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Numerical study of grid turbulence in two dimensions and comparison
with experiments on turbulent soap films
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Numerical simulations of two dimensional channel flow behind an array of cylinders are carried out for high
Reynolds numbers. Results for the energy density and enstrophy spectra, as well as for velocity and vorticity
differences, are presented. The results compare favorably with recent experiments carried out with turbulent
soap films. Some marked deviations from expected behavior are found for the enstrophy spectrum and for
moments of vorticity increment$S1063-651X99)51608-3

PACS numbes): 47.27.Gs, 47.1%j, 47.27.Jv, 92.60.Ek

Two dimensional2D) turbulence is different from three far as we know, the dissipative range of 2D turbulence re-
dimensional3D) turbulence. The absence of vortex stretch-mains elusive. Our results show that the vorticity differences
ing in 2D leads, in the presence of small dissipation, to thehetween two points depend on the scale, which is not ex-
conservation of both enstroplisnean squared vorticityand  pected from the classical scaling and points to an anomalous
energy. While theories of 3D turbulence suggest a direct cagsehavior for 2D turbulence. Also, the spectra of both the
cade of energy from the scale of injection to smaller scalesenstrophy and the energy are cut off by an exponential de-

the theories of 2D turbulence suggest an inverse cascade Sfease at high wave numbers where dissipation becomes im-
energy from small to large scales. On the other hand a dire¢}qtant.

cascade of enstrophy from large to small scales is expected The Navier-Stokes equations for an incompressible fluid
[.1_3]'. This picture of .2D tu.rbulen.ce has received some CONre numerically solved for the channel geometry. Our nu-
firmation .from num_encal simulatiorigl—6|. Recent experi- rperical simulations take advantage of recent studies on in-
ments using soap films as model 2D systems for the study o . bstacles and boundary conditions in incom-
decaying grid turbulence have produced several resultscorpo_ratlng obstac hdary .
some of which deviate from expected behavior. The purpos ressple 2D flows[14]. The h|ghe§t resolu'qon of our
of this work is to test whether these deviations can also b&Mulations was 648 (3x640). The time step is 10 and
seen in an ideal 2D fluid by carrying out direct numerical "€ "uns had typical durations of at leasf 1ine steps. We
simulations of grid turbulence in two dimensions. A diffi- X the channel width to 1, the channel length to 3, the mean
culty with soap films is that they can sustain thickness flucVeloCity to 1, and vary the viscosity to achieve different Rey-
tuations, which can render the flow compressible. Experinolds number¢Re). The diameter of the cylinders is 0.1 and
ments on 2D decaying turbulent flows use rapidly flowingthe spacing between the cylinders is 0.2. There are five cyl-
soap films driven by gravity in vertical chann¢s8]. These inders in the array or grid. These dimensions resemble the
experiments follow some pioneering work by Coud¢ral.  experimental conditions.
[9], and Gharib and Derangd.0], who used soap films to Figure 1 shows a visualization of the vorticity contours
study 2D hydrodynamics. The flow is perturbed by an arraybehind the grid placed at a length of one from the entrance
of cylinders or grid placed perpendicular to the film plane;for Re=5x10°. The flow before the grid is laminar. After
nearly isotropic turbulence is obtained some distance behinthe grid, the flow is dominated by the presence of vortices
the grid. Although the results seem to be consistent withinteracting very strongly with each other. There are strong
expectations for 2D decaying turbulendel], the enstrophy vorticity gradients which are well captured by the presence
spectra[12] and the measurements of velocity differencesof dark regions in the contour plot. On average, the size of
revealed some unusual featufés]. the vortical structures, advected downstream from the grid,
Here we study numerically the flow in a 2D channel seems to grow as the distance from the grid increases.
where an array of cylinders perturbs the flow in a similar Since, in experiments, the measured quantities are time
fashion as in experiments. The flow is studied for Reynoldgraces, we performed a similar analysis of our data; a time
numbers (based on the cylinder diameteas high as 5 trace was recorded at different positions of the flow and Fou-
X 10°: at least two orders of magnitude higher than the extier analyzed to yield the power spectrum. This is done for
perimental Reynolds numbers. To our knowledge, these arée longitudinalu and transverse components of the veloc-
the first direct numerical simulations of high Reynolds num-ity, as well as for the vorticityv. Typical results for Re5
ber grid turbulence in two dimensions. The results are inX10® are shown in Fig. 2. The spectra for the two compo-
good agreement with the experiments, showing that soapents of the velocity at a location of one channel width from
films are good models for 2D hydrodynamics. Our studythe grid have roughly similar amplitudes in the frequency
extends the experimental results to high Reynolds number@nge studied; the turbulence is nearly isotropic at this loca-
and to small enough scales to probe the dissipation range. A®n. Similar results were obtained at other locations. Both
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FIG. 1. Vorticity contours in
the 2D channel perturbed by a
horizontal array of cylinders or
grid. The cylinder diameter is 0.1,
the length of the channel is 3 and
its width is 1 (Re=5x10°).

spectra show a continuous decrease as the frequency is ioenvert the frequency to a wave numbgr(k, is the longi-
creased with a small flat part at small frequencies. A steepedudinal component of the wave vectiorandy is the coordi-
decrease is observed at high frequencies. The whole spegate in the flow direction k,=27f/V, whereV is the mean
trum (except at low frequenciggan be fit to the following speed. Using this conversion, a frequency of 1 corresponds
functional form: f~#exp(—f/fy). The cutoff frequencyf,  to the channel width_; the highest frequency in the graph
is 18. The exponenp is close to 3.7, in agreement with corresponds td_/500. Using this assumption, the velocity
results from experiments on turbulent soap fils8]. How-  power spectra and the enstrophy spectra scale with the wave
ever, the steep decrease of the spectrum at high frequenciramber in the same way as they scale with the frequency.
has not been seen in experiments. We believe the simulatio®om these one dimensional spectra, the scaling of the ve-
capture the dissipative range. Our finding that the steep ddecity power spectra or, equivalently, the energy density
crease is exponential at high frequencies resembles resulipectrum, seems to be consistent with predictions of the phe-
from 3D turbulence experiments where an exponential denomenological theories of 2D turbulence, which predict a
crease was also evidencgtb]. scaling law for these spectra with an expongrdf 3 in the

In Fig. 2 we also show the results for the enstrophy specenstrophy cascade range. A similar conclusion was made in
trum. This spectrum flattens at frequencies below about 4he soap film experiments. However, the exponents from ex-
Hz. Above this frequency, the amplitude of the spectrumperiments and from our simulation are systematically higher
decreases as the frequency increases. This decrease is stegpan 3. Now the enstrophy scaling shows stronger deviation
at high frequencies. As for the velocity power spectra, thefrom theoretical expectations. The expected expondatl,
enstrophy spectrum can be approximated by a product of while we measure an exponent close to 2. A similar exponent
power law and an exponential with an exponentlose to  was observed in experimenit$2]. We have no explanation
1.9 and a cutoff frequency of 18. The exponent is also irfor this discrepancy with the theoretical expectations. As for
agreement with the measured exponent in the soap film exhe exponential correction to the spectra at high frequencies
periments[12]. In the experiments no sign of the steep de-or small scales, we know of no predictions for 2D turbu-
crease was observed. lence. This correction, however, is similar to the 3D case.

We use the Taylor frozen turbulence assumpiiwhich ~ Note that the cutoff frequency for the exponential decrease
assumes that the eddies are swept by the mean flow past tberresponds to a length scdlél8 which would be related to
observation point without much change in their structioe  the scale at which viscous dissipation is important. In the

FIG. 2. Longitudinal(squarep
and transversgcircles velocity
power spectra at a distance of 1
from the grid (Re=5x10°). En-
strophy spectrum(triangles for
the same flow. These spectra are
obtained from time series. The
solid lines are fits to the dai@ee
the text for functional form In-
set: energy densitysquares and
enstrophy(circles spectra as ob-
tained from 2D Fourier transforms
of the velocity and vorticity fields
(Re=5x10°). The solid lines are
fits to the data using the functional
form given in the text.
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maximum in the curve at larger separatigid8]. Exact cal-
culations starting from the Navier-Stokes equations show
that S5(r) in 3D follows (Kolmogorov's —2 law):  Ss(r)
=—2er+6vdS,/dr. ¢ is the energy dissipation rate amd

is the kinematic viscosityS,(r) is the second moment of the
velocity difference. The 2D equivalent of this law $(r)
=—3er+6vdS,/dr. For decaying turbulence, as is the
case with our simulations, the above relation has to be com-
pleted with a term that accounts for the decaysg(r). This
relation can be written a$;(r)=6/r3fyz3db(z,t)/dtdz
whereb(r,t)=(u(y+r,t)u(y,t)) is the longitudinal veloc-

ity correlation function[13]. Here we neglect dissipation.
We then identify the downstream distance from the ofid

with the time of evolutiort usingVt=Y. As can be seen in
FIG. 3. Third moment of the longitudinal velocity difference for the inset to Fig. 3, thé(r) measured at a distance of 0.4
Re=10* (squares 5x10* (triangles, and 5< 10° (filled circles. from the grid is larger than thi(r) measured at a distance
The increment is in units of channel width fixed to 1. All of the of 1 for the small scales, but the lattefr) becomes larger at
moments are calculated for a distance of 1 from the grid. Insetlarger scales. At a distance of 1{#r) is also larger at large
b(r) calculated at different locations from the grid;Y=0.4 (tri-  scales than its equivalent at a distance of 1. The above ex-
angles, 1 (squarep and 1.2(filled circles for Re=5x10. pression forS;(r) is therefore consistent with our results, as
the derivative ofb(r), with respect to time or downstream
absence of a theoretical prediction for this exponential dedistance, would change sign from negative at smadl posi-
crease, we are unable to determine the dissipative scale. tive at largerr, as seen in both experiments and our simula-
The inset to Fig. 2 shows the energy dendfifk) and tions. Note that a positivBs(r) supports the idea that energy
enstrophye(k) spectra obtained from 2D Fourier transforms cascades from small scales to large scales in stark contrast to
of the 2D velocity and vorticity fields for a square of size 0.8
L near the outlet of the channel. The result gives kh¢he
wave vector modulysdependence of these quantities di-
rectly. These spectra have roughly similar shapes as the spec-
tra obtained from the time series. Note that a spatial image of
the flow field contains contributions from different locations
from the grid. Since the flow evolves as a function of dis-
tance from the grid, these different locations suffer from the
decay of the turbulence in different ways. Nonetheless, both
the enstrophy and energy spectra can be reasonably fit to a
product of a power law and an exponential function as for
the one dimensional frequency spectra. The parameters for
the fit are a cutoff length /22 and exponents of 3.7 and 1.9

Sz(r), S,(r)

; (@)
for the energy and enstrophy spectra, respectively.

Let us focus on the moments of longitudinal velocity and
vorticity differences across a scale These are defined as
su(r)=([u(y+r)—u(y)I" and dw(r)=([w(y+r)
—w(y)]™), with r in the longitudinal directiory, and the é\
brackets indicate a time or ensemble average. These differ- v;
ences are calculated from the time series by taking a variable &
time increment. By using the frozen turbulence assumption Vﬂ
one can identifyr with a distancer =Vr. We follow this {\:
procedure since the experiments are carried out in the same N‘;
way, which allows us to compare our results to experiment -\?

directly. Some typical results are shown in Fig. 3 for the
third moment of longitudinal velocity differences defined as 10"
S;(r)=6u(r). Three runs with Re of 1) 5x10% and 5 (b) 10

X 10° are displayed. For the lower Reynolds numiSgfr)

starts out small bUt,negat'Ve at_smallgoe; ,throth a mini- longitudinal velocity differences with an incrementin the flow
mum, and starts to increase going to positive values at larg&firection (for a distance of 1 from the gridSecondtriangles and

r before it decreases. A similar result is obtained for highekoyrth (down triangles moments of transverse velocity differences
Re. The difference is mostly seen at small scales where thgjth an increment in the transverse directiofb) secondsquares
minimum seen previously is much less visible. At larger and fourth(circles moments of vorticity differences with in the
S;(r) starts to decrease and becomes negative for®Re |ongitudinal direction; secondtriangles and fourth (down tri-
x10°. Both the small minimum and the positive part areangles moments of vorticity differences with in the transverse
seen in experiments on flowing soap films as well as thalirection. Re=5x10°.

102 r 107

FIG. 4. (a) Second(squares and fourth(circles moments of



RAPID COMMUNICATIONS

PRE 60 NUMERICAL STUDY OF GRID TURBULENCE IN TWO.. .. R1165

3D turbulencd 16] and, despite the fact, the energy scalingroughly equal amplitudes, but at small scales the moments
indicates that the turbulence is in the enstrophy cascadalong the transverse direction are slightly smaller than their
range of scales. A similar observation was made recbily counterparts for a longitudinal increment. These moments
Figure 4a) shows the second and fourth moments of lon-show a roughly flat part at large scales starting at ahél.
gitudinal velocity increments. Note that these moments fol-at smaller scales the moments decrease as the distance de-
low approximately a dependence of the fofuf'(r)~r®. In  creases. The decrease does not follow a clear scaling law as
the enstrophy cascade range, theory predigtsn. The ex- g function ofr. The fact that these moments show a depen-
ponentsa,, are difficult to determine in our case but appeardence on the scale is consistent with the higher exponent for
slightly smaller tham in the range of scales betweel0 ~ the enstrophy spectrum and indicates deviations from the
andL/50. This is presumably due to the extent of the inertialgypected behavior for the enstrophy cascade range of scales
range as was pointed out [7]. This dependence saturates where they are expected to be flat as the separation
at large scales starting at abduf. In experiments, the re- changes. In this respect, it is interesting to note that recent
sults for the second and fourth moments of absolute valuegeory puts a bound on the variationaf(r) only where it
of the longitudinal velocity increments showed exponents ofy 55 found that the variation is of the forn¥’3 or weaker
1.6 and 2.9, respectively, which are close to the ones founfh g oyr data indicate that this bound is roughly obeyed. For
numerically. At smaller scale$ess tharl./40), however, we 5 separatiorr smaller thanL/50, the vorticity increments
observe a scaling of the fornf for the moments of orden. ~ show a steeper decrease as the scale decreases. While the
This variation is expected on the grounds of the analytlcltyrange is small, this decrease is consistent with adepen-
of the structure functiong15] in the dissipative range. gence for the moments of orderust as for the moments of
Again, this has not been seen in experiments yet. In K&). 4 yelocity increments. Again this may be a sign that these
we also show the second and fourth moments of the transsm g scales lie in the dissipative range.
verse velocity differencésv"(r)=([v(x,r)=v(x)]") forn To summarize, we present new results from a numerical
=2 and 9 with the increment taken in the transverse di- simylation of two dimensional grid turbulence concerning
rectionx. This calculation uses the values of the transversgnergy and enstrophy spectra, and the moments of velocity
velocity along a line perpendicular to the flow direction. ang vorticity increments. Our results are in good agreement
These moments follow the same functional form as the MOyjith experiments on turbulent soap films and extend them to
ments of the longitudinal velocity differences. However, thepigher Reynolds numbers and small enough scales to evi-
amplitude of the transverse moments is slightly smaller thagjence the dissipative range. The results indicate an anoma-
the longitudinal moments. This points to the fact that theoys pehavior of the enstrophy spectra and vorticity incre-
turbulence is not perfectly isotropic with fluctuations alongments at small scales. The third moment of velocity
the flow direction being somewnhat larger than transversgncrements is in agreement with the experimental results and
fluctuations. This difference is even larger at large scaleghows a non-negligible positive part, which is consistent

where it is probably due to the presence of boundaries.  yjith exact calculations and can be attributed to the decaying
Figure 4b) shows the second and fourth moments of vor-pature of the turbulence generated.

ticity incrementsdw(r). Here we show results farin the
flow direction and forr perpendicular to the flow direction. We are grateful to W. I. Goldburg, X. L. Wu, and A.
The moments for the two directions of the incremettave  Belmonte for many discussions.
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