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351 cours de la Libération

33405 Talence France

bruneau@math.u-bordeaux.fr

Abstract

The first part of this work was devoted to the comparison of direct
numerical methods for the computation of energy spectra in 2D turbu-
lence. Here such direct methods are mixed together and combined with
adaptative algorithms such as matching pursuit or orthogonal matching
pursuit. It appears curiously that the proper orthogonal decomposition
basis is sometimes less adapted to the reconstruction process than cosine
or wavelet packets dictionaries.
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1 Introduction

In the first part of this work [1] various direct methods were applied to compute
energy spectra of 1D signals coming from direct numerical simulations of the
2D turbulent flow behind arrays of cylinders [2]. Some of these direct methods,
namely the proper orthogonal decomposition (POD) and the cosine or wavelet
packets decomposition provide dictionaries which are used here in adaptative
matching pursuit (MP) or orthogonal matching pursuit (MPO) algorithms. Af-
ter a brief presentation of these algorithms, numerical results are provided using
first the POD modes dictionary, then wavelet or cosine packets dictionaries and
finally mixed dictionaries to analyse the same signals than in the first part.

2 Matching pursuit algorithms

The matching pursuit (MP) algorithm, introduced by S. Mallat [4, 5], allows a
clever decomposition of a given signal s into a linear combination of functions
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(also called atoms) which are selected from a redundant dictionary of signals
with normalised energy equal to 1. These atoms are selected in order to fit in
the best way the structure of the signal. The first selected atom d1 is chosen so
that the modulus |〈s , d1〉| of its correlation coefficient with s is maximal ; then
d2 is chosen within the dictionary so that
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is maximal, and so on.
The sequence of coefficients is decreasing and indicates the order in which the
corresponding atoms are selected. The same atom may be selected several times.
Thus the final coefficient of an atom summarises its global contribution to the
reconstruction, its order of appearance being forgotten. To overcome this incon-
venient, the MP algorithm can be combined with the Gram-Schmidt process so
that at any step, the partial reconstructed signal
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is orthogonal to the (k +1)-th atom dk+1 which is selected. When using this or-
thogonal version of the algorithm (MPO), one may take away from the dictionary
any atom once it has been selected. In the MPO algorithm the coefficients give
directly the whole contribution of the corresponding selected atoms. Besides, the
number of iterations equals the number of atoms needed for a required ratio of
reconstruction as a new atom is selected at each iteration. The weakness of that
MPO algorithm lies on the fact that the Gram-Schmidt re-orthogonalization
process might modify the coefficients and eventually erase some of them. There-
fore, to keep track of the decomposition it is necessary for each selected atom to
take into account its coefficient the first time the atom appears.
The MP algorithm is a nonlinear procedure which selects the components of
the signal which are coherent respect to a given dictionary. It also provides a
decomposition of the signal with such coherent structures as atoms. Whenever
a segment of the signal is badly correlated with any element of the dictionary,
it is cut into many pieces and thus its content is spread out. The MP algorithm
can be compared to the wavelet packets method as follows [5] :

• on the one hand, wavelet packets decompositions are not well adapted to
the analysis of highly non-stationary signals since entropy criteria exploit
global properties of the signal. Indeed, wavelet packets correspond to
precise frequency ranges which are directly connected with the selection
tree of the algorithm. On the opposite, in the greedy approach of the MP
algorithm, the choice of the atoms is completely free.

• on the other hand, the best basis algorithm is more efficient when applied
to stationary signals.
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Therefore, as soon as the dictionary contains enough irregular functions, the MP
algorithm should give better results than wavelet packets decompositions since
it isolates non-stationary components.

3 Matching pursuit with POD modes dictionaries

Given a signal s, a natural dictionary V for the MP algorithm could be the POD
modes V1, ..., Vq computed from a set of snapshots corresponding to successive
overlapping or not segments partitioning the signal. The more redundant the
segmentation of s with snapshots is, the more efficient the MP algorithm realised
with corresponding POD modes will be. Let us take for example the four dictio-
naries corresponding to the segmentation of the signals of the pressure p, the two
components of the velocity u and v, and the vorticity ω with 39 non-overlapping
segments. The MP algorithm is applied to each of the four signals p, u, v, ω with
the four dictionaries and the crossed reconstruction ratio after 25 iterations of
the algorithm is given on Table 1. Of course the best results are obtained on the
diagonal as the used dictionary corresponds to the signal. Moreover, due to the
nature of the signal which is very different for the vorticity as we have seen in
[1], the crossed results with the vorticity are the worst. We see also that after
only 25 iterations we get more than 99% of the L2 norm whereas the 33 first
POD modes were necessary to get the same amount of the norm with the POD
decomposition [1].
Now, let D be the dictionary with the 39 POD modes constructed from the 39
non overlapping snapshots of the vorticity signal. The MPO algorithm is applied
to the family of 305 segments of length 1024 which are obtained by translation
of 128 points. On Figure 1, is plotted the number of times a given POD mode
Vj is selected as the first atom d1. We can see that the first POD mode V1 is
chosen 31 times as d1, the second mode 25 times, and so on. The first four
modes are more often selected whereas the last ones are sometimes not even
selected once. This is in accordance with the construction of the POD modes
although the modes have been constructed only with 39 snapshots. On Figure
2(a) are plotted the absolute values of the MPO coefficients (from dark grey for
the biggest ones to light grey for the smallest ones) obtained when decomposing
each of the 305 segments. Let us point out that the clear vertical strips show
the intermittencies of the signal. In addition Figure 2(b) shows that in these
strips, taking away the 39 snapshots, the reconstruction rate is much lower.
Finally in this subsection, we would like to point out how the POD modes can
be very well adapted to a segment of the original signal since the first coefficient
of the MP algorithm may induce a reconstruction up to 58%. This is better than
what can be obtained for some segments with the whole reconstruction as we
have seen for S2 in the previous section. Indeed, if we carry out a point by point
translation of a window of 1024 points over the entire original vorticity signal of
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39936 points, one will have a total of 38913 windows. Then, we proceed the MP
algorithm on each window and pick up the segment for which the reconstruction
after the first iteration is the best. On the Figure 3 one can see the corre-
spondence between the shape of this original segment and its reconstruction.

u v p ω

u POD set 99.73% 96.18% 92.42% 79.47%

v POD set 94.81% 99.87% 93.40% 80.40%

p POD set 93.11% 96.35% 99.81% 83.24%

ω POD set 78.20% 81.36% 80.19% 99.44%

Table 1: Crossed reconstruction ratio for various physical quantities after 25 iterations
of the matching pursuit algorithm with POD dictionary
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Figure 1: Number of times a POD mode is chosen as d1

4 Matching Pursuit with wavelet packets or cosine

packets dictionaries

Wavelet packets and cosine packets described in [1] can also be used as dictio-
naries as implemented in [3]. We decide to decompose both segments S1 and
S2 of the vorticity signal with such dictionaries in order to see how many atoms
are necessary to get a reconstruction up to 99% of the L2 norm. The Table 2
indicates the number of atoms required for four different wavelet packets basis
and cosine packets. Once again, less atoms are required to approximate segment
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Figure 2: Influence of the position of the segments on the MPO decomposition with
the POD modes dictionary
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Figure 3: The part of the original vorticity signal which gives the best correlation with
a POD dictionary atom

S1 than segment S2. In addition, we see that the number of atoms is lower than
the number of atoms which is involved in the split and merge algorithm based
on the minimisation of the entropy given on Table 3 (quoted from part I). This
is due to the fact that in the MP algorithm there is no selection tree to explore
the correlation of the signal with the dictionary atoms.
Then, we perform the same experiment on the whole signal s and compute the
slopes of the energy and enstrophy cascades by basic Fourier method for the
reconstructed signals. The results are reported in Table 4. The computed slope
of the inverse cascade remains in the same range whatever the dictionary is and
fits the slope computed in the previous sections with other methods. On the
contrary, the results for the enstrophy cascade are very different from one basis
to another as the slope varies from −4.36 to −3.09.

Basis type # elements for S1 # elements for S2

Haar 33 106

Daubechies6 20 77

Coiflet2 13 76

Symmlet8 18 68

Cosine 23 72

Table 2: Number of atoms needed to reconstruct S1 and S2 up to 99% of the L2 norm
with the matching pursuit algorithm
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Basis type # elements for S1 # elements for S2

Haar 47 143

Daubechies6 22 121

Coiflet2 24 101

Symmlet8 21 100

Cosine 33 156

Table 3: Number of elements necessary to reconstruct signals S1 and S2 up to 99% of
the L2 norm with the best basis algorithm

Basis type # elements enstrophy cascade inverse cascade

Haar 1150 -3.09 -1.82

Daubechies6 639 -3.60 -1.76

Coiflet2 594 -4.06 -1.83

Symmlet8 573 -4.36 -1.86

Cosine 701 -3.50 -1.78

Table 4: Number of atoms needed to reconstruct the whole signal up to 99% of the
L2 norm with the matching pursuit algorithm and cascades slopes of the reconstructed
signal

5 Matching pursuit with mixed dictionaries

It was shown in the previous sections that POD modes are not enough to recon-
struct the two segments S1 and S2 up to 99% of the L2 norm whereas this was
possible with wavelet packets or cosine packets dictionaries. Therefore it is inter-
esting to see what happens when dealing with a mixed POD modes and packets
dictionary in order to compare the contribution of the atoms in both classes to
the reconstruction of the segments. The new dictionary D1 is made of the 39
POD modes and approximately 341 cosine packets and 314 wavelet packets cho-
sen in such a way that they represent properly the different scale and frequency
ranges. Using the matching pursuit algorithm it is then possible to determine
the importance of each atom of that mixed dictionary in the reconstruction.
On Figure 4 are represented the coefficients of the selected atoms, necessary to
reconstruct the two segments with more than 99% of the L2 norm. The recon-
struction needs respectively 54 atoms for S1 and 203 atoms for S2 ; the bigger
number for S2 could be expected from the previous numerical experiments. We
see that in both cases the atoms are selected among the three sub-dictionaries
separated on the figure by dotted vertical lines and their repartition is directly
linked to the shape of the original segments. We can notice that the values of
the coefficients are bigger for S1 than for S2 so that the selected atoms better
correlate with the first than with the second segment. This explains why we
need much more atoms to reconstruct S2. Although the difference between the
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two segments is clear, it is not so easy to compare the number of selected atoms
with those obtained in Table 2. On the one hand, the values presented in that
table are the results of the matching pursuit performed on the entire packet dic-
tionary while D1 is not so rich. On the other hand, the mixing of POD modes
and packets which are not correlated in the same way to the original segments
induces extra corrections of the algorithm to smooth the difference. Besides it
is interesting to remark that, although the POD sub-dictionary contains few
atoms, its weight in the reconstruction process is significant for segments such
as S1 and S2 and not only for the snapshots. For S1 which is smoother, the
algorithm chooses at first cosine packets and POD modes whereas for S2 which
contains more high frequencies the algorithm selects first wavelet packets and
POD modes.
Even if each snapshot can be exactly reconstructed using all the available POD
modes, it is also possible to use on it the MP or MPO algorithms with D1 dictio-
nary. The results on Figure 5 show that for almost half of them the first selected
atom is not a POD mode as it is located above the dotted horizontal line which
indicates the limit of the first sub-dictionary. Even when POD modes are se-
lected as first atoms, some atoms are chosen later in the other sub-dictionaries.
For example for the first snapshot, the MP algorithm selects 10 POD modes at
the beginning and then chooses a Symmlet8 packet as 11th atom as shown on
Figure 6(a). To understand this choice, we plot on Figure 6(b) the graph of the
remainder after 10 iterations of the MP algorithm and the selected wavelet atom
times its coefficient. We see that this atom approximates precisely the L2 norm
but ignores the high frequencies. Nevertheless, it has been selected instead of
the other POD modes.
Now, we construct two new reduced dictionaries D21 and D22 respectively adapted
to S1 and S2 by adding to the POD modes the sub-dictionaries consisting of the
23 or 72 cosine packets and the 18 or 68 Symmlet8 wavelet packets which have
been selected in the decomposition of S1 or S2 (Table 2). Applying the MPO
algorithm, we see on Figure 7 that this time we get the reconstruction with only
20 atoms without any POD modes for S1 and 81 atoms with only 5 POD modes
with small coefficients for S2. So, it appears that for segments which do not
correspond to the snapshots the adapted packets are better correlated than the
POD modes. Finally, the POD modes are not so relevant although they are
constructed from the snapshots of the original signal. This is due to the fact
that they represent a mean behaviour and not the instantaneous behaviour. All
these numerical tests show that the choice of the dictionary plays a major role.



Comparison of numerical methods for the computation of energy spectra 9

1 100 199 298 397 496 595 694
−1000

−500

0

500

1000

(a) for S1

1 100 199 298 397 496 595 694
−400

−200

0

200

400

(b) for S2

Figure 4: The coefficients of the atoms, selected by the matching pursuit algorithm
with the mixed dictionary D1, used to reconstruct the two segments with more than
99% of the L2 norm
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Figure 5: Index of the first selected atom of D1 for each snapshot
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Figure 6: Reconstruction of the first snapshot by the matching pursuit algorithm with
the mixed dictionary
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Figure 7: Coefficients of the selected atoms for the reconstruction by the matching
pursuit algorithm with adapted dictionaries
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6 Conclusions

Several dictionaries are constructed with the POD modes and with cosine or
wavelet packets. Compared to the best basis algorithm developped in part I,
the matching pursuit is less efficient for regular parts of the signal but is very
well adapted to highly oscillating segments. Surprisingly, when using mixed
dictionaries involving POD modes, wavelet and cosine packets, the POD modes
are less selected than the packets and even some segments, which have not been
chosen as snapshots, can be reconstructed without using POD modes.
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