a porous medium of
very weak permeability. So, instead of the classical Navier-
Stokes equations, the following penalized Navier-Stokes
equations [15,16] are solved:

∂tU +(U ·∇)U − 1

Re
∆U +

U

K
+∇p = 0,

divU = 0.

Here, U = (u, v) is the velocity vector (u is the longitudinal
and v is the transverse velocity), p is the pressure, Re
is the nondimensional Reynolds number based on the
unit inlet flow rate and length (which is 106 in the
simulations discussed below), andK is the nondimensional
coefficient of permeability of the medium. The fluid and
the solid media correspond to an “infinite” and a “zero”
permeability coefficient, respectively: K = 1016 and K =
10−8 are the values used in the numerical simulation.
The above equations are associated to no-slip boundary
conditions on the walls of the channel, Poiseuille flow
on the entrance section and a non-reflecting boundary
condition on the exit section [17]. The flow has been
computed on a sequence of uniform Cartesian grids but
all the results discussed in this paper have been obtained
on a 2560× 640 fine grid.
A typical snapshot of such a simulation is presented in

fig. 1a. The cylinders are apparent both near the side walls
and at one distance down from the entrance. The vorticity
field of this flow produced at a Reynolds number of 50000
(calculated using the diameter of the cylinders which is
0.05 in units of channel width), is shown in fig. 1a. The
role of the side cylinders is crucial in producing an inverse
cascade range as has been shown by Rutgers [10] and
Bruneau and Kellay [13]. This is the flow field we analyze
here using techniques based on wavelet analysis. Contrary
to standard Fourier analysis, the wavelet decomposition
we use here reveals the different structures of the flow at
all spatial scales. This is also different from other filtering
techniques where averaging over a certain range of scales
is carried out.
The theory of wavelet packets has been developed more

than ten years ago [18]. The wavelet analysis is based
on a decomposition on a basis, like Fourier analysis, but
with basis functions localized in physical and Fourier
spaces. A sketch of the theory with application to 2D
turbulence analysis and filtering is given in [19] where
a few tests are performed in order to get the best
wavelet mother and to determine how many levels are
necessary to get an efficient representation of the flow. A
complete decomposition from a 2n× 2n fine grid requires
n levels to reach the coarsest level corresponding to
the mean flow. Here, it is necessary to perform the
wavelet packets decomposition at least on five levels to

get a good representation of the large-scale structures.
Daubechies-type wavelets are used in the current paper
to build the packets array, and the entropy criterion is
used in the best basis selection process. Once the velocity
components are decomposed on such a basis, they are
split into two orthogonal subfields using a threshold on
the wavelet packets coefficients giving one subfield for the
strong coefficients and another for the weaker ones. These
subfields are therefore not determined by using a threshold
value on the modulus of the velocity or vorticity as in [20]
but by their representation on the basis. The two subfields
are continuous and can occupy the same physical space
contrary to a decomposition based on thresholding the
modulus directly which introduces artificial discontinuities
in the filtered field. For a particular choice of the threshold,
the vorticity field reconstructed from these subfields is
dominated by two types of structure. For the strong
coefficients, greater than the fixed threshold, vortical
structures, with what seems to be the solid rotation part
of the vortices, are obtained as seen in fig. 1b. For the
small coefficients, filamentary structures are obtained as
seen in fig. 1c. A zoom on a filamentary structure is
shown in fig. 1d and shows that these filaments have a
spiral shape. By opposition to a Fourier-based filtering, the
present orthogonal filtering already used in [21] does not
separate the scales of the flow but the type of structures.
Here the two subfields are not seen like vortical coherent
structures and background as was supposed in previous
studies, but like two coherent and multiscale subfields
with their own dynamics. We refer to the two subfields as
the vortical structures and the filamentary structures. The
vortical structures carry some 95% of the energy and 70%
of the total enstrophy. The filaments on the other hand
carry only 5% of the energy but 30% of the enstrophy.
The energy and enstrophy content of each subfield is very
different.
Thus, the filtering based on this wavelet decomposition

reveals two different structures: vortical structures and
filamentary structures which encompass both the regions
occupied by the vortices and the regions between vortices.
The filaments have a clear spiral shape in the regions
occupied by the vortices. The question we ask here is what
is the role of these structures in the establishment of the
energy or enstrophy transfers present in two-dimensional
turbulence. In order to answer this question we study the
energy flux and the enstrophy flux associated with each
subfield.
We focus on two invariants of two-dimensional turbu-

lence namely the energy E ≡ 〈 12 |U |2
〉
and the enstrophy

Z ≡ 〈 12 |ω|2
〉
, where ω is the scalar vorticity. The energy

balance in Fourier space is obtained by applying a Fourier
transform to the corresponding energy balance in physical
space with the result

∂tE(k) = TE(k)+D(k)E(k)+F (k),

where k= (kx, ky) is the Fourier variable (the wave vector)
in Fourier space, E the energy density, TE the nonlinear

34002-p2



The structures responsible for the inverse energy and the forward enstrophy etc.

0 500 1000 1500 2000 (a)

(b) (c)

(d)

2500

100

200

300

400

500

600

100 200 300 400 500 600

100

200

300

400

500

600

100 200 300 400 500 600

100

200

300

400

500

600

50 100 150 200 250 300

240

250

260

270

280

290

300

310

320

330

340

Fig. 1: a) Snapshot of the vorticity field for the whole flow. b) Vortical structures corresponding to the high coefficients from
the wavelet analysis. c) Filamentary structures corresponding to the small coefficients from the wavelet analysis. d) A zoom on
a filamentary structure.

energy transfer, D the dissipation operator and F stands
for the energy injection. In our experiments, there is

no artificial injection since the turbulence is naturally
generated by the obstacles, so F = 0. To study the energy
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transfer we focus on the nonlinear energy transfer function
which, due to the orthogonal decomposition, can be
written as

TE(k) = Û∗(k) · (U ·̂∇)U(k)
= Û∗s (k) · (U ·̂∇)Us(k)+ Û∗s (k) · (U ·̂∇)Uf (k)
+Û∗f (k) · (U ·̂∇)Us(k)+ Û∗f (k) · (U ·̂∇)Uf (k),

where the subscript s stands for the subfield dominated
by vortical structures and the subscript f stands for the
vorticity filaments subfield (U =Us+Uf ). The velocities
Us and Uf are the result of the orthogonal decomposition
of the velocity vector field through the use of the wavelet
filtering discussed above. The global energy transfer can
be split into four parts corresponding to the multiscale
transfers for each subfield or from the interaction between
the two subfields. For instance, Û∗s (k) · (U ·̂∇)Uf (k) is the
energy transfer from the interaction between the vorticity
filaments subfield and the solid rotation subfield. Here we
did not split the advection operator U ·∇ into its two
components for simplicity but it should noted here that
the Us ·∇ plays the major role. An integration over the
angle is then carried out to obtain the transfers vs. the
wavenumber k (the modulus of k). The fluxes ΠE (k) are

computed as
∫ kmax
k

TE(k
′)dk′. The fluxes corresponding

to each term in the expression for the total transfer
function will be denoted as, for example, Πf−>sE which
is the flux corresponding to the transfer term above.
In the same way the nonlinear enstrophy transfer term

TZ(k) = ω̂∗(k)̂(U ·∇)ω(k) is split into four parts using
ω= ωs+ωf and the enstrophy fluxes ΠZ are computed.
The most important aspect of our study is that the

fluxes associated with each structure as well as the fluxes
associated with the interactions of the two structures can
be obtained separately. The total energy and enstrophy
fluxes are displayed in fig. 2. ΠE(k) shows the typical
behavior associated with the existence of two cascades. At
large scales (small k), the energy flux is negative indicating
an inverse transfer of energy, i.e. from the injection scale
to the large scales. In addition to this, the flux becomes
zero at the injection scale. The injection scale here is
close to the size of the cylinders (corresponding to a
wavenumber k= 20). A priori and if the turbulence is
inertial, the energy flux should present a plateau in the
small wavenumber range. Our simulations do not produce
this plateau and the most probable reason for this is the
limitation of the range of scales probed and the presence
of the boundary.
The enstrophy flux displayed in fig. 2b is on the other

hand positive for scales smaller than the injection scale
(or high wavenumber k) indicating a forward enstrophy
cascade to the small scale end. The enstrophy flux then
becomes zero and turns negative at the low-wavenumber
end or large scales. The zero crossing corresponds to the
injection scale. Both the energy flux and the enstrophy
flux show that the classical picture of 2D turbulence,
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Fig. 2: Turbulence produced by arrays of cylinders: a) Energy
flux for the full field and the filtered fields. b) Enstrophy
flux for the whole field and for the filtered fields. The arrow
corresponds to kinjection. Insets: turbulence produced by arrays
of vortices: a) Energy flux for the full field and the filtered fields.
b) Enstrophy flux for the whole field and for the filtered fields.

i.e. coexistence of two cascades, is valid for the flow
considered here regardless of whether a plateau for the
energy flux or enstrophy flux is achieved.
Now let us examine the consequences of the decomposi-

tion which reveals the existence of two distinct structures.
Let us first consider the energy and enstrophy fluxes asso-
ciated with the vortical structures. This is the flux asso-
ciated with the first term in the expression for the energy
transfer function and noted Πs−>sE . The corresponding
enstrophy flux is denoted Πs−>sZ . The energy flux for these
structures shows a large negative part at small k, which
is similar to the total flux, and becomes very small and
close to zero beyond the injection scale. The enstrophy
flux on the other hand is negative at small k and becomes
close to zero beyond the injection scale. The fluxes asso-
ciated with the filaments and denoted Πf−>fE and Πf−>fZ

for the energy and the enstrophy flux, respectively, are also
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displayed in figs. 2a and b. The energy flux associated with
the filaments is negative but small at small k and becomes
slightly positive near the injection scale before becoming
zero at the high-k end. The enstrophy flux for the filaments
is on the other hand large and positive for the high-k end
(smaller than the injection scale) and is very close to the
value of the total flux in this region of wavenumber. The
examination of these fluxes indicates that the main part
of the energy flux comes from the subfield dominated by
vortical structures while the main part of the enstrophy
flux comes from the subfield dominated by filamentary
structures. This is the main finding of our study: We iden-
tify two distinct structures which are responsible for the
transfers of energy upscale (the vortical structures) and
the enstrophy transfer downscale (the filamentary struc-
tures). This finding is robust with respect to the spatial
resolution of the simulations as other runs with higher
spatial resolution (4096 × 1024) and smaller Reynolds
number (5000) give similar results. To our knowledge,
this is a new illustration of the role of flow structures in
turbulence and shows the power of wavelet filtering in the
understanding of complex flows by revealing some of their
properties in physical space.
The properties of the turbulent cascades in two-

dimensional turbulence have been examined previously in
physical space for the passive scalar field as well as the
vorticity field. These studies are based on the orientation
dynamics of tracer gradients and of vorticity gradients
and use refined diagnostic techniques to partition the flow
into different regions [22,23]. While the strain-dominated
regions turn out to be the most active for the enstrophy
cascade, rotation-dominated regions can also contribute
to the growth of vorticity gradients [24–26]. These studies
point out that the physical space picture of the transfers
brings in additional information about the properties of
turbulence. A more recent analysis of a two-dimensional
turbulent field through a spatial filtering technique [3]
allowed to show that the enstrophy is cascading downscale
and that the spatial regions where this occurs are domi-
nated by strain. These results have also been obtained
in an experiment with soap films [11]. Our results are
in agreement with the conclusions of these studies and
point out that the filaments are fully responsible for
the transfers of enstrophy downscale. They refine and
reconcile previous studies in the sense that it is not
just the strain regions that are active in the transfers of
enstrophy but the regions dominated by the presence of
filaments which occur principally in the strain regions but
extend to regions where the vortical structures exist as
well. Our study also clarifies unambiguously the role of
the vortices in the transfer of energy upscale. A study of
the spatial structure of energy transfers in 2D turbulence
by Babiano and Dubos [27] also concluded that the
strongly energetic active regions are localized around
coherent vortices. More recently, a mechanism where the
thinning of vortices turns out to play a major role for the
upscale energy transfer was proposed [4]. While fig. 1b

does show the presence of elongated vortices, it is rather
difficult at present to make a direct link between our
findings and the proposed mechanism.
A natural extension of our analysis is a study of the

alignments between vorticity gradients and the direction
of stretching for the filament field since, and as suggested
by Protas, Babiano and Kevlahan [28], the filaments tend
to be aligned with the stretching direction giving rise
to the transfer of enstrophy downscale. This alignment
property was studied for different scales in the enstrophy
cascade range and found to hold in the strain regions for
sufficiently small scales [3]. In addition, and since our
analysis is capable of isolating the structures involved
in the upscale transfer of energy, a local study of the
dynamics of vortex thinning and its influence on the
surrounding large-scale field would be very instructive
and may allow to probe the proposed mechanism for the
inverse cascade in detail. Such physical space analysis
should also allow a refined study of the inverse cascade to
determine whether it is vortex mergers or the formation
of large clusters of like sign vortices, as suggested by
experiments [29], which dominate the flow structure.
One may ask whether the presence of the cylinders is

the main agent for producing the filamentary structures.
We have tested this by simulating a turbulent flow in
a channel with a length of five times its width where
about 500 vortices (size 1/10 or 1/20 of the channel
width and therefore comparable to the injection scale for
the cylinder case) were placed randomly in the channel.
The evolution of this ensemble was then analyzed in a
similar way as for the cylinder case. Vortical structures
and filaments, which develop after a few turnover times
and produced by the interactions between the vortices,
were obtained. The wavelet filtering and the calculated
fluxes give similar results as for the cylinder case. These
fluxes are shown in the insets of figs. 2a and b. Here the
filaments are responsible for the enstrophy flux while the
vortical structures are responsible for the energy flux just
like for the cylinder case showing that the existence of
these flow structures and their role in transferring either
the energy upscale or the enstrophy downscale is inherent
to 2D turbulent flows.
The wavelet analysis of a two-dimensional turbulent

flow shows that the vorticity field can be decomposed
into two orthogonal subfields. Each subfield is character-
ized by a distinct structure: vortices or filaments. While
the vortical structures are responsible for the transfer of
energy upscale, the filamentary structures are responsible
for the transfer of enstrophy downscale. Additional work is
required to understand the link between the present find-
ings and recently proposed mechanisms for the enstrophy
and energy cascades.
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