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Abstract. The occurrence of shear bands in a complex fluid is generally understood as resulting from a
structural evolution of the material under shear, which leads (from a theoretical perspective) to a non-
monotonic stationary flow curve related to the coexistence of different states of the material under shear. In
this paper we present a scenario for shear-banding in a particular class of complex fluids, namely foams and
concentrated emulsions, which differs from other scenarios in two important ways. First, the appearance of
shear bands is shown to be possible both without any intrinsic physical evolution of the material (e.g. via
a parameter coupled to the flow such as concentration or entanglements) and without any finite critical
shear rate below which the flow does not remain stationary and homogeneous. Secondly, the appearance
of shear bands depends on the initial conditions, i.e. the preparation of the material. In other words, it
is history dependent. This behaviour relies on the tensorial character of the underlying model (2D or 3D)
and is triggered by an initially inhomogeneous strain distribution in the material. The shear rate displays a
discontinuity at the band boundary whose amplitude is history dependent and thus depends on the sample
preparation.

1 Shear bands and foam rheology

1.1 Shear bands in complex fluids

It may seem paradoxical that a single material, when sub-
mitted to a uniform shear stress σxy, between two parallel
plates or two coaxial cylinders, may be observed simulta-
neously in two distinct states in different regions of the
flow. These “shear band” observations have nevertheless
become common since the early 1990s in a variety of com-
plex fluids: they appear and are stable [1–4], or sometimes
fluctuate [5–8]. Most of the time these bands are parallel
to the shearing plates [1], with a different shear rate in
each band.

The current understanding of these observations relies
in general on two essential ingredients: i) a structural evo-
lution of the material under shear, and ii) a stress response
that decreases as a function of the shear rate (within a par-
ticular range). This decrease is the mechanical signature
of the structural evolution of the fluid and is the source of
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the mechanical instability that triggers the appearance of
bands [9].

In polymer melts or entangled polymer solutions [10]
and in entangled giant micelle solutions [9], the flow elon-
gates the objects, which alters the apparent viscosity of
the material (which must be evaluated after subtracting
the effect of wall slip [11]). The fact that this viscosity
goes down is principally due to the average orientation of
the objects in the shear flow.

In lyotropic, lamellar phases, the transition can be as-
sociated with the reorganisation of the films into onion-like
multilamellar vesicle systems [5, 6, 12, 13], also exhibiting
wall slip behaviour [5]. In micellar cubic crystals the tran-
sition consists in an ordering of the initial polycrystal into
a single crystal with specific planes becoming aligned with
the plates [14,15]. In the last two cases, no microscopic in-
terpretation of the decrease in effective viscosity occurring
during the transition is currently available.

In granular materials, surface flow is a particular case
of shear bands: the lower band is in this case blocked (zero
shear) while the flowing region is sheared. Again, no com-
plete structural description is available. Nevertheless, it
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is admitted that through dilatancy, which reflects the ne-
cessity for the grains to move a little bit apart in order
to move past each other [16], the shear generates a differ-
ence in volume fraction between the flowing region and the
blocked one. This lower volume fraction tends to facilitate
the flow in the flowing region even more as compared to
the blocked region, thus stabilizing shear-banding. When
it is present, gravity is of course essential: it favours this
phenomenon by helping the system segregate into a dense,
blocked region (located at the bottom if the particles are
denser than the fluid) and a less dense, flowing region.
Hence the concentration profile can be determined [17].

In foams and emulsions, the situation is less clear.
Shear bands were observed in 2D [18, 19]. In some cases,
the observed shear-banding could result trivially from
shear stress inhomogeneity, due to cylindrical Couette ge-
ometry (σ(r) ∝ 1/r2) or enhanced (for 2D foams) by the
presence of at least one solid boundary [20–23] whose fric-
tion on the foam implies that r2σ(r) is not uniform. In
some more interesting cases, the shear rate is spatially
discontinuous at the boundary between the blocked and
the sheared regions [19, 24]. This discontinuity may arise
from an apparently intrinsic impossibility for the foam to
be deformed homogeneously at low shear rates [25], which
then implies the presence of shear bands at low shear rates.
But, at least in some cases, the shear rate at the boundary
is not unique for a given system [24] and is thus not intrin-
sic. Recently, the very existence of such a finite shear rate
at the boundary has been seriously questioned [26]. As
we shall see, the present work highlights yet another (his-
tory dependent) possible origin of the shear rate spatial
discontinuity, arising from the tensorial character of the
material response. Thus, no complete structural descrip-
tion satisfactorily accounts for flow localization in foams
and emulsions. Dilatancy, which corresponds to a local
change in water concentration φ, certainly plays an impor-
tant role by easing the relative motion of bubbles or drops,
although it behaves somewhat differently from granular
materials depending on the liquid fraction [27–29]. The
structural disorder is also invoked as a parameter coupled
to the flow [30]. In both cases, the local fluidity (ratio of
the shear rate and the shear stress) is enhanced.

1.2 Foam rheology

The specificity of foams as compared to other materials
is the following: not only do they flow substantially only
above some threshold stress, but they also undergo large
elastic deformations at lower stress. Hence, classical mod-
els such as visco-elastic fluids (well suited for polymeric
fluids) and elasto-plastic solids (well suited for metals)
are insufficient to capture the behaviour of foams and
emulsions. In the past few years, much effort has been
devoted to address this challenge and describe the richer
mechanical behaviour of foams. Several rheological mod-
els have thus emerged [31–35]. They all assume that the
foam is essentially incompressible. Within this perime-
ter, some models are purely visco-elastic, albeit with a

non-linear elasticity [31]. As for the models incorporat-
ing plasticity, they can be divided into two categories: the
creep term either depends on the stress and deformation
rate [33,35,36] or on the stress only [32,34]. Finally, these
models also differ in the tensorial form of elasticity and
creep, a feature which is relevant for non strictly 2D sys-
tems (or for compressible materials).

Despite this variety of models, most current experi-
ments are not sufficiently stringent to fully test these mod-
els and decide which ingredients are indeed relevant to
describe the mechanical response of foams. For instance,
classical linear rheology experiments, particularly oscilla-
tory measurements, are clearly unable to provide much
information about the behaviour under large stress.

Because the constituent objects of foams are macro-
scopic and can be observed directly, statistical tools have
been elaborated to measure the local deformation and de-
formation rate. Using these tools, more complex geome-
tries such as flows around obstacles are also used in order
to subject the foam to a tensorially broader variety of
solicitations [37]. Yet because these experiments are con-
ducted in a confined geometry, the unknown friction with
the walls and the fact that no direct measurement of the
total stress is conducted make it difficult to test stress
predictions beyond low velocities.

To complement this, in order to test the full time re-
sponse of the models even within classical geometries such
as those available in a rheometer, a broad range of exper-
iments could be elaborated by choosing many different
forms for the time dependence of the applied deforma-
tion or stress. As a first step towards this goal, it should
prove useful to take into account the full time-dependent
response of a foam subjected to large amplitude oscilla-
tory shear rather than only the usually extracted storage
and loss moduli. This will provide more stringent tests
for models. Such experiments have been conducted re-
cently: because the flow was observed to remain homoge-
neous, the measured behaviour can be robustly attributed
to the local, yet macroscopic, mechanical response of a 3D
foam [38]. The strain-stress (Lissajous) curves display var-
ious shapes and show that such data can become available
and provide non-trivial results. These results will be dis-
cussed later in the present work.

1.3 Scope of the present work

In materials whose plastic threshold corresponds to a
small deformation, shear-banding requires a fluidizing
mechanism such as those mentioned in subsect. 1.1 above.
But for materials whose deformation at plasticity onset
is large, like foams, the tensorial nature of the material
state, due to stored deformation, is sufficient to obtain
shear bands: no extra mechanism is required.

In particular, the model that we suggest does not in-
corporate such an ingredient as dilatancy. We know that
a local plastic event results in an elastic redistribution
of stress in the neighbourhood [39, 40]. In simple shear
geometry, it thus favours flow localization [41–43]. In a
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statistical manner, it then raises the material fluidity lo-
cally [44] and generates a non-local material rheology.
This non-local character had been observed in concen-
trated emulsions flowing in microfluidic channels [45]. Let
us emphasize that these non-local effects are intrinsically
present in our modelling since the underlying elastic prop-
agators [41–44] result directly from the elastic continuum
medium equations that we use.

The paper is organized as follows. We first discuss sev-
eral types of continuum models for foams (sect. 2). We
then recall (sect. 3) the construction of a rather generic
continuum model for foam or emulsion rheology [34]. It
is generic with regards to the elasticity, the plastic flow
rate and the specifically three-dimensional form of the re-
sponse. We then simulate large amplitude oscillatory shear
(sect. 4) and conduct a first round of comparison with pub-
lished data on such experiments at a fixed frequency for
various amplitudes [38]. We are not able to reproduce the
experimental data in a reasonable way with a single set
of parameters, but in the future, fitting similar data over
a full range of both frequency and amplitude will be a
very effective and stringent method for testing more gen-
eral models than the present one. Finally, we thoroughly
discuss shear-banding in our model (sect. 5). Note that in
this work, we restrain ourselves to a strictly mechanical
and thermodynamical formulation. The important prob-
lems related to the coupling between the rheological be-
haviour and the structure of the material are not dis-
cussed. This coupling is experimentally well documented
in various complex fluids systems in which shear bands
are de facto associated with structural transitions [9].

Here, we ask a more restricted question: could station-
ary shear bands in foams and emulsions be accounted
for, starting from an inhomogeneous initial stress dis-
tribution in the material with otherwise strictly homo-
geneous mechanical properties? Our main result: shear
bands can emerge in a structurally homogeneous material
under shear only due to an inhomogeneous distribution of
the initial internal stress in the material. We demonstrate
this for a physically very natural form of the elastic and
plastic laws.

2 Choosing the type of continuum model

As mentioned above, our main point is to explore models
without any extra dynamic variables apart from the stored
local deformation. In the present section, we will discuss
these models in very general terms, omitting any explicit
tensorial features.

2.1 Models with only one internal variable

The most general arrangement of rheological elements
having only one internal deformation variable is repre-
sented in fig. 1a. The deformation of the (not necessar-
ily linear) spring represents the deformation of the local
structure. Three creep elements (viscous and/or plastic)
can be included, as shown.

(a) (b)(NL)

Fig. 1. Schematic, scalar view of rheological models (deforma-
tion ε and stress σ) with only one internal degree of freedom,
namely the deformation e of the spring. (a) General model: it
has one (non-linear) spring and three creeping elements, each of
which may have a flow threshold. (b) Foams and emulsions dis-
play some (large) deformation before creep is triggered. Hence,
creep elements 1 and 2 cannot have a finite threshold. By con-
trast, element 3 does have a threshold. Here, for simplicity, we
assume that the spring and both viscous elements are linear,
and that element 3 cannot withstand any stress beyond σ3.

At this point, let us recall that foams are viscoelas-
tic under weak stress conditions. Hence, both the spring
itself and the combination of spring and creep elements
must be able to deform under weak applied stress. As
a result, creep elements 1 and 2 must flow under weak
stress: we cannot choose them with a stress threshold be-
low which they would not flow at all. In other words, they
are purely viscous (although not necessarily linear). By
contrast, creep element 3 must have a stress threshold
so that the entire system also displays a stress thresh-
old. These considerations are summarized schematically
in fig. 1b.

Although elements 1 and 2 are viscous, they play differ-
ent roles when some creep motion of element 3 is involved.
Let us first illustrate this point by considering an exper-
iment in which we impose a constant deformation rate
from t = 0 and reverse the deformation rate as of t = T .
For simplicity, we consider a linear spring with modulus
G1 and Newtonian viscosities η1 and η2. Furthermore, we
consider that element 3 is simply a solid friction element
with threshold σ3 with no dependence on velocity. Figure 2
shows the contributions of viscous elements 1 and 2 sepa-
rately in the response of such a system to a triangle wave
deformation. In both cases, the stress jumps up immedi-
ately to a finite value at t = 0 due to the viscous elements
η1 and η2. The stress then increases at a constant rate
as the spring elongates. When the threshold of element 3
is reached, the stress saturates and remains constant. At
t = T , when the deformation rate is reversed, the stress
jumps down by a finite amount. It then decreases at a
constant rate as the spring is relaxed and later stretched
in the reverse direction.

There are two differences between the effects of viscous
elements 1 and 2. The first difference is that the observed
threshold depends on the deformation rate in the case of
viscous element 2. But that feature is not essential: one can
always decide that the deformation rate of creep element 3
affects its stress (in other words, by considering that it
contains not only a solid friction element, but also an extra
viscous element in parallel with it).

The second difference between both situations of fig. 2
is more essential. The jumps in stress at t = 0 and at t = T
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(a)

(b)

(d)

(c)

(e)

Fig. 2. (Colour on-line) Response of the model represented in
fig. 1b to a triangle wave deformation. (a) Deformation ε as a
function of time. (b) In the limit η2 = 0, stress σ (solid line)
and elastic stress G1 e transmitted by the spring (dashed line)
as a function of time. When the threshold σ3 is reached, the
spring relaxes with the time scale η1/G1 of the Voigt element.
(c) Corresponding Lissajous representation of σ and G1 e. The
periodic jump in stress (green segment) has the same amplitude
as the initial jump (red segment). (d) In the limit η1 = 0,
stress σ (solid line) and elastic stress G1 e transmitted by the
spring (dashed line) as a function of time. (e) Corresponding
Lissajous representation of σ and G1 e. The amplitude of the
periodic jump in stress (green segment) is twice that of the
initial jump (red segment).

have equal magnitudes in the case of viscous element 1.
By contrast, in the case of element 2, the magnitude of
the second jump is twice as large as that of the initial
jump (except if T is too short for the system to be able to
relax the Voigt element, with time scale η1/G1, after it has
reached the threshold stress). More generally, in such an
experiment, one can express each viscosity (at the applied
deformation rate) in terms of the magnitudes of the stress
jumps at t = 0, when the deformation rate changes from
zero to +γ̇, and at t = T , when it is reversed from +γ̇ to
−γ̇:

η1(γ̇) =
2|Δσ(0)| − |Δσ(T )|

γ̇
, (1)

η2(γ̇) =
|Δσ(T )| − |Δσ(0)|

γ̇
. (2)

When the value of the elastic deformation e can be mea-
sured independently, for instance through optical mea-
surements in 2D foams and relevant statistical tools [37],
the respective contributions from elements 1 and 2 can

(a)

(b) (c)

Fig. 3. (Colour on-line) (a) Burger model: schematic dia-
gram (left) and deformation response ε(t) to a step imposed
stress σ(t). Spring G′

1 elongates immediately (red segment)
while spring G1 responds with some delay (green curve) due
to viscous element η1. Viscous element η3 gives rise to a con-
stant additional deformation rate (blue segment). (b) Com-
bined Bingham-Burger model: solid friction element σ3 (com-
plemented by viscous element η′

3) is now included so as to
provide additional creep above the stress threshold. We believe
that some tensorial version of this model could mimic the rheo-
logical behaviour of a foam quite adequately. (c) Model studied
in the present work. Apart from the additional viscosity η2 in-
troduced in fig. 1, it represents the combined Bingham-Burger
model when the (blue) viscous element has not been deformed
yet, either at intermediate time scales when the (green) Voigt
element has relaxed (the green and red springs then respond
in series) or at short time scales when the Voigt element is still
blocked (in which case only the red spring responds).

be obtained by comparing σ and e (see full lines versus
dashed lines in fig. 2).

2.2 Weak stress: role of one extra internal variable

Below the flow threshold, the model outlined above be-
haves like a Voigt element (a spring in parallel with a
viscous element). The behaviour of a foam under a weak
stress is in fact a little more complex: a linear Burger
model (see fig. 3a) is known to correctly reproduce step-
wise creep experiments on liquid foams [46]. Because the
Burger model contains two springs, it corresponds to a sys-
tem with two internal variables (spring elongations e and
e′) rather than one. Figure 3a shows the response of such
a model to a stepwise creep experiment. The stress jump
generates an immediate elongation of the (red) spring la-
belled G′

1. The (green) Voigt element then relaxes within
a time scale of order η1/G1. On very long time scales, the
(blue) viscous element gives rise to a slow drift with ve-
locity σ/η3 (depicted by the finite slope of the blue line).

In order to build a model that behaves like the Burger
model under weak stresses but which presents a flow
threshold like the one discussed earlier, one could com-
bine the Burger model with the model presented in fig. 1
for only one internal variable. We would thus obtain the
model represented in fig. 3b (which we already suggested
as a generalization of our model [34]).

In the present work, we consider this combined model
of fig. 3b, but we focus on short and intermediate time
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scales where the highly viscous (blue) element has not
yet moved. Because the blue element has not moved, it
can simply be omitted. As for the two springs G1 and
G′

1 and the viscous element η1, their behaviour can be
reduced to that of a single spring in two limits. On time
scales much shorter than η1/G1, the (green) Voigt ele-
ment is blocked due to its viscous part. As a result, the
whole system behaves like the red spring G′

1. At inter-
mediate time scales (much longer than η1/G1 but still
with a blocked blue viscous element), the Voigt element
has relaxed. Hence, both springs are simply in series: they
combine into a composite spring. In fig. 3c, we have rep-
resented such a model. The green and red spring repre-
sents either the red spring G′

1 (on short time scales) or
the combination G1G

′
1/(G1 + G′

1) (on intermediate time
scales). Meanwhile, the other creep elements provide both
the stress threshold (solid friction σ3) and the dependence
on deformation rate (viscous element η′

3). We also include
a general viscosity η2 as in the discussion of subsect. 2.1.
In this model, the spring and viscous elements must be
understood as non-linear, unless stated otherwise. Apart
from the viscous element η2, the model of fig. 3c is identi-
cal to the model that we constructed earlier and for which
we had analysed the local, mean field behaviour [34].

3 Constructing the tensorial model

In the present section, we will briefly recall how we built
the rheological model [34] of fig. 3c. In particular, it is
based on a general non-linear description of elasticity and
plasticity. Indeed, materials such as foams can locally un-
dergo large elastic deformations —located far from the
linear regime corresponding to small deformations— be-
fore plastic flow occurs [47,48].

3.1 General local rheological laws

The relevant framework to describe elastic stresses in a
flowing material is the Eulerian one, whether this mate-
rial possesses elastical properties or not. Indeed, during
the flow of a foam or an emulsion, even though elastic
stresses exist, any memory of a reference state fades away
continuously due to plasticity. The Lagrangian descrip-
tion, which is based on maintaining the correspondence
with such an initial state of reference, is formally equiva-
lent, but conceptually and numerically less adapted.

Thus we attach the variables describing the material
to a spatial grid (x, y, z), and they correspond to an in-
stantaneous and local description in space.

In this framework, only two variables are relevant in
a strictly mechanical context: the local velocity gradient
∇�v(x, y, z) and the local deformation state stored in the
material [34] (green-red spring in fig. 3c), as described in
continuum mechanics by the Finger tensor B(x, y, z) [49].
Note that when the material is at rest, B = I while the
stored deformation, depicted schematically in fig. 3c, van-
ishes: e = 0.

In this section, we describe our local rheological model.
Note that in this local context, the global tensor ∇�v it-
self has to be considered as an independent local three-
dimensional tensorial variable, just as B, not as the spa-
tial gradient of a velocity field. Only when we turn to the
description of a spatial system (see subsect. 5.5) will the
vector field �v(x, y, z) be introduced. Meanwhile, tensors
∇�v and B will thus be the two variables of our local ten-
sorial model.

The elastic part of the stress, which goes through the
spring in fig. 3c, depends on the deformation according
to the following relation, the most general one compatible
with the symmetry constraints in three dimensions [34]:

σel = a0 I + a1 B + a2 B2, (3)

where a0, a1 and a2 are scalar functions of the invariants
of the Finger tensor B.

Turning to plasticity (σ3 and η′
3 in fig. 3c), we only as-

sume that every event of plastic relaxation is aligned with
the stored deformation. The plastic creep DB

p should thus
be similarly aligned. The most general form compatible
with the symmetry constraints is then:

DB
p = b̄0 I + b̄1 B + b̄2 B2, (4)

where b̄0, b̄1 and b̄2 are again scalar functions of the in-
variants of the Finger tensor B.

To complete the model, we gather together in a global
viscosity term (which was noted η2 in fig. 3c) all the dissi-
pative phenomena which are present even in the absence of
any plastic event in the foam. They occur, for example, at
small scales: flows in films squeezed between bubbles or in
Plateau borders. We simplify its description by selecting a
Newtonian average viscosity ηs for these local dissipative
phenomena. The list of contributions to the stresses in the
material is thus closed. We have

σ = a0 I + a1 B + a2 B2 +
ηs

2
(∇�v + ∇�vT). (5)

To take into account the incompressible character of
foams and emulsions, we add an extra kinematic con-
straint of strict volume conservation det(B) = 1. Refer-
ring to [34] for further details, we take it into account by
using only the deviatoric part of the stress:

σ̄ = dev(σ) = σ − I
d

tr(σ). (6)

The same constraint on plasticity gives the general
form [34]

DB
p = B ·dev(f(B)) = b1 B ·dev(B)+b2 B ·dev(B2), (7)

where the scalar prefactors b1 and b2 are isotropic, and
thus depend on the invariants of tensor B.

In what follows, we will use a completely equivalent
form of tensor DB

p which manifests more clearly that the
dissipation is positive (see the discussion in [34])

DB
p =

A(B)
τ

B · G(B), (8)
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where A(B) is a scalar isotropic function of B and τ is the
characteristic time of the dissipative processes; moreover

G(B) =
dev [P(B) · dev(σel)]

tr [P(B) · dev(σel) · dev(σel)]
, (9)

where P is a function of the form P(B) = b(B)B−2 +
(1 − b(B))B2 [34] and b is an isotropic function. In this
expression, the total dissipation per unit volume is A(B)
and can be chosen as positive.

Eventually one gets the generic local rheological model:

dB

dt
− ∇�v · B − B · ∇�vT = −2DB

p , (10)

DB
p =

A(B)
τ

B · G(B), (11)

σ = a0 I + a1 B + a2 B2 +
ηs

2
(∇�v + ∇�vT), (12)

where dB/dt = ∂B/∂t+(�v ·∇)B is the particulate deriva-
tive of the Finger tensor.

3.2 Complete spatial model

As for any local rheological model, the previous equations
must be complemented by field equations which express
force balance and mass conservation

∇ · σ̄ + ρ �f = ρ
d�v

dt
− �∇ p, (13)

∂ρ

∂t
+ ∇ · (ρ�v) =

dρ

dt
+ ρ tr

1
2
(∇�v + ∇�vT) = 0, (14)

where �f represents the external forces (per unit mass) and
ρ is density. The incompressibility constraint gives here

∇ · �v = tr
1
2
(∇�v + ∇�vT) = 0. (15)

As a result, the density ρ is simply transported by the
flow: dρ/dt = 0. In the remainder of this work, we fur-
thermore assume that the density is homogeneous, hence
it also remains constant: ∂ρ/∂t = 0.

Last assumption: we restrict ourselves to the Stokes
regime, where inertial terms are all negligible in the mass
conservation equation. Thus we obtain

∇ · σ̄ = −�∇ p. (16)

The complete system of equations that we need to inte-
grate numerically is thus

dB

dt
−∇�v · B − B · ∇�vT = −2DB

p , (17)

DB
p =

A(B)
τ

B · G(B), (18)

tr
1
2
(∇�v + ∇�vT) = 0, (19)

σ̄ = dev(σ)

= dev
{
a1 B + a2 B2

}
+

ηs

2
(∇�v + ∇�vT), (20)

∇ · σ̄ = −�∇ p. (21)

The initial conditions that must be specified to solve
the above system may merely consist in the values of ten-
sor B over the entire sample. Indeed, the value of the
velocity and pressure fields can be derived therefrom us-
ing eqs. (21) and (20) which, when combined, are similar
to Stokes’ equation, using the constraint of eq. (19).

3.3 Selection of a particular form of elasticity and
plasticity

3.3.1 Elasticity: Mooney-Rivlin model

We have selected a usual form of incompressible elas-
ticity which has been demonstrated to describe to a
good approximation the non-linear elastic behaviour of
foams [50,51]: Mooney-Rivlin elasticity. The correspond-
ing elastic energy per unit volume can be written [49]

ρE(B) =
k1

2
(IB − 3) +

k2

2
(IIB − 3), (22)

where

IB = tr(B), (23)

IIB =
1
2
[tr2(B) − tr(B2)] = tr(B−1). (24)

Going back to the coefficients of eq. (3), this corresponds
to the following expressions:

a1 = k1 + k2 IB , (25)
a2 = −k2. (26)

Following previous work (refs. [50, 51]), we express the
values of k1 and k2 using an elastic modulus G and an
interpolation parameter a as follows:

k1 = aG, (27)
k2 = (1 − a)G. (28)

In the foam modelling literature, a value a = 1/7 is some-
times recommended [50, 51]. Keeping in mind our per-
spective of discussing the conditions for the appearance
of shear bands depending on parameter values, we prefer
to keep the parameter a free in sect. 4 and beyond. How-
ever, we remain in the framework of the Moonley-Rivlin
elasticity.

3.3.2 Plasticity: yield stress fluid

The particular form of plasticity explored in this work is
based on a non-linear threshold-like behaviour. Locally,
the plastic reorganisation events only occur in the mate-
rial when the stored elastic deformation reaches a critical
value. We express this transition with a function Wy(B)
which vanishes linearly at the threshold

Wy(B) = 0, (29)
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with, in our case, Wy(B) = ρE(B) − K, where ρE is the
stored elastic energy per unit volume and K is a constant.
In simple shear from a relaxed state, σy is the threshold
stress: function Wy vanishes.

From the point of view of the plastic deformation rate
tensor DB

p , we have the following expression 8, taking for
A(B)

A(B) = (ρE(B) − K)Θ(ρE(B) − K), (30)

where Θ(x) = 1 when x ≥ 0 and Θ(x) = 0 elsewhere.
We also set the following form for the polynomial:

P(B) = bB−2 + (1 − b)B2, (31)

with b between 0 and 1. Our final set of equations is thus

dB

dt
−∇�v · B − B · ∇�vT = −2DB

p , (32)

DB
p =

ρE(B) − K

τ
Θ(ρE(B) − K)B · G(B), (33)

σ̄ = dev(σ) = dev {(aG + (1 − a)G tr(B)) B

− (1 − a)GB2 + ηs(∇�v + ∇�vT)/2
}

, (34)

∇ · σ̄ = −�∇p, (35)

tr
1
2
(∇�v + ∇�vT) = 0. (36)

3.3.3 Physical parameters and rheological model

In order to be able to highlight physically relevant quan-
tities, we use a dimensionless form of the above system.
The elastic modulus G is taken as the unit of stress, and
the weak stress relaxation time scale ηs/G as the unit of
time, while B is already dimensionless

σ̂ = σ̄/G, (37)
T = ηs t/G, (38)

B̂ = B. (39)

As a result, the various quantities are made dimensionless
as follows:

Ê(B̂) = ρE(B)/G, (40)
K = K/G, (41)
p̂ = p/G, (42)

Â(B) = A(B)/G, (43)

P̂(B) = P(B), (44)

Ĝ(B) = GG(B), (45)

∇̂�v = (ηs/G)∇�v, (46)

D̂B
p = (ηs/G)DB

p . (47)

The system of equations now reads:

dB̂

dT = ∇̂�v · B̂ + B̂ · ∇̂�v
T
− 2D̂B

p , (48)

tr(∇̂�v + ∇̂�v
T
) = 0, (49)

∇ · σ̂ = −�∇p̂, (50)

σ̂ = σ̂el +
∇̂�v + ∇̂�v

T

2
, (51)

σ̂el = (a + (1 − a) tr(B)) dev B̂

− (1 − a) dev B̂2, (52)

D̂B
p = Ψ Â(B̂) B̂ · Ĝ(B̂), (53)

Â(B̂) = (Ê(B̂) − K̂)Θ(Ê(B̂) − K̂), (54)

Ê(B̂) =
a

2
(IB − 3) +

1 − a

2
(IIB − 3), (55)

Ĝ(B̂) =
dev [P(B) · σ̂el]

tr [P(B) · σ̂el · σ̂el]
, (56)

P̂(B̂) = bB̂−2 + (1 − b)B̂2 (57)

Ψ =
ηs

Gτ
. (58)

The new dimensionless parameter Ψ defined in the last
equation above reflects the ratio of the plastic flow rate
(proportional to 1/τ) to the viscoelastic flow rate (pro-
portional to G/ηs) when the other factors have the same
order of magnitude. With the present choice for the mag-
nitude of DB

p (with Â proportional to the distance from
the threshold), that typically occurs when the stored de-
formation is twice the threshold deformation.

3.4 Simple shear flow

In the remainder of this work, we address specifically the
question of shear-banding. For this purpose, we consider
only simple shear flows. The velocity is oriented along axis
x and varies along axis y. The only non-zero component
of the velocity gradient ∇�v is then ∂vx/∂y. The entire
system and flow are invariant along x and z. The force
balance given by eq. (35) then implies that σxy and σyy

are homogeneous at all times. In the axes x, y and z, the
dimensionless velocity gradient can thus be written as

∇̂�v =

⎛

⎝
0 Γ̇ (y) 0
0 0 0
0 0 0

⎞

⎠ , (59)

where Γ̇ (y) = (ηs/G) γ̇(y). Let Γ̇ = (ηs/G) γ̇ be the
macroscopic value of the shear rate at the scale of the en-
tire sample. We now have five dimensionless parameters:
the plastic-to-viscoelastic flow rate ratio Ψ , the thresh-
old K, the Mooney-Rivlin parameter a, the parameter b
(which defines the tensorial form of the plasticity G(B))
and the macroscopic shear rate Γ̇ .
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ηs

G, a

ηc, b

σy

Fig. 4. Simplified (scalar) picture of the main rheological pa-
rameters. G represents the elastic modulus and a the relative
weight of the tensorial components of the elastic deformation
(see eqs. (27) and (28)). The quantities σy and 1/τ constitute
a scalar representation of the creep defined by DB

p , and param-
eter b is the equivalent of a for creep, see eq. (31). Finally, ηs

is a viscosity that is independent of creep.

For the sake of consistency, let us note that our earlier
work [52] discussed parameters

α =
2
Γ̇

, (60)

We =
Γ̇

Ψ
, (61)

instead of Ψ and Γ̇ .

3.5 Relation between model parameters and
experimentally measurable quantities

In fig. 4, we summarize the physical parameters included
in our model.

In experiments, the easily accessible dimensional pa-
rameters are the viscosity ηs and the shear modulus G
through linear rheology, as well as the threshold stress
σy. More elaborate setups can yield the value of a. There
are indications that a value a = 1/7 is relevant for liquid
foams [50,51].

Among our dimensionless parameters, two can thus
be determined easily: a and K. The latter is related to
the energy at the threshold K ≈ 1

2 (σy/G)2. As just men-
tioned, Γ̇ (y) = (ηs/G) γ̇(y) is the normalised shear rate.
Concerning Ψ = ηs/(Gτ) and b, no experiment to our
knowledge is able to validate or invalidate the value of the
plastic reorganisation time τ at deformations beyond the
threshold, or the tensorial form of the plastic flow (here
expressed in terms of parameter b). For the time being,
we thus consider parameters Ψ and b as free parameters
in any comparison of our model with actual data.

4 Homogeneous flow behaviour in large
amplitude oscillatory experiments

4.1 Method

In the present section, we test the predictions of our
model by comparing them to the most stringent available
measurements in homogeneous flows, namely the large
amplitude oscillatory experiments conducted recently by
Rouyer et al. [38]. We have simulated oscillatory shear
flow with the local model (no dependence on coordinate
y, i.e., homogeneous flow). In other words, in eq. (59), we
choose

Γ̇ (y, t) = Γ̇ (t) = −ωΓ0 cos(ω t), (62)

which corresponds to the oscillating shear deformation

Γ (y, t) = Γ (t) = Γ0 sin(ω t), (63)

4.2 Typical behaviours

Figures 5 and 6 show, in the form of Lissajous curves,
the full response of the present model in the (amplitude,
frequency)-plane. The normalized stress and strain re-
sponses make it easy to discriminate between plastic, elas-
tic, or viscous behaviours of the model. Let us rationalize
them in terms of the scalar diagram of fig. 3c discussed
above in subsect. 2.2.

A pure elastic behaviour corresponds to an ellipse
squeezed into a straight line spanning the diagonal of
the diagram. This is obtained at low frequencies and
amplitudes. Indeed, deformation rates are then small at
all times, hence the viscous elements in fig. 3c play no
role. Meanwhile, because deformations remain small, the
threshold of the solid friction element is never reached. As
a result, the spring alone provides the mechanical response
of the system.

For the same reason, an elasto-plastic behaviour is ex-
pected at low frequency yet large amplitude, since the
stress threshold is then reached. A purely elasto-plastic be-
haviour, as predicted by a scalar model, would correspond
to a sharp-cornered parallelogram with two horizontal
sides corresponding to the yield stress. The results of our
simulation at low frequency and large amplitude differ
from this simple picture in the same way as experimental
data by Rouyer et al. [38], namely with two main fea-
tures: i) the “plastic part” of the Lissajous curve exhibits
a slightly negative slope, and ii) the transition to plasticity
is progressive rather than sharp (blunt corners). Feature
i) corresponds to the weakening of the viscous component
when the deformation rate decreases along the sinusoidal
applied deformation. As for the latter feature, it can re-
sult either from viscosity being combined with plasticity
(as in the present model [34]) or from a progressive onset
of plasticity [36].

As compared to the results by Rouyer et al. [38], our
model additionally exhibits an overshoot at very low fre-
quency and large amplitude. Because such a regime is very
similar to slow, continuous shear, this response can be un-
derstood [35] as a tensorial effect combining the saturation
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Fig. 5. Large amplitude oscillatory simulations: shape of Γ (t)
versus σxy(t) (Lissajous) curves, obtained for a = b = 1/7,
Ψ = 0.1 and K = 1. Top: range from ω = 0.01 to ω = 100
and Γ0 = 0.1 to Γ0 = 100. Bottom: zoom on a more restricted
range of parameters.

arising from plasticity and the rotation contained in shear
(this point is further discussed at the end of subsect. 5.2).

This transition between a purely elastic response at
low amplitude and an elasto-plastic response at higher
amplitude is best illustrated by the top part of fig. 6. The
curves are normalized for clarity, but the actual maximum
slope in each curve is essentially identical and is given by
the shear modulus G. By contrast, the value of the stress
in the most horizontal regions of the curve reflect both the
solid friction element and both viscous elements in fig. 3c.
The bottom part of fig. 6 presents results slightly below
and slightly above the plasticity threshold. It shows that
weak plasticity causes the deformation cycle to slowly drift
towards a limit cycle that differs from the elastic cycle.
This very drift, when continued along a longer cycle, is in
fact at the origin of the overshoot mentioned above.

If we now turn to higher frequencies, the deformation
rate becomes large. As a result, viscous elements now play
a role and may even become dominant. Correspondingly,
the Lissajous curves tend to become an ellipse whose axes
lie along those of the figure. That is particularly clear on
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Fig. 6. Large amplitude oscillatory simulations: shape of
σxy(t) versus Γ (t) (Lissajous) curves, obtained for a = b = 1/7,
ω = 0.01, Ψ = 0.1 and K = 1. Top: transition from elastic to
plastic behaviour as the amplitude is increased. At very large
amplitudes, an overshoot is apparent like in continuous shear
situations. Bottom: in a slightly plastic situation (amplitude
1.8), it takes several cycles before the system behaves in a pe-
riodic manner.

fig. 3c at high frequency with a large amplitude, but the
trend is very obvious at high frequency and low ampli-
tude, and is also discernible at low frequency and large
amplitude.

4.3 Comparison with experiments

The data obtained by Rouyer et al. [38] correspond to
a fixed frequency and different applied strain amplitudes
(from 0.055 to 1.2). We have integrated1 the equations of
the present model with the same amplitudes and plotted
them together with data. The results are presented in fig. 7
(for clarity, stress curves are presented normalized).

Note that in order to obtain a reasonable agreement
of our model with the data, we had to artificially choose

1 Note that the OCTAVE software code for our model simula-
tion is freely available on our website.



Page 10 of 17 Eur. Phys. J. E (2012) 35: 51

Fig. 7. Comparison of model (curves) with experiments
(points). Normalized σ(t) curves for six values of the ampli-
tude Γ0 ranging from 0.055 to 1.2, shifted vertically for clarity.
Parameter values are a = 0.14, K = 0.04, b = 0.14, Ψ = 27.
For each value of the amplitude Γ we had to select a differ-
ent value for the frequency ω and for the modulus G. The (Γ ,
ω, G) values are: (0.055, 0.2, 282), (0.15, 0.4, 246), (0.25, 0.9,
186), (0.43, 0.5, 154), (0.72, 0.5, 146), (1.2, 0.4, 149).

different values of ω and G for each strain amplitude, while
κ and Ψ could be kept constant. This unsatisfying ad hoc
parameter adjustment shows the limits of this model in
describing the behaviour of the foams studied by Rouyer
et al.

5 Shear-banding study

5.1 Stationary flow curve and inhomogeneous flow

Let us now turn back to shear-banding. For such a pecu-
liar flow to be observed, the same material submitted to
the same shear stress σxy must be simultaneously in two
different deformation states. As discussed for many years
for various complex fluids [3, 53, 54], a mathematical con-
dition for this to be possible is the existence of an unstable
zone in the local flow curve σ∞(γ̇) of the material: it must
be non-monotous.

In the case of foams, nevertheless, such an unstable
portion in the flow curve itself does not exist: how can
shear bands with different shear rates coexist?

Foams and emulsions are instances of yield stress flu-
ids, so that there exists a minimal value σy of the stress
σxy below which no stationary flow occurs. Now when we
shear the material, imposing the shear rate, the material
has to flow, even for very small γ̇. The intrinsic flow curve
thus possesses an extrapolation in stress when γ̇ → 0. Let
us denote it by σd. Note that σy and σd pertain to the
local rheology curve σ∞(γ̇), not to the effective, macro-
scopic stationary curve as can be measured for example
in a rheometer. In this discussion the flow is homogeneous.
But the relative values of σd and σy, pertaining to the lo-
cal flow curve, will give us hints about possible conditions
for shear-banding.

γ̇ A γ̇ loc
A 3 γ̇ cγ̇ loc

A 2 γ̇ B = γ̇ loc
B

P A2 P A3
P B

σB

σy
σA3

σA2

σA

P A

σd

Fig. 8. Typical form of a stationary flow curve giving the
dependence of the shear stress on the local shear rate. σy is
the yield stress as measured under imposed stress, and γ̇c the
corresponding shear rate. A macroscopic shear rate γ̇A smaller
than γ̇c will not necessarily lead to a homogeneous velocity
profile P A, with the expected stress σA: the flow can separate
into a blocked region and a flowing region (profiles P A

2 or P A
3 ).

The local shear rate is then faster (γ̇loc
A2 > γ̇A and γ̇loc

A3 > γ̇A),
which corresponds to a higher stress (σA

2 > σA and σA
3 > σA).

Besides, for an average shear rate γ̇B greater than γ̇c, the flow is
homogeneous again, which corresponds to the expected stress
σB (greater than σy).

Let us now consider the result of a measurement made
on a sample of this material, sheared in a (parallel or very
low curvature) Couette cell under imposed shear rate. If
σd ≥ σy, all parts of the sample will flow, even at low shear
rates, since the corresponding stress is necessarily every-
where greater than the yield stress. As mentioned before,
since the flow curve has no intrinsic instability for higher
γ̇ values, no mechanism is available for shear-banding.

The situation is different if σd < σy. If we put the yield
stress σy and the intrinsic stationary flow curve (fig. 8) on
the same graph, it is immediately apparent that this con-
figuration allows for the coexistence of zones undergoing
shear at rates γ̇ such that 0 < γ̇ ≤ γ̇c, and of blocked zones
remaining in the elastic regime at γ̇ = 0. The mechanism
is essentially the same as in the classical case of instability
in the flow curve (see fig. 8). Of course, as soon as γ̇ > γ̇c

all regions flow, since γ̇ > γ̇c implies that some regions
flow faster than γ̇c. The stress in these regions, as given
by the flow curve, has to be above the yield stress σy. And
since the shear stress is the same in the entire material,
all regions support a stress greater than σy and no region
can be blocked.
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5.2 Large elastic deformations versus extra dynamic
variables

But is the situation where σd �= σy actually possible? In
various complex fluids, the answer is known to be yes. The
usual explanation of such a flow curve is to invoke an in-
ternal extra variable (of a structural nature in general)
which is coupled to the flow. As an example, in a sim-
plified version, this extra parameter can take one of two
values: flowing or non-flowing. Thus the stationary curve
extrapolating to σd at low γ̇ and the yield stress value σy

actually correspond to two different materials, hence σd

and σy can differ.
But as mentioned in sect. 1.2, foams differ from many

other complex fluids in that the deformation that must be
reached to trigger plastic flow is large. This feature turns
them into an intrinsically tensorial material.

In a stationary situation where shear-banding is
present, stress conservation implies that the shear stress
σxy is constant along the direction of the velocity gra-
dient, as well as the stress component σyy. By contrast,
the extra components of the stress σxx(y) and σzz(y) may
vary in an arbitrary manner along the direction of the ve-
locity gradient. Among these, σxx(y) is present even in a
purely 2D system. These extra components will qualita-
tively play the same role as an extra structural variable in
changing the local nature of the material when viewed as
a 1D material (along direction y).

But that only explains how it is possible for shear
bands to be present. The reason why the flow curve actu-
ally extrapolates below the yield stress at vanishing shear
rates (σd < σy) in some tensorial models, thus allowing
shear banding, has been shown by Raufaste et al. [35]: as
long as the material remains elastic, the local deforma-
tion tensor is transported by the shear flow along a path
that is not locally aligned with itself: the principal axes
of the particulate time-derivative of the deformation do
not coincide with those of the deformation. Hence, once
plasticity is triggered, it alters the deformation evolution
until it progressively reaches the locus where it is aligned
with its transport under shear. At least in simple examples
of elasticity and plasticity, this migration from the elas-
tic path to the asymptotic locus is the origin of the shear
stress overshoot observed during transients [35]. When the
plastic flow is triggered rather abruptly, the system is still
elastic just before the maximum of this overshoot, and the
asymptotic shear stress value can then lie below the last
elastic shear stress value. In other words, σd < σy.

5.3 History-dependent shear bands

Despite some similarities, the analogy with systems char-
acterised by unstable flow curves has some limitations. In
the case of yield stress fluids, there is no unstable range
in γ̇, which would impose phase separation between two
phases at different flow rates. Shear bands are possible but
not necessary. Also, no lever rule-like criterion can exist to
select the relative fraction of the different bands, as have
been argued in some fluid systems [3, 55].
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Fig. 9. Top: typical stationary flow curve. Points correspond-
ing to σd, σy and γ̇c are reported on the curve. Bottom:
stress time evolution for different imposed shear rates below
or above γ̇c.

Rather, the initial distribution of σxx(y) and σzz(y)
in the material will be of primary importance in the ap-
pearance of shear bands even though the material per se
remains homogeneous. In other words, it is the material
history that will lead to a particular flow profile. We will
see that the initial distribution of stress in the material
will determine the band structure.

5.4 0D flow curve and shear-banding criteria

As long as the flow in the material is homogeneous, a
local rheological model will be sufficient to describe it.
We begin by showing the typical flow curve corresponding
to our model (fig. 9). Note that this flow curve is obtained
under applied shear rate conditions.

As can be observed, the conditions described in the in-
troduction for the appearance of shear bands are fulfilled:
the stress σd is smaller than the static yield stress σy. In
the shear rate range between 0 and γ̇c, the system has the
possibility to split the average shear rate γ̇ in different
proportions of blocked and flowing bands.

Thus, in the homogeneous case, for any values of the
parameters Ψ , K, a, b and Γ̇ , we can use the local rheolog-
ical model to calculate the static and dynamic thresholds,
σy and σd, and the critical shear rate γ̇c. Following the
line of reasoning developed in the introduction, we can
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then predict the range of imposed shear rates [0, γ̇c] in-
side which shear bands are possible.

The value of σy can be obtained easily by simulat-
ing the system in the elastic regime (DB

p = 0) up to the
threshold (Wy(B) = 0), which corresponds to a state of
the system characterized by eigenvalues βy

1 and βy
2 of ten-

sor B, a state for which σy can be calculated.
The different stationary state values of the shear stress

could then obtained independently by continuing the sim-
ulation beyond the threshold in the plastic regime for each
value of γ̇, waiting for the stationary value of the system
(dB/dt ≈ 0). The dynamic threshold σd would then cor-
respond to the limit of σ12 for small γ̇. The critical shear
rate γ̇c would be obtained when the stress applied to the
system in the stationary state would precisely correspond
to the plastic threshold: σstat

12 (γ̇c) = σy. Such a procedure
is natural, but requires successive simulations of the sys-
tem for a large number of γ̇ values.

We have used a more direct approach [34] to obtain
σd and γ̇c (see appendix A). This method relies on the
description of the evolution of the system in terms of in-
dependent eigenvalues β1 and β2 of tensor B (see fig. 10).

With the help of this procedure, the three observables
which are important for the prediction of shear bands,
σy, σd, and γ̇c are obtained directly without the need to
simulate all the points along the stationary flow curve sep-
arately.

5.5 Spatial (1D) simulations of stationary flow regimes

As already mentioned, the discussion in subsect. 5.4 only
provides necessary conditions for the appearance of shear
bands. In the 1D simulations that will be discussed in
the present section, flow inhomogeneities will indeed some-
times emerge in a full spatial simulation of our tensorial
model in 1D spatial dimension plus time.

We simulate the full tensorial model in 1D using the
equations of subsubsect. 3.3.3. The technical details of the
numerical scheme can be found in [52]. From a numerical
point of view, let us remark in particular that we have

checked the grid used in the discretisation of the equations
is fine enough for all simulations presented here.

5.5.1 Discussion of the conditions for inhomogeneous flow

The model that we simulate only contains material pa-
rameters that are homogeneous in the sample. Hence, if
the initial conditions of the flow are also homogeneous,
the entire evolution will remain homogeneous. Although
performing a 1D simulation as a set of partial differential
equations, we would obtain the exact same results as in
subsect. 5.4.

In other words, since the parameters of the model do
not vary in space, shear bands can only appear if initial
conditions are, in one way or another, inhomogeneous.

Of course, as mentioned in the Introduction, inhomo-
geneities could appear in a natural way through an ex-
tra state variable coupled to the flow, such as the con-
centration. This variable could then vary in space and
be coupled to the flow. Concerning concentration (a con-
served variable), let us mention dilatancy phenomena,
imagined for foam [27, 28], observed experimentally [56]
and interpreted in a geometrical manner [29, 57]. Align-
ment (a non-conserved variable) is another possibility. It
has been invoked in the case of wormlike micelle or rigid
rod solutions [55].

Here, we focus on inhomogeneous static strain/stress
initial conditions, without invoking additional variables,
and we will show that they can induce the appearance of
persistent inhomogeneities in the flow profile.

The reason for which these initial strain inhomo-
geneities can induce the appearance of blocked bands
can be qualitatively understood by considering the flow
threshold K. Indeed, the stresses generated by the shear
combine with the initial stress distribution due to strain
inhomogeneities. Depending on its orientation, the initial
stress thus precipitates or delays the triggering of the plas-
tic flow.

5.5.2 Initial inhomogeneous strain distribution

First, the existence of stress inhomogeneities stored in the
system before it is set into motion is physically well moti-
vated. For instance, introducing a foam sample into an ap-
paratus requires non-homogeneous flows. Inhomogeneous
stresses are likely to build up in the sample unless partic-
ular care is taken during the preparation. For example, in
situ drying of an initially wet foam should be performed
extremely slowly to avoid such stresses.

We will always assume that the initial state is at rest,
that is, that the elastic stresses are at equilibrium in the
sample. However, even when this equilibrium is imposed,
there exists a large set of possible initial spatial distribu-
tions of stresses and strains. For example, if the system is
invariant in the xz plane of the shearing walls, some com-
ponents of the stress must be homogeneous. That is the
case for σxy, σyy and σyz. The other stress components,
however, can freely vary as a function of y as long as they
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remain constant in each xz plane. It thus corresponds to a
1D inhomogeneity in the direction of the velocity gradient.

In this paragraph, we examine a very simple case of
initial condition, with uniaxial extension along axis x, with
Bxx = Bxx(y) and Byy = Bzz = 1/

√
Bxx. We used a

simple monotonic function:

Bxx = 1.1 + ε yβ (1 − (1 − y)β). (64)

In practice, in order to prepare a sample in such a state,
one must compress the foam in a non-homogeneous man-
ner. Typically, a block of foam with a trapezoidal shape
forced to take a rectangular shape will undergo this kind
of strain inhomogeneity. In this context, we cannot com-
ment on any relation between these strain inhomogeneities
in our continuum model and the local structural disorder
existing at the bubble level, as this disorder is averaged
out in our continuum description. In particular, there is
no clear structural interpretation of the amplitude ε of the
strain inhomogeneities in the prepared sample.

5.5.3 Characterizing the inhomogeneous flows

A typical sequence of velocity profiles obtained in our nu-
merical simulations displays as follows. The velocity pro-
file is initially homogeneous. It remains homogeneous as
long as the entire sample is in the elastic regime. The re-
gions where the initial stress is highest in the direction of
the applied deformation reach the threshold first. The av-
erage shear rate being constant, this onset of creep leads
both to a higher shear rate in the creeping regions and to a
lower one in the others. The high shear rate then induces
the saturation of the stress due to creep, and the shear
becomes blocked in the region below the threshold. In the
stationary regime, a blocked band coexists with a sheared
band at the same shear stress.

In the corresponding transient regime, non-trivial phe-
nomena may appear, especially at the boundary of the
blocked zone. Transient negative local shear rates are ob-
served due to stored elastic stresses.

Let us now address the characteristics of the station-
ary velocity profile, again from the behaviour of the local
rheological model.

The first feature of interest is that in the flowing re-
gions, the velocity profile is linear, that is, the shear rate
is uniform. That can be understood in the following man-
ner. All the regions which, in the stationary state, respond
through a non-zero shear rate, correspond to a point lo-
cated on the stationary flow curve in the β1-β2 diagram of
fig. 10. Each point of this curve corresponds to a different
shear stress. Thus, since each layer of the flow undergoes
the same shear stress, they all actually correspond to the
same point on the curve and thus respond through the
same shear rate.

A second feature results from the fact that in space,
while σxy and σyy are continuous, σxx and σzz may be
discontinuous. That is precisely the case at the boundary
between a shear and a blocked region. This is the flow
counterpart of the discontinuity in the β1-β2 diagram, be-
tween the points below the threshold and the point with

a stationary shear rate that corresponds to the flowing
region. Actually, the only coupling between the different
layers comes from the fact that i) σxy and σyy must be
every where the same, and ii) the integral of γ̇ over the
gap thickness is fixed by the imposed wall velocity. As a
consequence, in an inhomogeneous flow, the organisation
of the blocked and flowing layers is not unique: any per-
mutation of the layers is actually possible. Again, initial
conditions decide upon the particular structure adopted
by the flow. Two initial conditions corresponding to per-
mutated layers would lead to the same permutation in the
stationary flow structure.

5.6 Parameters affecting the existence of blocked
bands

In this section, we want to describe, within the parameter
space (Ψ , K, a, b, Γ̇ ) the regions inside which shear bands
are possible. These domains will be represented through
sections in five different planes: (K, Γ̇ ), (Ψ, Γ̇ ), (a, b) and
(Ψ,K). The results are presented in figs. 11, 12, 13, 14
and 15.

As will be discussed below (subsubsect. 5.6.6), the
choice of the initial conditions can have a crucial impact
on the existence of shear bands. A complete investigation
of the model would therefore require a very thorough ex-
ploration not only of the parameters (Ψ , K, a, b, Γ̇ ) but
also of the shape and amplitude of the initial strain profile.
In order to favour the appearance of shear bands without
needing to refine the exploration of various strain profiles,
we selected a very large amplitude ε = 500% for the shape
mentioned in eq. (64). This applies to figs. 11-15.

5.6.1 (K, Ψ) plane

In the (K, Ψ) plane, bands are predicted by the local model
for large values of Ψ and K. Note that in the figure, zones
where no bands can appear are denoted by blue triangles.
Small values of Ψ correspond to a situation where the
relaxation time ηs

G in the absence of plasticity is far smaller
than the relaxation time τ corresponding to the plasticity.
It is thus a regime dominated by the fluid viscosity, where
the creep plays no role. As Ψ increases, the creep becomes
dominant, and shear bands can appear for lower values of
the threshold (K) (fig. 11).

As expected, the shear bands observed in the simu-
lations appear only in regions authorized by the scalar
model.

The green dots correspond to values for which the
scalar model allows the presence of shear bands, which
are not observed in the simulations for a specific set of
initial conditions. As will be commented on further, the
extent of this green zone depends on these initial condi-
tions, demonstrating one of the main points of this work.
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Fig. 11. (Colour on-line) Comparison of 0D and 1D simu-
lations in plane (K, Ψ), using a = b = 1/7 and Γ̇ = 0.05.
Blue triangles indicate values for which the 0D model allows
only uniform flow. Red squares indicate values for which shear-
banding was obtained in the 1D simulation for the initial con-
ditions chosen. Green disks indicate additional values for which
the 0D model allows shear-banding.
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Fig. 12. (Colour on-line) Comparison of 0D and 1D simu-
lations in plane (Γ̇ , K), using a = b = 1/7 and Ψ = 0.1.
Blue triangles indicate values for which the 0D model allows
only uniform flow. Red squares indicate values for which shear-
banding was obtained in the 1D simulation for the initial con-
ditions chosen. Green disks indicate additional values for which
the 0D model allows shear-banding.

5.6.2 (K, Γ̇ ) plane

In the (K, Γ̇ ) plane, bands should be predicted for small
values of Γ̇ (due to the small velocities which explore re-
gions of the flow curve close to the origin in Γ̇ ), and for
large values of K. Indeed, in that case the static threshold
is large which favours bands since they are possible below
this threshold (fig. 12).

Concerning the relation between the values predicted
for shear bands in the 0D model and the observations
in the 1D simulations, the same remarks hold as for the
previous paragraph.

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1
Γ̇

Ψ
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Fig. 13. (Colour on-line) Comparison of 0D and 1D simula-
tions in plane (Γ̇ , Ψ), using a = b = 1/7 and K = 1.0. Blue tri-
angles indicate values for which the 0D model allows only uni-
form flow. Red squares indicate values for which shear-banding
was obtained in the 1D simulation for the initial conditions
chosen. Green disks indicate additional values for which the
0D model allows shear-banding.
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Fig. 14. (Colour on-line) Comparison of 0D and 1D simula-
tions in plane (K, a), using b = 1 − a, Γ̇ = 0.05 and Ψ = 0.1.
Blue triangles indicate values for which the 0D model allows
only uniform flow. Red squares indicate values for which shear-
banding was obtained in the 1D simulation for the initial con-
ditions chosen. Green disks indicate additional values for which
the 0D model allows shear-banding.

5.6.3 (Ψ, Γ̇ ) plane

Observations in this plane corroborate the analysis in the
two previous planes: bands are allowed (and are observed)
for low Γ̇ values and high Ψ values (fig. 13).

5.6.4 (K, a) plane

Again, bands appear for large values of K. The influence of
the a parameter is far more subtle to assess, being related
to non-trivial tensorial effects of the elastic (a) and plastic
(b taken as 1 − a here) terms.

The same remarks hold concerning the correlation be-
tween the 0D model and 1D simulations.
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Fig. 15. (Colour on-line) Comparison of 0D (top) and 1D (bot-
tom) simulations in plane (a, b), using Γ̇ = 0.05 and Ψ = 0.1.
Following the indications of fig. 14 we chose K = 0.3 for 0D
simulations and K = 0.8 for 1D simulations. The second diago-
nals (b = 1− a) in the present diagrams correspond to vertical
lines in fig. 14. Blue triangles indicate values for which the 0D
model allows only uniform flow. Red squares indicate values
for which shear-banding was obtained in the 1D simulation for
the initial conditions chosen. Green disks indicate additional
values for which the 0D model allows shear-banding.

5.6.5 (a, b) plane

Finally, in the (a, b) plane, one is again confronted with
3D effects which are difficult to discuss in intuitive terms
(fig. 15). The way the elasticity (parameter a) and the
plastic deformation rate (parameter b) are coupled in a
tensorial way affects the critical rate γ̇c and can be enough
to eliminate all possibilities of shear bands.

5.6.6 Dependence on the initial conditions

We have always observed that the regions in which blocked
bands actually appeared in the 1D simulations are strictly
included, as expected, in the regions allowed by the local
rheological model.

However, the respective boundaries of these regions do
not coincide. In fact, for the same values of the parame-
ters, the extent of the banding zone depends crucially on
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Fig. 16. (Colour on-line) Initial conditions dependency in the
(Γ̇ ,K) plane, using a = b = 1/7 and Ψ = 0.1. In the upper
graph we considered sigmoidal initial conditions, and in the
lower graph step-like ones. In both cases, the amplitude of
the strain inhomogeneities was reduced to 10% in amplitude,
whereas fig. 12 corresponded to 500% to enhance the effect.

the initial conditions, while always remaining in the re-
gion allowed by the rheological model. In other words, the
behaviour of the system is history dependent, a feature
realized independently in a recent work on a related ten-
sorial model with plasticity [58].

To illustrate that, we have varied both the form and
the amplitude of the spatial modulation of the initial de-
formation. In figs. 11-15, the initial profile was given by
the non-linear form of eq. (64) with ε = 500%. By con-
trast, in fig. 16, for the upper graph we chose a simple,
sigmoidal profile centred around a selected altitude y0,

Bxx = 1 + ε yβ yβ
0 + 1

yβ
0 + yβ

, (65)

and for the lower graph we chose a step-like function, both
with ε = 10%. Comparing figs. 12 and 16 shows that the
parameter domain where shear bands actually appear can
depend in a non-trivial manner not only on the shape but
also on the amplitude of the initial strain profile.
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Actually, we expect that a thorough exploration of the
region where shear bands are allowed could be achieved
through a very fine adjustment of the initial condition
profile for each set of parameters.

6 Conclusion

The present study on shear bands in liquid foams was con-
ducted on a rheological model [34] whose predictions we
here compare to existing rheological measurements under
large amplitude oscillations (see subsect. 4.3).

The shear bands obtained with the model in parallel
Couette geometry display several somewhat unusual fea-
tures.

1. The shear bands depend on the initial conditions. More
generally, the stationary state is history dependent:
only the flowing regions coincide with the simple linear
velocity profile obtained in the case of a stationary
homogeneous flow.

2. The response of the model in a stationary, homoge-
neous flow is continuous when approaching zero shear
rate, with no forbidden region below some finite shear
rate.

3. The model does not contain any non-conserved (struc-
tural) order parameter.

This study thus shows that shear bands can arise nat-
urally in a fully tensorial rheological model. This departs
from most works in the shear-banding community which
put less emphasis on the tensorial character of the various
models. Here, the appearance and persistence of the bands
result from the combination of the initial conditions and
the difference between the static and the dynamic flow
thresholds (in shear geometry), which itself arises from the
tensorial character of the model. The shear rate is discon-
tinuous at the boundary between the flowing and blocked
regions, but the value of the shear rate near the boundary
as well as the band widths depend on the sample history
and preparation.

We warmly thank Florence Rouyer and her co-authors for pro-
viding the raw data from the large amplitude oscillatory ex-
periments of ref. [38] discussed in subsect. 4.3.

Appendix A. Direct method for obtaining the
stationary state in the local rheological model

Let us start from the point (βy
1 , βy

2 ) and follow the plastic-
ity threshold Wy(B) = 0 until the stationarity condition
is fulfilled. This condition can be expressed using the fol-
lowing observation: in the stationary regime, there is no
plastic flow in the vorticity direction [34]. In other words,
the third eigenvalue of tensor G(B) is zero

g3(β1, β2) = G3(β1, β2, β3) = 0, (A.1)

with β3 = 1
β1β2

. We thus directly obtain the dynamic
threshold (βd

1 , βd
2 ) of the system. We then follow the same

stationarity condition g3(β1, β2) = 0 until we reach the
desired shear stress σ12 = σy. We thus directly obtain the
stationary state (βcc

1 , βcc
2 ) that corresponds to the critical

shear rate γ̇c. In practice, we follow the threshold curve
using Ŵy(β1, β2) = Wy(β1, β2, β3) = 0 (with β3 = 1

β1β2
)

by integrating the following differential system:

εWy

dβ1

dt
=

∂Ŵy

∂β2
=

∂Wy

∂β2
− 1

β1β2
2

∂Wy

∂β3
, (A.2)

−εWy

dβ2

dt
=

∂Ŵy

∂β1
=

∂Wy

∂β1
− 1

β2
1β2

∂Wy

∂β3
, (A.3)

where the sign of εWy
= ±1 is chosen in such a way

as to follow the curve Wy in the desired direction. Simi-
larly, we follow the curve of stationary states, g3(β1, β2) =
G3(β1, β2, β3) = 0 by integrating the following differential
system:

εg3

dβ1

dt
=

∂g3

∂β2
=

∂G3

∂β2
− 1

β1β2
2

∂G3

∂β3
, (A.4)

−εg3

dβ2

dt
=

∂g3

∂β1
=

∂G3

∂β1
− 1

β2
1β2

∂G3

∂β3
, (A.5)

where the sign of εg3 = ±1 is chosen in such a way as to
follow the curve g3 = 0 in the desired direction.
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