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ABSTRACT

The passive control of the flow around a fixed circular cylinder is
achieved using a porous layer between the obstacle and the fluid. The
various media are easily handled by means of the penalization method.
The computational domain is reduced to a close neighbourhood of the
body thanks to efficient non-reflective boundary conditions. The porous
layer changes the vortex shedding and induces a strong reduction of the
vorticity magnitude and of the root mean-square lift coefficient.
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INTRODUCTION

In the vicinity of bluff bodies, the shedding of vortices can induce
unsteady forces of small amplitude with excitation close to a structural
resonant frequency that provoke structural failures (Williamson and Go-
vardhan 2004). Therefore, the study and the control of vortex shedding
has a crucial importance in engineering applications like offshore oil
industry. In this case, the vortex-induced vibrations (VIV) can affect
the risers. As the environmental conditions are given and can not be
changed, the only way to reduce the VIV is to use an efficient control
technique adapted to the riser framework. Several control methods
are already proposed to reduce the drag and lift forces or to regularize
the vortex shedding around 2D and 3D circular cylinders (Wong 1979,
Williamson and Govardhan 2004). Most of them use the active control
strategies (Gatulli and Ghanem 2000, Gillies 1998, Zhijinn 2003) that are
very difficult to implement in the riser geometry. In fact, such a geometry
needs passive devices which don’t need additional energy supply in the
system. Some fruitful researches have been already performed in such
a case. For example, some authors have added dimples (Bearman and
Harvey 1993) or splitter plates (Kwon and Choi 1996) to control and
regularize the flow around a circular cylinder. In some other cases, the

control technique is performed using a secondary small cylinder (Mittal
and Raghuvanshi 2001) or an appropriately distributed electromagnetic
field (Posdziech and Grundmann 2001).
In this paper the passive control is achieved introducing a porous inter-
face between the solid body and the flow in order to reduce the vorticity
production of the boundary layer (Bruneau and Mortazavi 2001). In fact,
the porous medium changes the no-slip boundary condition into a kind
of intermediate Fourier boundary condition. Consequently, the whole
vortex shedding mechanism is smoothed, and the flow instabilities, the
lift and drag forces and the enstrophy are decreased. Mathematically,
it was shown that the change of boundary condition has a significant
influence on the boundary layer (Luchini 1995, Achdou et al. 1998).
Thus, we have to solve a problem involving three different media, the
solid body, the porous interface and the incompressible fluid. This can be
very easily handled using the double penalization method. The original
penalization method (Angot et al. 1999) is a way to take into account
an immersed body in a fluid with two permeability coefficients. The
method has already been successfully used to simulate transitional and
turbulent flows by an array of cylinders (Bruneau et al. 1999, Kevlahan
and Ghidaglia 2001). In the double penalization (Bruneau and Mortazavi
2001, Carbou), three values of the permeability coefficient will represent
the bluff body, the porous medium and the fluid. The method was
analysed and tested numerically in Bruneau and Mortazavi 2004.
In the present work, we consider a two-dimensional, unsteady and
incompressible flow around a fixed circular cylinder. This cylinder
corresponds to a section of a three-dimensional riser pipe. Such a
study with an appropriate choice of the Reynolds number, can give
significant informations on the real flow behaviour even if a responding
body should be closer to the reality. Here we focus on the effect of the
proposed control strategy on a given geometry. Numerical simulations
are performed for transitional and turbulent flows to better understand
the effects of the control with respect to the flow regime. In this paper
after the description of the computational method a parametric study
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is performed to choose an optimal porous layer with the best control
properties. Then, the reduction effects of this control approach on
different global flow quantities like the enstrophy(Z), the lift coefficient
root mean square (CLrms) and the drag coefficient (Cd) is analysed.
We shall see that the present method induces a drastic reduction of the
CLrms and consequently of the vortex induced vibrations. Furthermore,
instantaneous pressure, velocity and vorticity fields (with and without
control) are plotted to show the effect of the control on the flow pattern.

OUTLINE OF THE METHOD

Let Ω = (0, 5) × (0, 2) be the two-dimensional computational domain
around the circular cylinder of diameter 0.16 which the center is located
at (1.1, 1), we add a porous ring of thickness 0.02 (Figure 1). This ring
can be seen as a sheath around the pipe and the thickness is chosen to
have significant results on medium meshes. Previous works have shown
that efficient results can be obtained for a wide range of layer thicknesses
(Bruneau and Mortazavi 2004). To simulate the global flow both in the
porous and fluid media, it is necessary to solve simultaneously the Darcy
equations in the porous medium and the Navier-Stokes equations in the
fluid. This is generally quite difficult to handle. Here, it is easily achieved
by the penalization technique that consists in adding a term U/K in the
non-dimensional incompressible Navier-Stokes equation where K repre-
sents the non-dimensional permeability coefficient of the medium. This
parameter K = (ρkΦU)/(µD) is linked to the intrinsic permeability
k through the Brinkman and Forchheiner-Navier-Stokes equations when
the porosity Φ of the porous medium is close to one (Nield and Bejan
1999). The variables ρ, U , µ and D denote respectively the density of
the fluid, the mean flow, the viscosity of the fluid and the diameter of the
pipe.

∂tU+(U ·∇)U − 1

Re
∆U+

U

K
+∇p = 0 in ΩT = Ω×(0, T ) (1)

divU = 0 in ΩT (2)
where U = (u, v) is the velocity, p the pressure and Re = (ρU)/µ the
non-dimensional Reynolds number based on the unit inlet velocity and
length. These equations are solved in the whole domain Ω including the
cylinder which is considered as a porous medium of zero permeability
while the fluid is considered as a porous medium of infinite permeabil-
ity. Numerically, we take K = 10−8 in the solid and not smaller values
to avoid numerical instabilities, and K = 1016 in the fluid in order the
penalization term vanishes. Furthermore, the porous medium will be de-
fined by an intermediate value to determine by a parametric study (see
the next section). The capability of the penalization method to represent
the three media is discussed by the authors in a recent paper (Bruneau
and Mortazavi 2004). To get a well-posed problem we have to impose
boundary conditions at the limits of the domain. On upstream boundary
a constant flow U = (1, 0) is imposed while for other boundaries an ef-
ficient artificial boundary condition is implemented (Bruneau and Fabrie
1997). This boundary condition reads

σ(U, p) · n+
1

2
(U · n)−(U − Uref ) = σ(Uref , pref ) · n (3)

where σ(U, p) = 1
2Re

(∇U + ∇U t) − pI is the stress tensor, n is the
unit normal vector pointing outside of the domain, a− = −min(a, 0)
and (Uref , pref ) is the reference flow which is taken equal to the flow on
the previous cell. This boundary condition enables the vortices to convey
properly outside of the computational domain without any reflection on
the artificial frontiers.

As we use the penalization method, it is not necessary to fit the body.
So we mesh the domain with an uniform cartesian grid on which finite
differences are applied. The discretization is achieved by a second-order
Gear scheme in time with explicit treatment of the convection term.
All the other terms are considered implicitely. These linear terms
are discretized by centered second-order finite differences whereas an
upwind third-order Murman-like scheme is used for the convection terms
(Bruneau and Saad). To get high performance, a multigrid method is
applied with a sequence of grids from a coarse 25 × 10 cells grid to
a fine 1600 × 640 cells grid. This whole method is efficient, accurate
and stable enough to make 2D direct numerical simulations of complex
flows. The code has already been validated for both the benchmark flow
in a lid-driven cavity (Bruneau and Saad) and for the flow behind an
array of circular cylinders with comparisons to soap film experiments
(Bruneau et al. 1999).

Figure 1: The cylinder with a porous sheath.

NUMERICAL RESULTS

To a body immersed in a flowing fluid, vortices are undesirable on three
major accounts, oscillations induced by the non-symmetric and unsteady
shedding of vortices, high pressure drag and wake buffeting of leeward
structures. The principal target of this work is to reduce the first and
third effects, regularizing the flow in the vicinity of the cylinder. Adding
a porous layer between the body and the fluid generates an appropriate
interface for such a goal. As we shall see, the present control is much
more efficient to reduce the CLrms than the drag. In this section we
first perform a parametric study to choose the most efficient permeability
K of the porous layer and then we present accurate results with careful
comparisons between the uncontrolled and controlled flows. To study the
control effects on the flow we analyse the vorticity fields, the pressure
fields and the velocity fields as well as the global quantities defined by

Z =
1

2

∫

Ω

|ω|2dx

Cd =
Fd

ρU∞2R
; CLrms =

√
1

T

∫ T

0

CL2 dt

where ω is the vorticity, Fd =
∫
body

u
K
dx as the drag force is computed

using the penalization term, ρ = 1, U∞ = (1, 0), R = 0.08 and CL
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is computed in the same way than Cd integrating the v component. The
above computation of Fd and FL is equivalent to the usual computation
integrating the pressure and shear force on the body surface (Caltagirone
1994). Because of the geometrical symmetry of the body the CL is oscil-
lating around the mean value zero. Therefore the CLrms gives a better
measure of the symmetry, the regularity and the steadiness of the flow.
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Figure 2: Enstrophy history at non-dimensional Re = 15000.
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Figure 3: Drag history at non-dimensional Re = 15000.

Parametric study
The numerical simulations of this subsection are performed at non-
dimensional Reynolds number Re = 15000 on a fine grid 800 × 320

which is fine enough to observe the influence of the permeability param-
eter K. The value of K is taken between 10−3 and 103 in the porous
layer, beyond these values the porous medium is either too close to a solid
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Figure 4: CLrms history at non-dimensional Re = 15000.

medium or too close to the fluid state. A ring of thickness 0.02 around
the cylinder is used to apply the control strategy (Bruneau and Mortazavi
2004). When K = 10−8 is set in the layer we refer to it as the solid case
and when K = 1016 is set in the layer we refer to it as the fluid case.
These two cases correspond to a circular cylinder of diameter D = 0.2

and D = 0.16 and consequently to real Reynolds numbers based on the
diameter of the cylinders ReD = Re×D = 3000 and ReD = 2400 re-
spectively. The numerical results with various porous layers show that an
efficient value is obtained forK = 10−1. Indeed, we compare the results
for three consecutive values of the porous permeability to the fluid and
solid cases. To measure quantitatively the vorticity evolution in the com-
putational domain, the enstrophy history is plotted on Figure 2. It appears
clearly that the porous layer with the above optimal value K = 10−1 is
very efficient as the enstrophy production is almost twice lower and the
oscillations are much lower than in the solid and fluid cases that are very
close. Although we observe also an improvement for K = 1, the other
values of K are less efficient.
The drag coefficient and the CLrms give two different features of the
effect of the external forces on the bluff body. Let us point out to the
reader that in the solid case the sheath added to the circular cylinder in-
creases the diameter and consequently increases the drag forces. When
the sheath is made of a porous medium we expect an intermediate be-
haviour. However, the Figure 3 shows that the behaviour is more com-
plex. An optimum is reached for K = 1 with a value close to the fluid
case, the value for K = 10−1 is a bit lower than the solid case but the
value for K = 10−2 is even higher. On Figure 4 we see that the root
mean square of the lift coefficient evolution is almost constant and its re-
duction is drastic for K = 10−1 as it is almost twice smaller than the
fluid case. The value for K = 1 is about 20% smaller and the value for
K = 10−2 is very close to that of the solid case. Then it appears that the
porous medium has to be sufficiently permeable to influence positively
the boundary layer characteristics and to decrease the shear effects due to
the no-slip boundary condition. Nevertheless the increase of the perme-
ability should not be too high to avoid strong shear effects between the
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cylinder and the porous layer. In fact, adding the porous layer is equiv-
alent to impose a mixed boundary condition intermediate between the
no-slip and the slip one on the solid boundary (Carbou). Thus, the regu-
larization effects are not due to a change of the Reynolds number but to a
change of the shear forces modifying the flow dynamics. In the following,
we shall take K = 10−1 as the optimal value because our priority is the
regularisation effects (strong decrease of Z and CLrms). Nevertheless
in an other context, the value K = 1 could be considered optimal as the
flow control yields to a good compromise between the regularisation and
the drag effects. TheK = 10−1 value was also found in a previous paper
(Bruneau and Mortazavi 2004) for the flow around a square cylinder in
a channel for various mesh sizes. This value gives very good results for
higher Reynolds numbers with fine grids. Even if it does not correspond
to the exact optimal value it gives an efficient order of magnitude for the
permeability coefficient.

Figure 5: Zoom of the vorticity and pressure fields for a solid layer at
non-dimensional Re = 15000 on grid 3200× 1280.

Flow control on a fine grid
As we said in the previous subsection the choice of the Reynolds number
2400 ≤ ReD ≤ 3000 corresponds to a quasi periodic transitional flow
for which the control effect is very clear. This kind of flow is in the
range of computed flows in deep water with weak streams (Miliou et al.
2003). For general flows around risers with higher Reynolds numbers
a 2D approximation is still relevant as it gives important informations
about the flow characteristics. The numerical simulations are performed
on three different grids, 800 × 320, 1600 × 640 and 3200 × 1280 to
get a good representation of vortices and accurate values of the global
quantities. The Figure 5 corresponds to a zoom of the vorticity and the
velocity fields at ReD = 3000 on the finest grid and shows that the near
wake is streamwise and has the size of the cylinder as pointed out in
Braza et al. 1990. For that Reynolds number we can see on Table 1 that
the results on the two finest consecutive grids are very close. Therefore,

Figure 6: Vorticity field for fluid (top), porous (center) and solid (bot-
tom) layers for the same time at non-dimensional Re = 15000.

the results of this section are computed on grid 1600 × 640. On the
instantaneous vorticity field (Figure 6) we see that the presence of the
sheath around the pipe changes radically the vortex shedding and the
wake dynamics. The frequency is lower and is close to the frequency of
the solid case as expected because the real body has the same size. In
the two first cases there is a clear transitional street with smaller vortices
in the fluid case whereas the merging of vortices generates tripolar
structures that separate into two dipolar and monopolar diverging streets
in the solid case. These observations are confirmed by the pressure and
velocity fields (Figures 7 and 8). In addition they both indicate that the
wake is rapidly disturbed in the fluid case and become transitional. On
the contrary the flow is very regular in the porous case and exhibits low
pressure intensity inside the vortices. Let us note that the flow in the
fluid case corresponds to a real Reynolds number ReD = 2400 but is
less regular than the flow in the porous case. This regularization property
due to the porous medium can be emphasized computing the flow around
the small cylinder (fluid case) at a higher Reynolds number. The results
of Figure 9 show that we find again the same qualitative solution than
the solution around the big cylinder (solid case) of figures 6 and 7 with
a higher frequency as the diameter is smaller. This last test is performed
at real Reynolds number ReD = 3200. The discrepancy in the Reynolds
number compare to the solid case is due to the less good representation
of a small cylinder on this medium grid with the penalization method
as the diameter is under estimated. So the fluid case at Re = 15000
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Figure 7: Pressure field for fluid (top), porous (center) and solid (bot-
tom) layers for the same time at non-dimensional Re = 15000.

corresponds to a real Reynolds number about 2250 showing an even
higher efficiency of the porous sheath. We had shown in Bruneau
and Mortazavi (2004) that the solution obtained with a porous layer
corresponds qualitatively to the solution at a much smaller Reynolds
number without control. This is due to the fact that the no-slip boundary
condition at the surface is replaced by a Fourier-like condition as shown
in Achdou et al. (1998) and Carbou; consequently the shear forces are
decreased and the vortex shedding is changed. From another point of
view it is shown in Tang (2001) that the velocity of a vortex is decreased
in the vicinity of a porous layer implying a regularisation of the flow.
To better analyze the regularity of the flow, we plot on Figures 10 and 11
the horizontal velocity history at two monitoring points which location
corresponds to two parts of the flow. The first one, closer to the cylinder,
shows an almost periodic flow in the fluid case and a pure periodic flow
in the porous case. The second, further in the wake, points out clearly
the onset of the instabilities in the wake of the small pipe whereas the
flow behind the sheathed pipe is still fully periodic. Therefore we expect
a reduction of the VIV in the porous case. To confirm this point we plot
on the last three figures the global quantities. Due to the low number
of vortices with weak intensity, the enstrophy in the whole domain is
much lower in the porous case and due to the periodicity the oscillations
are very low (Figure 12). But the drag is larger and closer to the drag
of the solid case as the real bodies have the same diameter. Once again
the amplitude of the oscillations are much smaller than in the two other

Figure 8: Velocity field for fluid (top), porous (center) and solid (bottom)
layers for the same time at non-dimensional Re = 15000.

Figure 9: Vorticity and pressure fields for a fluid layer at non-
dimensional Re = 20000.

cases (Figure 13). The best result concerns the drastic reduction of
the CLrms (Figure 14). Indeed the flow is significantly regularized
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and the transition is delayed as the shear effects are smoothed by the
porous interface. The vortex shedding is controlled and consequently
the vortical interactions in the wake are reduced. The meanvalues of
the global quantities are summarized in Table 1. The same behaviour
is observed for the computation on both grids. On the finest grid, for
both the enstrophy and the CLrms, the values for the controlled pipe
are 55% lower than the values for the small pipe. We notice also a
tremendous reduction compared to the solid case.
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Figure 10: Horizontal velocity history at monitoring point (2.825,0.75).
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Figure 11: Horizontal velocity history at monitoring point
(4.0625,0.75).

Flow control at high Reynolds number
An interesting point is to observe how the porous layer control behaves
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Figure 12: Enstrophy history at non-dimensional Re = 15000.
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Figure 13: Drag history at non-dimensional Re = 15000.

for high Reynolds numbers closer to the real marine conditions. Namely
we choose the non-dimensional value Re = 150000 and the numerical
simulation is performed on a fine 3200 × 1280 grid to get reliable
results. The vorticity fields are plotted on Figure 15 for the fluid and the
porous cases. A tremendous regularized flow is obtained with the passive
control as the flow changes from a chaotic distribution of vortices to a
regular Karman street behind the cylinder. It appears that the control is
more efficient when the Reynolds number increases. This can be seen
also on Figure 16 and Table 2 as the reduction of the enstrophy is larger
and the reduction of the CLrms is more drastic: 55% at Re = 15000

and 72% for this test. The Figure 16 confirms that the vortex shedding is
completely controlled and generates a symmetrical periodic flow.

CONCLUSIONS
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Figure 14: CLrms history at non-dimensional Re = 15000.

Table 1: Meanvalues at non-dimensional Re = 15000.

Grid K Enstrophy Drag CLrms
800× 320 10E-8 336 1.71 0.616

10E-1 183 1.60 0.184
10E+16 322 1.04 0.322

1600× 640 10E-8 526 1.86 0.489
10E-1 190 1.60 0.125

10E+16 428 1.12 0.274
3200× 1280 10E-8 527 1.88 0.462

Figure 15: Vorticity field for fluid (top) and porous (bottom) layers for
the same time at non-dimensional Re = 150000.
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Figure 16: Enstrophy history at non-dimensional Re = 150000.

Table 2: Meanvalues at non-dimensional Re = 150000.

Grid K Enstrophy Drag CLrms
3200× 1280 10E-1 291 1.56 0.081

10E+16 810 1.10 0.293

A numerical investigation is performed to understand the effects of a pas-
sive control introducing a porous ring around a circular cylinder. The
simulations use two main tools. The porous layer is modelised by means
of a double penalization method that is especially convenient for porous
media and solid body flow simulations. And a non reflective boundary
condition is applied to let the vortices convey properly through the artifi-
cial frontiers of the computational domain.
The numerical results concern a low transitional flow at non-dimensional
Reynolds number Re = 15000 and Re = 150000 equivalent to
2400 ≤ ReD ≤ 3000 and 24000 ≤ ReD ≤ 30000 according to the
nature of the layer surrounding the cylinder. The presence of the porous
layer decreases the shear effects in the boundary layer and beneficially
modifies the vortex shedding, reducing the wake instabilities and the
damaging effects of the vortex induced vibrations on the body. Indeed,
this passive control strategy yields a decrease up to 72% of the Clrms
for the higher value of the Reynolds number close to the natural flow
conditions. The resulting flow in the wake of the body is much more
regular with low intensity periodic vortices. Therefore this passive
control using a porous sheath should be a very efficient tool to prevent
VIV around riser pipes. As the modeling is valid for a porosity of the
porous sheath close to one, the medium must be chosen out of highly
fibrous or railed materials. Forthcoming works with responding cylinders
to the flow could be useful.
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