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Numerical study of grid turbulence in two dimensions and comparison
with experiments on turbulent soap films
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Numerical simulations of two dimensional channel flow behind an array of cylinders are carried out for high
Reynolds numbers. Results for the energy density and enstrophy spectra, as well as for velocity and vorticity
differences, are presented. The results compare favorably with recent experiments carried out with turbulent
soap films. Some marked deviations from expected behavior are found for the enstrophy spectrum and for
moments of vorticity increments.@S1063-651X~99!51608-5#

PACS number~s!: 47.27.Gs, 47.11.1j, 47.27.Jv, 92.60.Ek
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Two dimensional~2D! turbulence is different from three
dimensional~3D! turbulence. The absence of vortex stretc
ing in 2D leads, in the presence of small dissipation, to
conservation of both enstrophy~mean squared vorticity! and
energy. While theories of 3D turbulence suggest a direct c
cade of energy from the scale of injection to smaller sca
the theories of 2D turbulence suggest an inverse cascad
energy from small to large scales. On the other hand a di
cascade of enstrophy from large to small scales is expe
@1–3#. This picture of 2D turbulence has received some c
firmation from numerical simulations@4–6#. Recent experi-
ments using soap films as model 2D systems for the stud
decaying grid turbulence have produced several res
some of which deviate from expected behavior. The purp
of this work is to test whether these deviations can also
seen in an ideal 2D fluid by carrying out direct numeric
simulations of grid turbulence in two dimensions. A diffi
culty with soap films is that they can sustain thickness fl
tuations, which can render the flow compressible. Exp
ments on 2D decaying turbulent flows use rapidly flowi
soap films driven by gravity in vertical channels@7,8#. These
experiments follow some pioneering work by Couderet al.
@9#, and Gharib and Derango@10#, who used soap films to
study 2D hydrodynamics. The flow is perturbed by an ar
of cylinders or grid placed perpendicular to the film plan
nearly isotropic turbulence is obtained some distance be
the grid. Although the results seem to be consistent w
expectations for 2D decaying turbulence@11#, the enstrophy
spectra@12# and the measurements of velocity differenc
revealed some unusual features@13#.

Here we study numerically the flow in a 2D chann
where an array of cylinders perturbs the flow in a simi
fashion as in experiments. The flow is studied for Reyno
numbers ~based on the cylinder diameter! as high as 5
3105: at least two orders of magnitude higher than the
perimental Reynolds numbers. To our knowledge, these
the first direct numerical simulations of high Reynolds nu
ber grid turbulence in two dimensions. The results are
good agreement with the experiments, showing that s
films are good models for 2D hydrodynamics. Our stu
extends the experimental results to high Reynolds num
and to small enough scales to probe the dissipation range
PRE 601063-651X/99/60~2!/1162~4!/$15.00
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far as we know, the dissipative range of 2D turbulence
mains elusive. Our results show that the vorticity differenc
between two points depend on the scale, which is not
pected from the classical scaling and points to an anoma
behavior for 2D turbulence. Also, the spectra of both t
enstrophy and the energy are cut off by an exponential
crease at high wave numbers where dissipation becomes
portant.

The Navier-Stokes equations for an incompressible fl
are numerically solved for the channel geometry. Our n
merical simulations take advantage of recent studies on
corporating obstacles and boundary conditions in inco
pressible 2D flows@14#. The highest resolution of ou
simulations was 6403(33640). The time step is 1024 and
the runs had typical durations of at least 106 time steps. We
fix the channel width to 1, the channel length to 3, the me
velocity to 1, and vary the viscosity to achieve different Re
nolds numbers~Re!. The diameter of the cylinders is 0.1 an
the spacing between the cylinders is 0.2. There are five
inders in the array or grid. These dimensions resemble
experimental conditions.

Figure 1 shows a visualization of the vorticity contou
behind the grid placed at a length of one from the entra
for Re553105. The flow before the grid is laminar. Afte
the grid, the flow is dominated by the presence of vortic
interacting very strongly with each other. There are stro
vorticity gradients which are well captured by the presen
of dark regions in the contour plot. On average, the size
the vortical structures, advected downstream from the g
seems to grow as the distance from the grid increases.

Since, in experiments, the measured quantities are t
traces, we performed a similar analysis of our data; a ti
trace was recorded at different positions of the flow and F
rier analyzed to yield the power spectrum. This is done
the longitudinalu and transversev components of the veloc
ity, as well as for the vorticityw. Typical results for Re55
3105 are shown in Fig. 2. The spectra for the two comp
nents of the velocity at a location of one channel width fro
the grid have roughly similar amplitudes in the frequen
range studied; the turbulence is nearly isotropic at this lo
tion. Similar results were obtained at other locations. B
R1162 © 1999 The American Physical Society
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FIG. 1. Vorticity contours in
the 2D channel perturbed by a
horizontal array of cylinders or
grid. The cylinder diameter is 0.1
the length of the channel is 3 an
its width is 1 (Re553105).
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the
spectra show a continuous decrease as the frequency
creased with a small flat part at small frequencies. A stee
decrease is observed at high frequencies. The whole s
trum ~except at low frequencies! can be fit to the following
functional form: f 2b exp(2f/f0). The cutoff frequencyf 0
is 18. The exponentb is close to 3.7, in agreement wit
results from experiments on turbulent soap films@7,8#. How-
ever, the steep decrease of the spectrum at high freque
has not been seen in experiments. We believe the simula
capture the dissipative range. Our finding that the steep
crease is exponential at high frequencies resembles re
from 3D turbulence experiments where an exponential
crease was also evidenced@15#.

In Fig. 2 we also show the results for the enstrophy sp
trum. This spectrum flattens at frequencies below abou
Hz. Above this frequency, the amplitude of the spectr
decreases as the frequency increases. This decrease is s
at high frequencies. As for the velocity power spectra,
enstrophy spectrum can be approximated by a product
power law and an exponential with an exponentg close to
1.9 and a cutoff frequency of 18. The exponent is also
agreement with the measured exponent in the soap film
periments@12#. In the experiments no sign of the steep d
crease was observed.

We use the Taylor frozen turbulence assumption~which
assumes that the eddies are swept by the mean flow pas
observation point without much change in their structure! to
in-
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convert the frequency to a wave numberky ~ky is the longi-
tudinal component of the wave vectork andy is the coordi-
nate in the flow direction!; ky52p f /V, whereV is the mean
speed. Using this conversion, a frequency of 1 correspo
to the channel widthL; the highest frequency in the grap
corresponds toL/500. Using this assumption, the veloci
power spectra and the enstrophy spectra scale with the w
number in the same way as they scale with the frequen
From these one dimensional spectra, the scaling of the
locity power spectra or, equivalently, the energy dens
spectrum, seems to be consistent with predictions of the p
nomenological theories of 2D turbulence, which predic
scaling law for these spectra with an exponentb of 3 in the
enstrophy cascade range. A similar conclusion was mad
the soap film experiments. However, the exponents from
periments and from our simulation are systematically hig
than 3. Now the enstrophy scaling shows stronger devia
from theoretical expectations. The expected exponentg is 1,
while we measure an exponent close to 2. A similar expon
was observed in experiments@12#. We have no explanation
for this discrepancy with the theoretical expectations. As
the exponential correction to the spectra at high frequen
or small scales, we know of no predictions for 2D turb
lence. This correction, however, is similar to the 3D ca
Note that the cutoff frequency for the exponential decre
corresponds to a length scaleL/18 which would be related to
the scale at which viscous dissipation is important. In
1

re

l

FIG. 2. Longitudinal~squares!
and transverse~circles! velocity
power spectra at a distance of
from the grid (Re553105). En-
strophy spectrum~triangles! for
the same flow. These spectra a
obtained from time series. The
solid lines are fits to the data~see
the text for functional form!. In-
set: energy density~squares! and
enstrophy~circles! spectra as ob-
tained from 2D Fourier transforms
of the velocity and vorticity fields
(Re553105). The solid lines are
fits to the data using the functiona
form given in the text.
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absence of a theoretical prediction for this exponential
crease, we are unable to determine the dissipative scale

The inset to Fig. 2 shows the energy densityE(k) and
enstrophye(k) spectra obtained from 2D Fourier transform
of the 2D velocity and vorticity fields for a square of size 0
L near the outlet of the channel. The result gives thek ~the
wave vector modulus! dependence of these quantities d
rectly. These spectra have roughly similar shapes as the s
tra obtained from the time series. Note that a spatial imag
the flow field contains contributions from different locatio
from the grid. Since the flow evolves as a function of d
tance from the grid, these different locations suffer from
decay of the turbulence in different ways. Nonetheless, b
the enstrophy and energy spectra can be reasonably fit
product of a power law and an exponential function as
the one dimensional frequency spectra. The parameters
the fit are a cutoff lengthL/22 and exponents of 3.7 and 1
for the energy and enstrophy spectra, respectively.

Let us focus on the moments of longitudinal velocity a
vorticity differences across a scaler. These are defined a
dun(r )5^@u(y1r )2u(y)#n& and dwn(r )5^@w(y1r )
2w(y)#n&, with r in the longitudinal directiony, and the
brackets indicate a time or ensemble average. These di
ences are calculated from the time series by taking a vari
time incrementt. By using the frozen turbulence assumpti
one can identifyt with a distancer 5Vt. We follow this
procedure since the experiments are carried out in the s
way, which allows us to compare our results to experim
directly. Some typical results are shown in Fig. 3 for t
third moment of longitudinal velocity differences defined
S3(r )5du3(r ). Three runs with Re of 104, 53104, and 5
3105 are displayed. For the lower Reynolds numberS3(r )
starts out small but negative at smallr, goes through a mini-
mum, and starts to increase going to positive values at la
r before it decreases. A similar result is obtained for hig
Re. The difference is mostly seen at small scales where
minimum seen previously is much less visible. At largerr,
S3(r ) starts to decrease and becomes negative for R55
3105. Both the small minimum and the positive part a
seen in experiments on flowing soap films as well as

FIG. 3. Third moment of the longitudinal velocity difference fo
Re5104 ~squares!, 53104 ~triangles!, and 53105 ~filled circles!.
The increment is in units of channel width fixed to 1. All of th
moments are calculated for a distance of 1 from the grid. In
b(r ) calculated at different locationsY from the grid;Y50.4 ~tri-
angles!, 1 ~squares!, and 1.2~filled circles! for Re553104.
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maximum in the curve at larger separations@13#. Exact cal-
culations starting from the Navier-Stokes equations sh
that S3(r ) in 3D follows ~Kolmogorov’s 24

5 law!: S3(r )
52 4

5 «r 16ndS2 /dr. « is the energy dissipation rate andn
is the kinematic viscosity.S2(r ) is the second moment of th
velocity difference. The 2D equivalent of this law isS3(r )
52 3

2 «r 16ndS2 /dr. For decaying turbulence, as is th
case with our simulations, the above relation has to be c
pleted with a term that accounts for the decay ofS2(r ). This
relation can be written asS3(r )56/r 3*0z3db(z,t)/dt dz,
whereb(r ,t)5^u(y1r ,t)u(y,t)& is the longitudinal veloc-
ity correlation function@13#. Here we neglect dissipation
We then identify the downstream distance from the gridY
with the time of evolutiont usingVt5Y. As can be seen in
the inset to Fig. 3, theb(r ) measured at a distance of 0
from the grid is larger than theb(r ) measured at a distanc
of 1 for the small scales, but the latterb(r ) becomes larger a
larger scales. At a distance of 1.2,b(r ) is also larger at large
scales than its equivalent at a distance of 1. The above
pression forS3(r ) is therefore consistent with our results,
the derivative ofb(r ), with respect to time or downstream
distance, would change sign from negative at smallr to posi-
tive at largerr, as seen in both experiments and our simu
tions. Note that a positiveS3(r ) supports the idea that energ
cascades from small scales to large scales in stark contra

FIG. 4. ~a! Second~squares! and fourth~circles! moments of
longitudinal velocity differences with an incrementr in the flow
direction~for a distance of 1 from the grid!. Second~triangles! and
fourth ~down triangles! moments of transverse velocity difference
with an incrementr in the transverse direction.~b! second~squares!
and fourth~circles! moments of vorticity differences withr in the
longitudinal direction; second~triangles! and fourth ~down tri-
angles! moments of vorticity differences withr in the transverse
direction. Re553105.
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3D turbulence@16# and, despite the fact, the energy scali
indicates that the turbulence is in the enstrophy casc
range of scales. A similar observation was made recently@6#.

Figure 4~a! shows the second and fourth moments of lo
gitudinal velocity increments. Note that these moments
low approximately a dependence of the formdun(r )'r an. In
the enstrophy cascade range, theory predictsan5n. The ex-
ponentsan are difficult to determine in our case but appe
slightly smaller thann in the range of scales betweenL/10
andL/50. This is presumably due to the extent of the iner
range as was pointed out in@17#. This dependence saturate
at large scales starting at aboutL/4. In experiments, the re
sults for the second and fourth moments of absolute va
of the longitudinal velocity increments showed exponents
1.6 and 2.9, respectively, which are close to the ones fo
numerically. At smaller scales~less thanL/40!, however, we
observe a scaling of the formr n for the moments of ordern.
This variation is expected on the grounds of the analytic
of the structure functions@15# in the dissipative range
Again, this has not been seen in experiments yet. In Fig.~a!
we also show the second and fourth moments of the tra
verse velocity difference„dvn(r )5^@v(x,r )2v(x)#n& for n
52 and 4… with the incrementr taken in the transverse d
rection x. This calculation uses the values of the transve
velocity along a line perpendicular to the flow directio
These moments follow the same functional form as the m
ments of the longitudinal velocity differences. However, t
amplitude of the transverse moments is slightly smaller t
the longitudinal moments. This points to the fact that t
turbulence is not perfectly isotropic with fluctuations alo
the flow direction being somewhat larger than transve
fluctuations. This difference is even larger at large sca
where it is probably due to the presence of boundaries.

Figure 4~b! shows the second and fourth moments of v
ticity incrementsdw(r ). Here we show results forr in the
flow direction and forr perpendicular to the flow direction
The moments for the two directions of the incrementr have
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roughly equal amplitudes, but at small scales the mome
along the transverse direction are slightly smaller than th
counterparts for a longitudinal increment. These mome
show a roughly flat part at large scales starting at aboutL/10.
At smaller scales the moments decrease as the distanc
creases. The decrease does not follow a clear scaling la
a function ofr. The fact that these moments show a dep
dence on the scale is consistent with the higher exponen
the enstrophy spectrum and indicates deviations from
expected behavior for the enstrophy cascade range of sc
where they are expected to be flat as the separatior
changes. In this respect, it is interesting to note that rec
theory puts a bound on the variation ofdw2(r ) only where it
was found that the variation is of the formr 2/3 or weaker
@18#. Our data indicate that this bound is roughly obeyed. F
a separationr smaller thanL/50, the vorticity increments
show a steeper decrease as the scale decreases. Whi
range is small, this decrease is consistent with anr n depen-
dence for the moments of ordern just as for the moments o
velocity increments. Again this may be a sign that the
small scales lie in the dissipative range.

To summarize, we present new results from a numer
simulation of two dimensional grid turbulence concerni
energy and enstrophy spectra, and the moments of velo
and vorticity increments. Our results are in good agreem
with experiments on turbulent soap films and extend them
higher Reynolds numbers and small enough scales to
dence the dissipative range. The results indicate an ano
lous behavior of the enstrophy spectra and vorticity inc
ments at small scales. The third moment of veloc
increments is in agreement with the experimental results
shows a non-negligible positive part, which is consiste
with exact calculations and can be attributed to the decay
nature of the turbulence generated.

We are grateful to W. I. Goldburg, X. L. Wu, and A
Belmonte for many discussions.
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