
SAMPLING THEORY IN SIGNAL AND IMAGE PROCESSING
c© 2003 SAMPLING PUBLISHING

Vol. 1, No. 1, Jan. 2002, pp. 0-50

ISSN: 1530-6429

Comparison of numerical methods for the

computation of energy spectra in 2D

turbulence. Part I: Direct methods

Ch.H. Bruneau, P. Fischer, Z. Peter, A. Yger
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Abstract

The widely accepted theory of two-dimensional turbulence predicts a
direct enstrophy cascade with an energy spectrum which behaves in terms
of the frequency range k as k−3 and an inverse energy cascade with a k−5/3

decay. However the graphic representation of the energy spectrum (even
its shape) is closely related to the tool which is used to perform the numer-
ical computation. With the same initial flow, eventually treated thanks to
different tools such as wavelet decompositions or POD representations, the
energy spectra are computed using direct various methods : FFT, auto-
covariance function, auto regressive model, wavelet transform. Numerical
results are compared to each other and confronted with theoretical predic-
tions. In a forthcoming part II some adaptative methods combined with
the above direct ones will be developed.
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1 Introduction

The study of two-dimensional turbulence theory was initiated by Kolmogorov
[16, 17], Batchelor [3] and Kraichnan [18]-[20]. The theoretical prediction of
two inertial ranges is a consequence of both energy and enstrophy conservation
laws in the two-dimensional Navier-Stokes (NS) equations. Observing these two
ranges in numerical or physical experiments remains a still up-to-date challenge
within the frame of turbulence studies.
It follows from the works of Kraichnan and Batchelor that a local cascade of
enstrophy from the injection scale to the smaller scales leads to a value of −3
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for the slope in the representation of the logarithm of the energy spectrum in
terms of the logarithm of the wave number. According to Saffman [32], the
dominant contribution in the energy spectrum comes from effects resulting from
the discontinuities of vorticity. The value of the slope is then predicted to be
of −4. However, the rough value which is obtained by numerical simulations
is in general located between these two theoretical values. Besides Vassilicos
and Hunt [37] pointed out that accumulating spirals above vortices make the
flow more singular, so that the slope is attenuated, down to the value of −5/3.
The creation of vorticity filaments leading to these accumulating spirals occurs
during the vortices merging process [15]. This process transfers energy to larger
scales, thus creating the inverse energy cascade. The overall energy spectrum is
depicted in Figure 1. While several numerical simulations and experiments have
shown results which agree in some relative way the theoretical predictions, few
have really materialised the coexistence of both cascades [21], [6], [34], [35]. The
experiment by Rutgers [31], using fast flowing soap films, remains one among
such few realisations.
Starting from Direct Numerical Simulations (DNS) of Navier-Stokes (NS) equa-
tions that reveal the coexistence of both slopes, the main goal of this paper is to
point out the difficulties encountered when analysing the results. Indeed most
of the methods are very sensitive to the various parameters and so the same
method can lead to significantly different results according to the choice of the
parameters. Therefore for each method we specify the adequate range of values
to get relevant results.
We consider the flow behind an array of cylinders in a channel with rows of small
cylinders along the vertical edges of the channel (Figure 2). We will compare
numerical methods (based on Fourier, wavelets and/or statistical models) that
one can use to materialise (and then compute) energy spectra from numerical
data (section 3). The section 4 will be devoted to decomposition/reconstruction
methods based on the Karhunen-Loeve [24], [33] decomposition and cosine or
wavelet packets. In the forthcoming part II such decomposition/reconstruction
methods will be combined with a matching pursuit algorithm [26]. A com-
plementary study of two-dimensional turbulence based on the velocity and the
vorticity analysis will be addressed in another publication. Anyone who is inter-
ested in two-dimensional turbulence theory should refer to Lesieur [22], Frisch
[10] or Tabeling [36] for a complete overview on the topic.

2 Description of the experiments and numerical re-
sults

The numerical simulation of a two-dimensional channel flow perturbed by arrays
of cylinders, as on Figure 2 is performed. The length of the channel Ω is four
times its width L ; the Reynolds number based on the diameter of the bigger
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Figure 1: Theoretical spectrum cascades in 2D turbulence

cylinders (equal to 0.1 × L) is Re = 50000.
The experiment consists in solving numerically the NS/Brinkman model de-
scribed below (1) in Ω = Ωs ∪Ωf where Ωs (the ”obstacle” subset) is the union
of the five horizontal disks together with 18 small disks (with diameter equal to
0.05 × L) and Ωf is the fluid domain as shown on Figure 2.
The evolutions in time of the velocity (two components), of the vorticity and
of the pressure have been recorded at a monitoring point located at (x1 =
3L/8, x2 = 13L/16) sufficiently far away from the horizontal cylinders to take
into account the developed turbulent events. These 1D temporal signals are
then analysed and used to compute the energy spectra.
Numerical results obtained through such DNS can be compared to those ob-
tained in the experiments realised thanks to physical devices by Hamid Kellay
in [7] : a soap film in a rectangular channel is disturbed by five big cylinders
together with two rows of smaller cylinders.
Let Ωf be the fluid domain, its boundary is defined by ∂Ωf = ∂Ωs∪ΓD∪ΓW ∪ΓN

(see Figure 2). A non-homogeneous Poiseuille flow is imposed on the boundary
ΓD as well as a no-slip boundary condition is imposed on the pieces of the
boundary ΓW . The obstacles are taken into account by a penalisation proce-
dure which consists to add a mass term in the equations which are now specified
on the whole domain Ω as in [2]. Thus, we are looking for the solution of the
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following initial boundary value problem :

∂tU + (U · ∇)U − divσ(U, p) +
1

K
U = 0 in ΩT = Ω × (0, T )

divU = 0 in ΩT

U(·, 0) = U0 in Ω

U = UD on ΓD × (0, T )

U = 0 on ΓW × (0, T )

σ(U, p) · n+
1

2
(U · n)−(U − U ref ) = σ(U ref , pref ) · n on ΓN

(1)

where σ(U, p) is the stress tensor, U = (u, v) is the velocity vector, p is the
pressure, U0 is the initial datum, UD the Poiseuille flow at the entrance section of
the channel, U ref and pref a reference flow used to write non reflecting boundary
conditions on the artificial exit section of the channel [8]. In this NS/Brinkman
model, the scalar function K can be considered as the permeability of the porous
medium.
Numerical simulations are performed on rectangular meshes (1280×320 or 2560×
640 points) with a multi-grid approach. The two previous meshes correspond to
grids 7 and 8 respectively. The time process lasts 40 units of non dimensional
time with a step of 10−3 leading to 40000 output data for each temporal signal
(pressure, components of the velocity and vorticity) at the monitoring point in
Ωf . We see on Figure 3 that the velocity signals have roughly the same properties
whereas the pressure and the vorticity signals exhibit huge picks corresponding
to the convection of the coherent structures through the point position. In
the following sections the Taylor hypothesis is used to convert time scales to
length scales. This hypothesis has been thoroughly tested in such flows [4] and
assumes that the flow structures are convected through the monitoring point
without much deformation.

3 Energy spectrum computation

3.1 The basic FFT method

The simplest way to visualise the energy spectrum corresponding to a given
signal consists in computing the power spectrum of the first component of the
velocity u. It is allowed to consider only the transverse velocity component since
the flow perturbations are mainly isotropic and thus the power spectral densities
of both velocity components are essentially the same. So they represent correctly
the energy spectrum. A first näıve attempt to perform such a computation has
been done directly, applying the well known discrete Fourier transform to the
whole velocity signal. Although this signal is not periodic, a windowed version
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of the FFT method with functions such that Bartlett’s or Hanning’s is useless
due to the large size of the signal. One can see immediately that graphical rep-
resentations of the logarithms of the power spectra in terms of the logarithm
of the wave number k (as represented on Figure 4 for the first component of
the velocity signal) obtained that way provide a very noisy graph. Despite the
thick aspect of the graph, it is possible to determine the slopes of both cascades
through a first order least square approximation. Their value fits more or less
with the theoretical values.
One difficulty is the determination of the slope of the cascades as some parts of
the spectrum have no physical or numerical meaning. Namely, the frequencies
corresponding to a size bigger than the channel width and the frequencies cor-
responding to the unresolved scales. Let the unity be the channel width, then
the diameter of the horizontal cylinders is 1

10 . Due to that scaling, k ≈ 10 is
the main frequency of injection. The diameter of the smaller cylinders in the
two vertical arrays is 1

20 which corresponds to an injection frequency of k ≈ 20.
Moreover, the numerical simulation is performed on an uniform grid of mesh
size h = 1

320 or h = 1
640 . Assuming that for the representation of an oscillation

generally we need 4 or 5 points, we expect to obtain significant scales between
the wave numbers corresponding to the half size of the channel k = 2 and k = 1

5h

or k = 1
4h

. Thus it should be possible to determine correctly the two cascade
slopes as following:
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Figure 3: Signals of the physical quantities at the monitoring point
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• for the inverse cascade (sl 1) between the frequencies k = 2 and k = 10
• for the enstrophy cascade (sl 2) between the frequencies 10 and k = 1

5h
or

k = 1
4h

.
To confirm this assumption we perform numerous slopes computation on the en-
ergy spectrum obtained from simulation grids 7 (h = 1

320 ) and 8 (h = 1
640 ). On

the Figure 5 the enstrophy cascade slopes (on the vertical axis) are determined
always between the wave number k = 10 and the wave numbers represented
in the horizontal axis. We can observe an almost constant behaviour in the
vicinity of the wave number k = 65, while the first part of the curve is due to
the influence of the injection scales and the last part is due to the dissipative
tail. The same slopes computation for h = 1

640 gives the same behaviour with
an almost constant value around k = 130. This fact shows that by increasing
the numerical simulation of the flow by a factor 2, we double the range of the
enstrophy cascade. However, due to the thickness of the energy spectra, an
accurate estimation of the slope is really hard to obtain.
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Figure 4: Energy spectrum obtained for the first component of the velocity with Fourier
method

3.2 The periodogram method

In order to overcome the difficulty arising in this näıve approach, one can com-
bine it with statistical ideas by computing the discrete Fourier transform of the
digital signals [s(l), ..., s(l + p − 1)] for l = 1 : q : 40000 − p and averaging the
graphic representations thus obtained for the logarithm of the energy spectrum.
We still treat the first component of the velocity. The graphical representations
obtained from the Bartlett windowed Fast Fourier Transform algorithm with the
window size p = 2048 and the translation step q = 8 are plotted on Figure 6.
Note that the thickness of the energy spectra is drastically attenuated, though
the time-frequency information is of course lost since one uses a statistical pro-
cess. Of course, when the size p of the window increases up to the size of the
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Figure 5: Determination of the upper bound to evaluate the enstrophy cascade slope

signal, one recovers the thick energy spectra plotted on Figure 4. The Figure 7
shows the evolution of the estimated slopes respect to the size p (between 103

and the extreme value 39× 103) of the window when q is kept equal to 10. The
slope within the inverse cascade range remains essentially located around −1.8,
while the slope within the enstrophy cascade range takes values around −4 like
in the previous subsection. Let us point out to the reader that when the size p
of the window is small it is necessary to use windowed Fast Fourier Transform to
reduce the effect of the side lobs that introduce high frequencies and so modify
the slope in the high frequency part of the spectrum. This is illustrated on Fig-
ure 8 where the slopes of the spectra obtained without windowing are about the
same than those of Figure 7 except for small sizes p ≤ 10000 in the enstrophy
cascade.
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Figure 6: Energy spectrum obtained by the periodogram method with p = 2048 and
q = 8 for the first component of the velocity
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Figure 7: Evolution of the slopes in terms of the size of the window with the Bartlett
windowed periodogram method
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Figure 8: Evolution of the slopes in terms of the size of the window with the peri-
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3.3 The correlation method

One can determine the power spectral density of a signal as being the Fourier
transform of the auto-covariance function. By the indirect (or the Blackman-
Tukey) method, in a first stage one estimates the auto-covariance function and
then, by taking the Bartlett windowed Fourier transform of this function one
calculates the power spectral density. Let be xn, (n = 0, 1, 2..., N−1) the studied
signal containing N samples. A biased estimate of the auto-covariance function
is given by:

R̃(Q) =
1

N

N−Q−1∑

n=0

xn+Qxn with Q = 0, 1, . . . , N − 1 (2)

The values of this function for the negative arguments can be deduced starting
from the estimates obtained for the positive arguments by the relation:

R̃(−Q) = R̃(Q). (3)

In our case N = 40000 and we will calculate the power spectral density of the
signal using M ≤ N correlation coefficients. The results obtained for the energy
spectrum, still for the first component of the velocity is displayed on Figure
9. When M is small the slopes are underestimated with an error up to 14%
whereas the results are coherent with those obtained in the previous subsections
for M ≥ 10000. On the Figure 10 we represent on the vertical axis the various
values of the slopes for the variation of the correlation coefficients in the auto-
covariance method. One can see the decreasing behaviour especially on the level
of enstrophy cascade while the slope of the inverse cascade remains roughly the
same one except forM = 1000. These graphs can justify the choice of the needed
correlation coefficients in the calculation of the slopes of the power spectrum.
An insufficient number of coefficients can yield more than 10% of error. However
in this computation the choice of the windowing function is very important as
the same study with Hanning function gives much better results, especially for
the direct cascade.
Like in the periodogram, we can calculate the power spectral densities on some
smaller windows and, taking the mean, obtain the estimated energy spectra
(Welch method with no overlaps). Let xn, (n = 0, 1, 2..., N − 1) be a digital
signal (interpreted as a stationary process) with length N , we choose a window
size p. Let us set the number of parameters M = E[p/2], an unbiased estimate
for the auto covariance function is given by :

k ∈ {0, ...,M − 1} →
1

p
averagen

[ p−1−k∑

l=0

xn×p+l+kxn×p+l

]
,

where the averaging process is taken over values of n between 0 and E[N/p].
On the Figure 11 are presented the results obtained with 20 windows of length
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2000. For each such a window we determine 1000 correlation coefficients and
then the estimation of the energy spectra is obtained by taking the mean of the
power spectral densities. Here again the results are not correct as the size of the
window is too small. Indeed, the estimated slopes obtained when one interprets
energy spectra as power spectral densities of stationary processes depend on the
value of the size p. The Figure 12, shows the evolution of the two estimated
slopes in terms of the value of such a size p when p increases from 1000 up to
20000. Once again a size at least p ≥ 5000 is required to get reliable results.
This is coherent with the fact that the validity of the correlation method lies on
the assumption that the signal remains stationary on windows of size p. Indeed
we can check on the correlation matrix given in the Figure 13 that the stationary
assumption is much more fulfilled for p = 20000 than for p = 1000.
In conclusion there is a significant variation of the slopes with respect to the
size p of the window which is used to compute the auto correlation. Relatively
large values of p better verify the stationary assumption and thus the resulting
slope is in very good accordance with the slopes obtained with the periodogram
method in subsection 3.2.
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Figure 9: Energy spectrum obtained by the correlation method

3.4 The method based on the auto regressive model

Let us consider again the digital real signal (xn)n, n = 0, ..., N − 1, correspond-
ing for example to the measurements of the first component of the velocity, as
a discrete stationary process. The search for an optimal auto regressive model
with an a priori prescribed number of parameters m < N) consists in the de-
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Figure 10: Slope estimates computed with the correlation method in terms of M
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termination of estimators µ, α1,...,αm such that

S(µ, α1, ..., αm) :=

N∑

n=m+1

z2
n

=

N∑

n=m+1

[
(xn − µ) − α1(xn−1 − µ) − · · · − αm(xn−m − µ)

]2

is minimal. In order to seek for such estimators, the use of the least squares
criterion takes its justification from the a priori assumption that the residual
process

zn := (xn − µ) −

m∑

l=1

αl(xn−l − µ) , n = m, ..., N − 1 , (4)

is Gaussian with mean value 0 and variance σ2
z which means that µ corresponds

essentially to the mean value of the digital process. Optimal values α̂1, ..., α̂m for
the coefficients α1, ..., αm are then computed through the Yule-Walker method
[30], [14], and the corresponding numerical model for the power spectral density
of the stationary process realised by the digital signal (xn)n is

ω ∈ [0, π] → Sxx(ω) =
s2z

|1 − α̂1 exp(−iω) − ...− α̂m exp(−imω)|2
, (5)

where s2z denotes an unbiased estimate for the residual variance σ2
z , obtained

when m << N as

s2z =
N −m

N − 2m− 1

(
R̂(0) −

m∑

l=1

α̂l R̂(l)
)
, (6)

R̂ being the auto covariance function of the digital process (xn)n, that is

R̂(l) :=
1

N

N−1∑

n=m

(xn − x)(xn−l − x) , l = 0, ...,m ,

where x denotes the mean value of (xn)n. The number of parameters has to
be judiciously chosen since it highly influences the results. If this number is
too low, the algorithm suppresses frequency peaks and does not allow a precise
frequencies determination. If the number of parameters is too high the method
becomes very sensitive to the signal-to-noise ratio and a number of artificial and
irrelevant frequencies appears in the spectrum. If one applies this method to the
digital velocity signals treated before, one obtains smooth representations of the
logarithm of energy spectra as functions of the wave number. The frequency set
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[0, π] is rescaled in order the graphics thus obtained fit with those which were
obtained in the two previous subsections.
It is underlined in [38], that auto regressive methods provide good results when
the filter length is of the same order than the number of samples per period
(m = 1000 in our case). On the Figure 14 we can see, that the spectra calcu-
lated with a low number of auto regressive parameters is more smooth than the
spectra calculated with much more parameters. In the second case, a break-
down is observed around k = 10 and so the determination of the slopes is easier.
Same results are obtained with m = 1000 parameters except the curve is more
oscillating. As soon as the number of parameters is large enough the results
are consistent with those obtained in the previous sections. However various
methods dealing with the detection of the optimal number of parameters were
tested but did not give reliable results.
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Figure 14: Energy spectra obtained by the autoregressive method with different pa-
rameters

3.5 Wavelet based spectrum

Wavelet decomposition amounts to realise a decomposition of the input signal s
into successive details dj , j = 1, ..., k, plus an approximation rk:

s = d1 + d2 + · · · + dk + rk, (7)

Such a decomposition is obtained performing orthogonal projections of s on
subspaces Wj generated by the functions ψ( t−l

2j ), j ≤ k for the details and

on subspaces Vk generated by functions ϕ( t−l
2k ) for the resumed version rk. The

wavelet ψ is the mother of the corresponding multiresolution analysis interpreted
as a pass-band filter, while ϕ which plays the role of a low-band filter and is the
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father of the corresponding multiresolution analysis.
Wavelet spectral densities are additive contributions to the total energy of the
signal in a Plancherel like identity:

‖s‖2 = ‖d1‖
2 + ‖d2‖

2 + · · · + ‖dk‖
2 + ‖rk‖

2, (8)

where ‖.‖ denotes the l2 discrete norm.
The wavelet based spectrum obtained for Daubechies10 wavelet is shown in
Figure 15. We can remark the best quality fit of the spectra and the calculated
slopes, which have similar values as in the other methods. The wavelet analysis
depends on both the signal under study and the choice of the wavelet basis.
For a complete presentation of the now classical multiresolution analysis and
wavelet theory, refer for example to [25], and for a detailed theoretical and
numerical comparison between wavelet and Fourier spectra see the paper of
Perrier, Philipovitch and Basdevant [28]. It has been stated in [28] that “the
behaviour of the wavelet spectrum at large wave numbers depends strongly on
the behaviour of the analysing wavelet at small wave numbers”. This feature
has been observed in our spectra, given in Figure 16, where it can be noticed
that the number of vanishing moments of the mother wavelet slightly modifies
the slope of the spectra at large wave numbers. The obtained slope values are
summarised in Table 1.
To conclude this section, one should say that the four methods described here
lead to results which are essentially similar. However one has to be very cautious
as all the methods are very sensitive to their parameters. For instance we have
found a slope for the direct enstrophy cascade close to −4 but with some choices
of the parameters it would be possible to get a slope close to −3 in order to
be consistent with the two-dimensional turbulence theory. The results found in
the literature often make evident one of the two slopes but rarely both of them
within the same experiment [7].
Note that the method based on the wavelet decomposition provides the best
representation in terms of smoothness for the energy spectrum.

Wavelet type Enstrophy cascade slope Inverse cascade slope

Daubechies4 -3.94 -1.74

Daubechies10 -4.07 -1.77

Daubechies20 -4.11 -1.78

Table 1: Slopes obtained with different Daubechies type wavelets by wavelet based
spectra calculation
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Figure 15: Energy spectra calculated with the wavelet based method using
Daubechies10 wavelet
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4 Methods of decomposition – reconstruction

In this section, we compare different method of decompositions. Some of them
take into account the signal itself like proper orthogonal decomposition. Other
ones such that wavelet packets or cosine packets decompositions lie on a system-
atic use of entropy criteria leading to the construction of the best basis.

4.1 Proper orthogonal decomposition (POD)

The POD, also called Karhunen-Loeve decomposition [24], is a classical method
developed in statistics. Given a random process U , the overall algorithm can be
summarised as follows :

1. Compute the auto correlation matrix A of a set of realisations (also called
“snapshots”) of U , U1, ..., Uq

2. Perform the Singular Value Decomposition of A, thus organise the eigen-
values of A in decreasing order : λ1 ≥ λ2 ≥ · · ·

3. Take m ≤ q and select an orthonormal (in the L2 sense) system of vectors
(αij)1≤i≤q, j = 1, ...,m, such that (αij)i is an eigenvector respect to the
eigenvalue λj

4. Compute the POD modes

Vj :=

q∑

i=1

αijUi , j = 1, ...,m

This four steps process provides when m = q the best basis for the set of reali-
sations {U1, ..., Uq} respect to the L2 norm. Thus, given a random process, the
effective implementation of the POD requires a set of realisations or snapshots.
Instead of using several signals of length 40000 to create the set of snapshots,
one will start from a given signal s (with length 40000) such as the registration
of the vorticity, the pressure or one of the components of the velocity. We divide
s(1 : 39936) in 39 consecutive non overlapping segments of length 1024. Each
segment plays the role of a snapshot, thus leading to a dictionary D of 39 snap-
shots and to an auto correlation matrix of size 39×39. The POD algorithm then
provides 39 POD modes of length 1024, together with the coefficients one needs
to rebuild each original segment as a linear combination of the proper modes.
For example, the vorticity signal has been decomposed following this method
and a few among the 39 proper modes multiplied by their corresponding eigen-
value are displayed in Figure 17.
One can also construct a collection of snapshots by breaking the original signal
into overlapping segments with length 1024, thus leading to a redundant but
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richer set of realisations and therefore to a new family of proper modes [29].
The length of the segments used to realise snapshots can also be discussed since
the quality of the reconstruction depends on it. Table 2 shows for example the
number of POD modes which are necessary for the reconstruction, up to a given
percentage of the initial L2 norm, starting with 156 consecutive non-overlapping
segments of 256 points, 78 consecutive non-overlapping segments of 512 points,
or 39 consecutive non-overlapping segments of 1024 points. In the following, we
decide to use 39 snapshots as their length corresponds to the channel width for
δt = 10−3.
On the other hand, a dictionary of snapshots may be reduced without any sig-
nificant effect on the efficiency of the atomic decomposition of a given signal
s. This can be done introducing for example the following Variance Criterion
(VC) used in [23] : a snapshot Ui remains within the dictionary provided its
variance (σ(i))2 exceeds the variance σ2

s . For example, it can be seen on Figure
18 that, from the original dictionary D with 39 snapshots of 1024 introduced
to analyse the vorticity signal, only 17 snapshots fit the criterion. The new
dictionary contains only 17 snapshots Ui, which lead to the construction of 17
proper modes from an auto correlation matrix 17 × 17. In fact, such a criterion
allows to reduce the dictionary of snapshots, keeping track of the shape of the
POD modes corresponding to the most significant eigenvalues λ1, λ2, .... One
may check that the first POD modes obtained that way from the reduced dic-
tionary of 39 snapshots with length 1024 are very similar to those corresponding
to POD modes computed from the complete dictionary D (Figure 17).

Subdivision 50% 99%

156 × 256 3 26

78 × 512 5 38

39 × 1024 6 33

Table 2: Number of POD modes necessary for the reconstruction of the signal with
50% and 99% the L2 norm

4.2 Qualitative aspects of the reconstruction process coupled
with the proper orthogonal decomposition

Any Proper Orthogonal Decomposition induces a reconstruction process. More
precisely, if (Ui)1≤i≤q are the snapshots and V1, ..., Vq the associated proper
modes, we denote, for k = 1, ..., q, Ui,k the orthogonal projection of Ui on the
subspace generated by V1, ..., Vk . The speed with which min

i
(‖Uik‖/‖Ui‖) con-

verges to 1 when k increases is a good indicator for the quality of the POD
respect to the reconstruction of the snapshots. Such a speed also indicates the
efficiency of the reconstruction process. Since reconstructing the snapshots leads
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Figure 17: POD modes for the vorticity signal
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Figure 18: Variance of the representations Ui in D compared to the variance of the
signal (horizontal line)
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to a restitution of the signal, a proper orthogonal decomposition associated to
such a segmentation is qualitatively efficient provided the signal can be approx-
imately reconstructed from the least number of proper modes. On Figure 19,
the evolution of the intermediate reconstruction ratio

rk :=

39∑
i=1

‖Uik‖
2

‖s‖2

is represented graphically as a function of k when U1, ..., U39 are the 39 snapshots
of the dictionary D. Note for instance that the first 5 modes representing about
13% of the total number of modes are sufficient to recover the original signal up
to a relative energy of about 45%.
The reconstruction process does not behave equally well when applied to the
restitution of a randomly chosen segment of the signal. Each segment of s can
be modelled as a linear combination of the proper modes which are enough to
reconstruct the segment up to the best possible relative energy error. Note that
there is no reasons to get the first proper modes as the most significant in the
decomposition of the segment. Two segments S1 and S2 of length 1024 have
been randomly chosen in the vorticity signal s and plotted on Figure 20. The
respective reconstructions from the proper orthogonal decomposition attached
to the dictionary D are compared. Namely, the graphics of the functions

k → r1k :=
‖pr(V1,...,Vk)[S1]‖

2

‖S1‖2

k → r2k :=
‖pr(V1,...,Vk)[S2]‖

2

‖S2‖2

have been represented on Figure 21. The first evident fact is that the recon-
struction process is more efficient when applied to S1 than to S2. Indeed, to
recover a relative energy of about 50%, 13 POD modes are requested for S1 and
all the POD modes for S2. Three reasons may explain such a crucial difference :

• the segment S1 is more regular than the segment S2, which makes the
reconstruction of S1 with smooth signals such as the proper modes corre-
sponding to the most significant eigenvalues easier than that of S2 ;

• On the one hand the support of the segment S1 almost fit the support of
a single snapshot, that is the 23rd snapshot which starts at the 22529th

point. So most of the content of S1 has been used to build the POD modes.
On the other hand, the support of the segment S2 overlaps significantly
the supports of two snapshots (the 11th and the 12th) ;

• the 23rd snapshot has a variance which dominates the overall signal vari-
ance, while the 11th and 12th snapshots have variances lying below the
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overall signal variance. This implies that the segment S1 corresponds to a
dominating part within the signal, which is not the case for the segment
S2.
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Figure 19: Quality of the reconstruction versus the number of POD modes
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Figure 20: Randomly chosen segments of the vorticity signal

4.3 POD decomposition – reconstruction versus numerical spec-
tral analysis

Let s be the signal corresponding to the first component of the velocity and
Dvel := {Ui ; i = 1, .., 39} the dictionary of snapshots corresponding to non over-
lapping segments with length 1024, with corresponding proper modes V1, ..., V39.
For each k between 1 and 39, one computes the energy spectrum of the partially
reconstructed signal using the basic FFT method described in section 3.1

sk := [U1,k U2,k · · · Ui,k · · · U39,k] ,



Comparison of numerical methods for the computation of energy spectra 23

0 10 20 30 40
number of POD modes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
te

 o
f e

ne
rg

y

(a) Segment S1

0 10 20 30 40
number of POD modes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
te

 o
f e

ne
rg

y

(b) Segment S2

Figure 21: Quality of the reconstruction versus the number of POD modes

where Ui,k denotes the orthogonal projection of Ui on the subspace (V1, ..., Vk).
Then for each sk, the computation of estimated slopes for both cascades has
been carried out. Results obtained for the evolution of the two estimated slopes
in terms of k are quoted on Figure 22.
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Figure 22: Evolution of the slopes in function of the number of POD modes in the
reconstruction

4.4 Wavelet and cosine packets decompositions

Given a signal s and a multiresolution analysis, the associated splitting lemma
leads to the selection of an orthonormal basis such that the Shannon entropy of
s respect to its decomposition in such a basis is minimal. The elements of this
kind of basis are wavelet packets ; such functions generalise compactly-supported
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wavelets and constitute a redundant set of basis functions. In the same vein,
the windowed Fourier transform induces through Malvar’s decomposition the
realisation of a split and merge algorithm, which leads (still through an entropy
criterion) to the construction of a best basis whose elements are cosine packets.
More details about the theory, together with numerical tests based on various
entropy criteria, can be found for example in [25, 39].
Wavelet packet decompositions are applied here to a signal (pressure, velocity
or vorticity at one of the monitoring points) truncated in order to have length
215. The Shannon entropy criterion governs the selection process of the best ba-
sis. Furthermore, a second entropy criterion is used in order to select significant
components of s within its decomposition in such a basis (in order for example to
recover the original signal up to a relative energy error less than 1%). Combining
the best basis selection with this second entropy criterion leads to an approxi-
mated reconstruction of the given signal s also in terms of cosine packets atoms
which essentially look as rectangular windows times cosine functions. The en-
ergy spectrum of such an approximation models the energy spectrum of s. The
Table 3 indicates both the number of such atoms and the estimated values of
the inverse and enstrophy cascades slopes for the corresponding approximation.
It is also important to test the efficiency of the reconstruction process on random
segments of the signal. As for the POD reconstruction process, all segments do
not behave equally. On Table 4, such efficiency has been tested on segments S1

and S2. The number of atoms which are necessary to reconstruct S2 up to a
relative energy error less than 1% is at least three times the number of atoms
one needs to reconstruct S1.

Basis type # elements enstrophy cascade inverse cascade

Haar 1742 -3.10 -1.83

Daubechies6 910 -4.10 -1.82

Coiflet2 863 -4.23 -1.82

Symmlet8 766 -5.08 -1.81

Cosine 1147 -3.80 -1.80

Table 3: Number of elements necessary to reconstruct the signal up to 99% of the
L2 norm with the best basis algorithm and cascades slopes of the global reconstructed
signal

5 Conclusions

Several conclusions can be drawn from this study on 2D turbulence. The shape
of the spectra is in agreement with the theory and with the results generally
obtained by other authors. The graphs being more or less thick depending on
the method used to compute the spectra. The smoothest results have been
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Basis type # elements for S1 # elements for S2

Haar 47 143

Daubechies6 22 121

Coiflet2 24 101

Symmlet8 21 100

Cosine 33 156

Table 4: Number of elements necessary to reconstruct signals S1 and S2 up to 99% of
the L2 norm with the best basis algorithm

obtained with the auto regressive model and wavelet method.
Different methods of decomposition have also been studied : POD, wavelet and
cosine packets with the best basis algorithm. For the computation of the POD
modes, the signal has been cut in several parts called snapshots. The method
appears to be efficient for the analysis of one of the snapshots but reveals to
be less adapted for a segment randomly chosen in the signal. On the contrary
the best basis algorithm in a frame of a wavelet or cosine packets decomposition
can reconstruct any part of the signal with a reasonable number of elements.
We shall see in the forthcoming part II how one can benefit of combining such
methods towards an adaptative algorithm such as matching pursuit.
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