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SUMMARY

The passive control of blu� body �ows using porous media is investigated by means of the penalization
method. This method is used to create intermediate porous media between solid obstacles and the �uid
in order to modify the boundary layer behaviour. The study covers a wide range of two-dimensional
�ows from low transitional �ow to fully established turbulence by direct numerical simulation of in-
compressible Navier–Stokes equations. A parametric study is performed to illustrate the e�ect of the
porous layer permeability and thickness on the passive control. The numerical results reveal the ability
of porous media to both regularize the �ow and to reduce the drag forces up to 30%. Copyright ?
2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Blu� bodies are found in many engineering applications including heat exchangers, risers in
marine technology, road vehicles, aircrafts, buildings and bridges among others. Their wakes
can generate large unsteady forces which have the potential to damage the structural integrity
of the blu� body itself or to decrease its aerodynamical capabilities. For this reason, many
methods have been proposed over the recent years to control the wake vortex dynamics with
the aim of weakening the vortex shedding and reducing the amplitude of the �uctuating lift
as well as the drag.
An e�cient technique to achieve these purposes is the passive control. Passive control is

de�ned here by a �ow manipulation using geometrical e�ects and no extra energy variations.
Nominally methods such as compliant walls like the dolphin skeen [1, 2], ribelets [3, 4], split-
ter plates and base bleed [5], wavy or rough surfaces [6] have been used in the past to weaken
vortex shedding and reduce the base drag and the hydrodynamic instabilities [6, 7]. The sur-
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face roughness of the blu� body produces a shift of the transition to turbulence towards lower
Reynolds number regimes [6]. Some bene�cial e�ects of passive porous, rough or permeable
surfaces on boundary layer characteristics have been reported [8–11]. The methodology used in
this work consists in separating the solid surface from the �ow by a porous interface. The idea
is to generate an intermediate �ow which reduces the boundary layer e�ects, specially to de-
crease the vorticity. This procedure is applied to control vortex �ows around a square cylinder.
To simulate the global �ow both in the porous and �uid media, it is necessary to solve

simultaneously the Darcy equations in the porous medium and the Navier–Stokes equations
in the �uid. This is quite di�cult to handle as it requires on the one hand to couple two
simulations and on the other hand to �nd out the right condition at the interface of the two
media. One way to avoid these di�culties is to use the penalization method where various
values of the permeability coe�cient will represent the blu� body, the porous medium and
the �uid. The penalization method is a �ctitious domain method which is very easy to im-
plement, robust and e�cient. It has been shown that this method can be used successfully
to simulate �ows with obstacles and that the use of the permeability term corresponds to
solve Darcy equations in the solids [12]. The main advantage of this method is that it needs
neither the mesh to �t the boundaries nor to specify no-slip boundary conditions. In addi-
tion it allows to compute the pressure as a continuous �eld on the whole domain including
the solids, and the lift and drag coe�cients by integrating the penalization term inside the
solid bodies [13]. Here, we propose to use the method to modellize the �ow in the three
di�erent media—solid, �uid and porous medium. In fact each medium can be considered as
a porous medium. The �uid is identi�ed to a porous medium of in�nite permeability, and the
solids are identi�ed to a porous medium of zero permeability. So, a value in between takes
place for a porous medium. In this paper, the in�uence of the porous media permeability
on the characteristics of the �ow around obstacles is studied. We shall see on a paramet-
ric study that there exists a range of optimal values of the permeability coe�cient K to
in�uence the vortex dynamics. We shall focus on the delay of transition to turbulence, the
amount of enstrophy and the drag and lift forces reduction. Furthermore, we shall show that
for a signi�cant range of thicknesses the passive control strategy is e�cient even if better
results are obtained when the thickness is larger. Once the parametric study ful�lled, the nu-
merical experiments focus on three di�erent �ow regimes, low transitional, high transitional
and turbulent that correspond to Reynolds numbers 300; 3000 and 30 000, respectively. These
numerical tests show that the passive control is always e�cient for a good choice of the
parameters.

2. MODELLIZATION AND NUMERICAL SIMULATION

2.1. The penalization method

In this work, we want to modellize three media (a solid, a saturated porous medium and
an incompressible �uid) with the same equation using the penalization method. The Navier–
Stokes equations governing an incompressible newtonian �uid �ow in a domain � are

�@tU + �(U · ∇)U − ��U +∇p=0 in �T =�× (0; T ) (1)

divU =0 in �T (2)
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where � is the density of the �uid, U =(u; v) is the velocity in two dimensions, p is the
pressure and � is the viscosity of the �uid. These equations can be linked to the Forchheiner–
Navier–Stokes equations for the porous medium. Indeed, assuming that the �uid saturating
the porous medium is Boussinesq, we get Brinkman’s equation (that is valid only for high
porosities close to one [14]) obtained from Darcy’s law for an horizontal �ow without gravity
by adding the di�usion term

∇p= − �
k
�U + �̃��U (3)

then adding the inertial terms with the Dupuit–Forchheiner relationship [14], the Forchheiner–
Navier–Stokes equations

�@tU + �(U · ∇)U +∇p= − �
k
�U + �̃��U (4)

where k is the intrinsic permeability, �̃ is Brinkman’s e�ective viscosity and � is the porosity.
As � is close to 1 we can approximate �̃≈�=� [15] and get the equation

�@tU + �(U · ∇)U +∇p= − �
k
�U + ��U (5)

Then a non-dimensionalization using the usual substitutions including the mean velocity of
the �uid 	U and the height of the domain H

U =U ′ 	U ; x= x′H ; t= t′
H
	U

(6)

yields the penalized adimensional Navier–Stokes equations or Brinkman–Navier–Stokes equa-
tions written as

@tU ′ + (U ′ · ∇)U ′ − 1
Re
�U ′ +

U ′

K
+∇p′ =0 in �̃T =�̃× (0; T ) (7)

divU ′ =0 in DT (8)

where K =�k� 	U=�H is the adimensional coe�cient of permeability of the medium,
Re=� 	UH=� is the Reynolds number based on the height of the domain and �̃ is the full
domain including the porous and solid media (�̃=�∪
0 ∪�0). Indeed, in the �uid the per-
meability coe�cient goes to in�nity, the penalization term vanishes and we recover the adi-
mensional Navier–Stokes equations. In the solid the permeability coe�cient goes to zero and
it has been shown in Reference [12] that solving these equations corresponds to solve Darcy’s
law in the solid and that the velocity is proportional to K . The main advantage of this method
is that it needs neither the mesh to �t the boundaries nor to specify no-slip boundary con-
ditions. In addition it allows to compute the pressure as a continuous �eld on the whole
domain including the solids, and the lift and drag coe�cients by integrating the penalization
term inside the solid bodies [13]. These equations simplify considerably the domain exchange
(solid to �uid, solid to porous medium or �uid to porous medium) as the same equation is
solved in the whole domain. The only thing to do is to de�ne the permeability coe�cient K
on each velocity grid point. Numerically, the �uid is considered as a porous medium with
a very high permeability (K =1016) and the bodies are considered as porous media with a

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:415–433



418 C.-H. BRUNEAU AND I. MORTAZAVI

Figure 1. Example of velocity pro�le in the vicinity of the porous layer.

very small permeability (K =10−8). It was shown by di�erent approaches that solving the
Equations (7), (8) is equivalent to solve the Navier–Stokes equations in the �uid with a
Fourier-like boundary condition instead of the no-slip boundary condition (see in particular
References [16, 17]). This is exactly the e�ect of the addition of a porous layer as stated in
Reference [14] and illustrated in Figure 1. In this work, this property is explored to reduce
the shear e�ects in the boundary layer and control the �ow. Let us point out to the reader
that for water we get K =106k� 	U=H . So setting K =10−8 in the bodies corresponds to a
very condensed medium that behaves like a solid medium for the simulation times of the �uid
�ow [12, 13]. In addition, an intermediate value as K =10−1 corresponds to a very permeable
porous medium like clean gravel [14].
From now to the end of the paper the variables (U ′; p′) of Equations (7), (8) are denoted

(U;p). To validate the penalization method, an easy numerical test is presented for the �ow
behind a small square blu� body with a size D=0:2 inside a channel of height H =1.
The computational domain �̃= (0; 4)× (0; 1) corresponds to a portion of the channel and the
centre of the square is located at the position (1:1; 0:5). The Reynolds number based on
the size of the obstacle is equal to ReD=Re×D. The penalization method is compared to the
standard Dirichlet no-slip boundary condition U =0 for the �ow obtained at ReD=80 behind
a square obstacle. The computation is performed on a uniform 320× 80 cells mesh so that
the mesh �ts the square obstacle. The pressure �eld which is continuous for the penalization
method is represented in Figure 2. This pressure �eld continuity on the whole domain and the
possibility of computing the drag and the lift forces by the integration of the penalization term
inside the solid bodies are two bene�cial characteristics of the penalization method [13]. We
have checked that a direct computation of these forces gives the same values. As shown in the
�gure, the solutions are very close to each other outside the obstacle. Therefore, on this test
case, it is shown that the penalization method generates the same �ow that the no-slip boundary
condition. More details about the penalization method and its convergence can be found in
Reference [12]. Furthermore, a porous medium is modellized choosing an appropriate value
of the penalization parameter K between the �uid and solid values. The range of permeability
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Figure 2. Comparison of the solutions (pressure �eld) computed with Dirichlet boundary condition and
the penalization method with K =10−8 at Reynolds number ReD=80.
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Figure 3. Computational domain.

coe�cient values varies from K =10−3 to 100. Lower values correspond to porous media too
close to the solid behaviour to control e�ciently the �ow. On the opposite, upper values are
almost dominated by the �ow and thus are equivalent to reduce the size of the obstacle.

2.2. Initial and boundary conditions

In this paper, we study the �ow around obstacles in a portion of a 2D channel or in a 2D
free domain. Figure 3 shows the computational domain � in the �rst case with boundaries
@�=
D ∪
0 ∪
1 ∪
N . Equations (7), (8) are coupled to an initial condition

U (x; 0)=U0(x) in � (9)

where U0 is the initial �ow imposed on �. On the entrance section 
D, the far �eld �ow
condition U∞ with a Poiseuille pro�le is applied. On the solid walls 
1 the no-slip boundary
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condition U =0 is imposed. On the boundaries of the obstacles 
0 the no-slip condition is
achieved by the penalization method.
On the arti�cial outlet section 
N , a non-re�ecting boundary condition is used to convey

properly the shear e�ects [18]:

�(U;p)n+ 1
2(U · n)−(U −Uref )=�(Uref ; pref )n (10)

where � is the stress tensor, n is the unit normal vector pointing outside of the domain,
(Uref ; pref ) is a reference �ow and with the notation a= a+−a−. In (10), the non-linear term
is zero when the �ow leaves the domain and so the condition reduces to �x the traction
equal to the traction of the reference �ow. The reference �ow is chosen equal to a Poiseuille
pro�le with zero pressure for laminar �ows and to the computed �ow at the exit section for
transitional or turbulent �ows, which is the case in this paper. In this latest case strong eddy
structures cross the arti�cial boundary and the non-linear term is active to avoid re�ecting
waves. Another advantage of this boundary condition is that no bu�er zone is needed and that
the computational domain corresponds to the real domain of investigation. The same boundary
condition is used to compute the �ow around a blu� body in an open domain. In that case
the arti�cial boundary condition is speci�ed everywhere except on the entrance section. In
both cases the �ow is computed in a small box without creating any re�ections.

2.3. The numerical approximation

The evolution equations are discretized in time by a �rst-order Euler scheme or a second
order Gear scheme with an implicit treatment of the linear terms and an explicit treatment
of convection term. The primitive unknowns velocity–pressure are set on staggered grids as
illustrated in Figure 4. The spatial approximation is performed using second-order centred
�nite di�erences for the linear terms and a third-order upwind Murman scheme for the con-
vection term [19]. The location of the unknowns enforce the divergence-free equation which
is discretized on the pressure points. The equations are solved by a strongly coupled method,
that means the discretized equations in velocity and pressure are solved simultaneously. The
whole problem is solved using a multigrid method and on each grid the solution is obtained
by means of a cell by cell Gauss–Seidel iterative procedure. For instance, the set of grids
varies from the coarsest 20× 5 uniform grid to the �nest 640× 160 or 1280× 320 uniform

Figure 4. A staggered cell.
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grid depending on the needed accuracy. The choice of uniform grids is necessary to maintain
the accuracy of the �nite di�erences schemes.

3. PASSIVE FLOW CONTROL

3.1. Parametric study

It’s well known that when a viscous �uid �ows past a blu� body, owing to the adverse
pressure gradient, a boundary layer separation occurs. The result of �ow separation is a high
loss of energy in the �uid and the disruption of an approximate potential �ow pattern and
of the corresponding pressure distribution. In practice, separation decreases the performance
of any �uid handling device. One of the reasons is linked to the formation of vortices.
To a body immersed in a �owing �uid, vortices are undesirable on three major accounts,
oscillations induced by the non-symmetric and unsteady shedding of vortices, high pressure
drag and wake bu�eting of leeward structures. As mentioned before, to reduce boundary layer
e�ects, a passive control method using porous surfaces is introduced [20].
The penalization method o�ers the capability to introduce easily intermediate porous re-

gions between the obstacles and the �uid. It is a way to implement passive control strategies
to in�uence the transition to turbulence, to manipulate vortical structures behaviour and in-
teractions or to contribute to drag reduction. The parametric study is performed in a con�ned
domain around an obstacle in order to better represent global quantities like the enstrophy
which are more exact in a closed domain. Here, the passive control is done using two porous
layers located inside the upper and lower parts of a square obstacle. Two main questions
arise: What is the in�uence of the value of the permeability K and what is the in�uence
of the thickness of the porous layers on the �ow behaviour? We �rst present a parametric
study for the �ow behind this small square blu� body with a size D=0:2, and the centre
located at the position (1:1; 0:5) in a no-slip channel of height H =1 and length L=4. We
compare the �ow behaviour at ReD=300 for which there is a periodic unsteady solution for
di�erent values of K . In this paper we refer to the solid case when the porous layer has the
same permeability coe�cient as the solid (K =10−8), we refer to the �uid case when the
porous layer has the same permeability coe�cient as the �uid (K =1016) which corresponds
to reduce the height of the obstacle and we refer to the porous case when the porous layer
takes a value of the permeability coe�cient in between.
To illustrate the e�ciency of the control strategy, we propose to plot global quantities as

the enstrophy that represents the number and the energy of the vortices. Two other interesting
quantities are the drag coe�cient and the lift coe�cient that correspond to the horizontal and
vertical components of the external forces on the body. In this application, the lift force is
oscillating around zero. Therefore it is more appropriate to compute the root mean square
of the lift coe�cient (CLrms) which measures the permanence and the symmetry of the �ow
evolution around the blu� body. The results presented in Figures 5 and 6 for a thickness h
such that h=D=10% show clearly that the total enstrophy and the root mean-square of the
lift coe�cient de�ned by

Z =
1
2

∫
�

|!|2 dx; CLrms =

√
1
T

∫ T

0
CL dt
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Figure 5. E�ect of various permeabilities on the enstrophy evolution for ReD=300
and h=D=10% in a channel with D=H =20%.
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Figure 6. E�ect of various permeabilities on the root mean-square of the lift coe�cient evolution for
ReD=300 and h=D=10% in a channel with D=H =20%.
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Figure 7. E�ect of various porous layer thicknesses on the enstrophy evolution for ReD=300
and K =10−1 in a channel with D=H =20%.

are drastically decreased using this passive control strategy. Let us point out to the reader
that in both cases the optimal value is reached for K =10−1. Indeed, even if there is an
improvement, the values obtained for K =10−2 and 1 are less good. Moreover the optimal
values are 5–10% lower than the values obtained for the �uid case although the �uid case
corresponds to an obstacle size reduction by 20%. These paradoxal results are due to the
fact that the porous medium changes the boundary layer shear properties. The numerical
simulations on the �nest 640× 160 uniform grid and on the �nest 1280× 320 uniform grid
give the same results. Therefore we have reached the grid convergence.
After the permeability coe�cient we devote the parametric study to the porous layer thick-

ness h for a given value K =10−1. In order to have enough grid points for thin porous layers,
these numerical tests are performed only on the �nest 1280× 320 grid. We see in Figure 7
that the reduction of the enstrophy occurs whatever the thickness is but becomes more sig-
ni�cant for quite large thicknesses. However, we observe in Figure 8 that a wide range of
thicknesses give a signi�cant decrease of the CLrms with even lower values than for the �uid
case. Moreover for a thicker layer (h=D=20%) there is a tremendous decrease of the CLrms
but this case is not realistic for an industrial application. Both �gures illustrate the regularizing
e�ects of this passive control technique.
According to the results of this section, all numerical tests from now until the end of the

paper will be performed taking h=D=10% and mainly K =10−1.

3.2. Numerical results

Many real problems concern the open �ow around obstacles (ground vehicles, aircrafts, ships,
oil pipe risers, : : :) at various �ow conditions. So it is interesting to explore the capabil-
ity of the proposed passive control strategy for a wide range of Reynolds numbers applied
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Figure 8. E�ect of various porous layer thicknesses on the root mean-square of the lift coe�cient
evolution for ReD=300 and K =10−1 in a channel with D=H =20%.

to such con�gurations. In this section we consider the �ow behind a small square blu�
body with a size D=0:2, located at the position (1:1; 1) in an open computational domain
�̃= (0; 5)× (0; 2). The real Reynolds number is equal to ReD=Re×D. Again, the passive
control is achieved using two porous layers of height h=0:02 located on the upper and lower
sides of the square. We discuss the e�ects of the passive control for three real Reynolds
numbers ReD=300; 3000 and 30 000. The �rst Reynolds number corresponds to the begin-
ning of the transition where the �ow irregularities can be drastically decreased using an
appropriate control technique. On the other hand, ReD=3000 is a more transitional �ow with
high irregularities, strong eddy shedding and vortex merging and mixing in the �ow. The
third value correspond to fully developed 2D turbulence. Therefore, the application of porous
control procedure to these three �ow regimes gives a complementary analysis on the e�ciency
of the method to control the external blu� body �ows. To reach a su�cient accuracy, the set
of grid used in the computation varies from the coarsest 25× 10 grid to the �nest 800× 320
grid for ReD=300 and 3000 and to the �nest 1600× 640 grid for ReD=30000.
To study the control e�ects on the �ow we analyse the instantaneous vorticity and pressure

�elds, the evolution of the velocity at a monitoring point and global quantities such as the
enstrophy (Z), the drag coe�cient (Cd) and the root mean square of the lift coe�cient
(CLrms). We compare the solid case to the porous case with K varying from K =0:1 to 100
and to the �uid case. As we shall see, larger values of K are needed to control the drag at
high Reynolds numbers.

3.2.1. Results at ReD=300. The �rst value ReD=300 has been chosen in order to point out
the regularization e�ects of the passive control by the porous layers which permeability K is
chosen equal to 0.1 according to the previous parametric study. Indeed, this Reynolds number
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Figure 9. Vorticity �eld for solid (top), porous with K =0:1 (middle) and �uid (bottom) layers at
the same time for ReD=300 in an open domain. Tabulated isovalues −40;−30;−20;−15;−12;−10,

−9;−8;−7;−6;−5;−4;−3;−2;−1;−0:1; 0:1; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 15; 20; 30; 40.

corresponds to the beginning of the transition. So it is easier to see the �ow brought back to
a periodic regime. The plots of the vorticity �elds in Figure 9 show that the porous interfaces
inhibit the vortices interaction in such a way that a regular Karman alley is recovered. The �ow
obtained is even more regular than for the �uid case. This is also illustrated by the horizontal
velocity evolution at a monitoring point downstream the obstacle. Indeed, a periodic signal
is obtained only in the porous case (Figure 10). These qualitative observations show the
bene�cial e�ects of the porous layer in particular to regularize the �ow.
Let us quantify now the control gain by investigating the global quantities. To measure

quantitatively the vorticity evolution in the computational domain, the enstrophy history is
plotted in Figure 11. It appears clearly that the porous layer is very e�cient as the enstrophy
production is almost constant along the time and lower than in the two other cases. In the
solid case the formation of large tripole structures induce strong peaks of enstrophy whereas
in the porous case the vortices are convected in the Karman street without any interaction.
Figures 12 and 13 show that an important reduction of the drag coe�cient and the CLrms
is obtained in the porous case. The drag coe�cient history is much more regular than both
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Figure 10. Horizontal velocity history at monitoring point (4.0625, 0.75)
for ReD=300 in an open domain.
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Figure 11. Enstrophy comparison for solid, porous and �uid layers for ReD=300
and h=D=10% in an open domain.

other cases but the �uid case that corresponds to a smaller obstacle yields a slightly better
reduction. The root mean square of the lift coe�cient evolution is almost constant and its
reduction is drastic, even better than in the �uid case. That con�rms the observations on
the vorticity �elds that show a regular vortex shedding process in the porous case. Table I
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Figure 12. Drag coe�cient comparison for solid, porous and �uid layers for
ReD=300 and h=D=10% in an open domain.
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Figure 13. Root mean-square of the lift coe�cient evolution for solid, porous and �uid layers for
ReD=300 and h=D=10% in an open domain.

contains the mean values of the global quantities and the observed gain compared to the solid
case. In the porous case, the reductions are not directly linked to the thickness of the porous
layer but to the change of boundary condition from no-slip to Fourier-like (see References
[16, 17, 21]).
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Table I. Mean values for ReD=300.

K Enstrophy Drag CLrms

10−8 (solid) 183 1.95 0.176
0.1 (porous) 107 (−42%) 1.39 (−29%) 0.094 (−47%)
1016 (�uid) 115 (−37%) 1.28 (−34%) 0.096 (−45%)

Figure 14. Vorticity �eld for the porous case with K =0:1 at ReD=300 (top) and the solid case
at ReD=200 (bottom) in an open domain. Tabulated isovalues −40;−30;−20;−15;−12;−10;−9;−8,

−7;−6;−5;−4;−3;−2;−1;−0:1; 0:1; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 15; 20; 30; 40.

In addition, we observe that the regularization e�ects are similar to a reduction of the
Reynolds number. To con�rm that assertion we compare in Figure 14 the �ow of the porous
case at ReD=300 to the �ow of the solid case at ReD=200. We see clearly the similarity
of the vortex shedding with a Karman street in both cases even if the size of the vortices
is di�erent as it is directly linked to the size of the body and the Reynolds number. Finally,
the phase portrait of the four cases is plotted in Figure 15 to emphasize the observations
above. The vertical component of the velocity with respect to the horizontal component is
represented at a monitoring point in the far wake. It is obvious that a fully periodic regime
is achieved by the porous case which is even more regular than the ReD=200 �ow whereas
the two uncontrolled cases at ReD=300 exhibit a transistory behaviour.

3.2.2. Results at ReD=3000. This Reynolds number corresponds to a highly transitional �ow
generating complex and strong vortex interactions. In the solid case we observe in Figure 16
complex multipole eddy structures whereas the �ow is mainly composed of monopole and
dipole structures in the porous case with K =0:1. In average, the number of vortices is
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Figure 15. Comparison of phase portraits at monitoring point (4:0625; 0:75) for ReD=300 and
K =10−8 (top left), K =1016 (top right), K =0:1 (bottom left) and for ReD=200 and K =10−8

(bottom right) in an open domain.

about 30% lower for this latter �ow. The pressure �elds represented in Figure 17 show that
the �ow is regularized with much lower pressure gradients as the pressure isolines are less
concentrated, in particular around the body. So, introducing the porous layer, both the shear
stress and the pressure gradient are weaker and the generated vortices are less energetic.
Consequently the convected vortices in the �eld are more di�used and have less interactions.
All these observations con�rm the regularization e�ect of the porous layer even if in this case
we do not recover a periodic �ow like in the previous numerical test. Table II contains the
mean values of the global quantities and the observed gain is 31% for Z; 13% for Cd and
31% for CLrms in the porous case with K =10−1 versus 18%; 25% and 18% in the �uid case.
The decrease of the enstrophy and the CLrms is still very good as the �ow is signi�cantly
regularized and the transition is delayed by the porous interface. A reduction of 13% for the
drag coe�cient is already a substantial gain but it can be improved changing the coe�cient K ,
in other words the permeability of the porous medium. For instance it is seen in Table II that
with K =1 a drag reduction of 26% is achieved together with a less signi�cant reduction of
the two other quantities. This set of results show that the permeability of the porous medium
has to be chosen according to the goal of the control. One must know if he wants to give the

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:415–433



430 C.-H. BRUNEAU AND I. MORTAZAVI

Figure 16. Vorticity �eld for solid (top) and porous with K =0:1 (bottom) layers at the same time
for ReD=3000 and h=D=10% in an open domain. Tabulated isovalues −40;−30;−20;−15;−12;−10,

−9;−8;−7;−6;−5;−4;−3;−2;−1;−0:1; 0:1; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 15; 20; 30; 40.

Figure 17. Pressure �eld for solid (top) and porous with K =0:1 (bottom) layers at the same time for
ReD=3000 and h=D=10% in an open domain. Equidistant isovalues from −5 to 5 by step of 0.05.

priority to the �ow regularization or to the drag reduction. In conclusion to this subsection,
we observe that, for this kind of transitional �ows, there is a wide range of values of the
permeability at least from K =0:1 to 10 that give a sharp reduction of the global quantities.
The higher this coe�cient is the closer the solution is to the solution of the �uid case.
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Table II. Mean values for ReD=3000.

K Enstrophy Drag CLrms

10−8 (solid) 597 2.52 0.321
0.1 (porous) 410 (−31%) 2.20 (−13%) 0.221 (−31%)
1 (porous) 457 (−23%) 1.87 (−26%) 0.264 (−18%)
10 (porous) 468 (−22%) 1.89 (−25%) 0.274 (−15%)
1016 (�uid) 487 (−18%) 1.90 (−25%) 0.263 (−18%)

Figure 18. Vorticity �eld for solid (top) and porous with K =0:1 (bottom) layers at time t=30 for
ReD=30 000 and h=D=10% in an open domain. Tabulated isovalues −40;−30;−20;−15;−12;−10,

−9;−8;−7;−6;−5;−4;−3;−2;−1;−0:1; 0:1; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 15; 20; 30; 40.

3.2.3. Results at ReD=30000. This numerical test corresponds to a fully developed two-
dimensional turbulence with chaotic vortex interactions and thin vorticity �laments [22, 23] as
shown on top of Figure 18. We start the control with a porous layer of permeability K =0:1.
The �gure shows that the number of vortical structures decreases and their size increases
using the porous layer. This is related to an evolution of complex multipole structures in the
solid case towards more simpli�ed vortices in the porous case. The vortex interactions are
also simpli�ed to yield almost a Karman street behind the obstacle at time t=30. It seems
that di�usive e�ects are more present in the porous case as the vortices are larger. All these
observations show the regularizing e�ect of the porous layer. This property is also con�rmed
by the strong decrease of the enstrophy and the CLrms as seen in Table III. However there
is a very big increase of the drag coe�cient. It shows again that �ow regularization and
drag reduction are not correlated to each other. Then, according to the results of the previous
subsection, we decide to increase the permeability coe�cient in order to get better drag
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Table III. Mean values for ReD=30 000.

K Enstrophy Drag CLrms

10−8 (solid) 1236 2.47 0.430
0:1 (porous) 821 (−34%) 4.54 (+83%) 0.344 (−20%)
1 (porous) 1084 (−12%) 3.70 (+49%) 0.532 (+24%)
10 (porous) 1114 (−10%) 2.11 (−15%) 0.344 (−20%)
100 (porous) 1040 (−16%) 1.61 (−35%) 0.375 (−13%)
1016 (�uid) 1012 (−18%) 1.58 (−36%) 0.375 (−13%)

properties. The results for K =1; 10 and 100 con�rm our expectations as the drag coe�cient
decreases smoothly to a gain of 35% which is close to the gain obtained for the �uid case.
Indeed, a porous layer of permeability coe�cient K =100 seems to be very similar to �uid
and could be a limit of porous permeability for our modelling. All the results for the global
quantities are gathered in Table III. We observe that the enstrophy and the CLrms are always
decreased except for K =1 that gives a surprising 24% increase of the CLrms that could be
due to vortex induced vibrations.

4. CONCLUSIONS

The penalization method is used successfully to introduce a new passive control strategy,
which consists of implementing a porous layer between the blu� body and the �uid, in order
to change the boundary layer characteristics. The porous medium permeability is directly
related to the parameter K of the penalization term added to the Navier–Stokes equations. The
parametric study shows on the one hand that a wide range of the permeability coe�cients K
yield a signi�cant control of the �ow and on the other hand that a su�cient thickness is needed
to achieve a good control. The numerical tests around a square obstacle in an open domain
for three Reynolds numbers ReD=300; 3000 and 30 000 corresponding to three di�erent �ow
regimes bring several fruitful informations on the capability of the present passive control
procedure. The ReD=300 �ow is very interesting because it corresponds to the beginning of
the transition. Implementing the porous layer the �ow is brought back from a transitional �ow
to a laminar one. In addition the drag and the CLrms coe�cients are drastically reduced. For
higher Reynolds numbers corresponding to more complex �ows the results are still impressive
for a good choice of the permeability coe�cient. Nevertheless, the regularization of the �ow
and the reduction of the drag coe�cient are not always obtained simultaneously.
The present passive control method is e�cient, cheap and easy to implement and allows

to get signi�cant blu� body �ows improvement up to a 40% reduction of the global quanti-
ties. Some extensions to industrial applications like ground vehicles or riser pipes should be
promising.
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