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SUMMARY

The aim of this paper is to model and simulate the displacement of radioactive elements in a saturated
heterogeneous porous medium. New schemes are proposed to solve accurately the convection–di�usion–
reaction equations including nonlinear terms in the time derivative. Numerical tests show the stability
and robustness of these schemes through strong heterogeneities of the medium. Finally the COUPLEX 1
benchmark concerning the far �eld simulation of a polluted �ow by a leak of a nuclear waste disposal
is performed and compared with the results available in the literature. Copyright ? 2005 John Wiley
& Sons, Ltd.

KEY WORDS: convection–di�usion–reaction operators; Darcy’s law; adsorption; heterogeneous porous
medium; radionuclide; �ux limiting scheme

1. INTRODUCTION

Human activities use the radioactivity in several �elds, for instance the production of elec-
tricity or medicine. The main attraction of this process is the possibility to produce a large
amount of energy. Nevertheless, in all the physical applications of the nuclear �ssion, the
disintegration of a radionuclide always produces other elements, generally radioactive too.
These products are useless, but are still dangerous for years. Since they cannot be totally
destroyed, the only way to avoid a contamination is to stock these nuclear wastes into some
containers that are buried underground. Many studies deal with the safety of this kind of
repositories in order to prevent the pollution of the ground by an eventual leak of the con-
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1054 C.-H. BRUNEAU, F. MARPEAU AND M. SAAD

tainers (for a mathematical point of view, see for e.g. Reference [1]). However, a leak is still
possible.
In this work it is assumed that some radionuclides have escaped from their storage site and

have started to contaminate the ground. At the usual depth the nuclear wastes are stocked, the
ground is a water-saturated porous medium where the contaminants can be carried on by the
�ow. The main question is to know whether the radioactive pollution can reach the surface
and consequently a�ect a population.
According to the slowness of porous media �ows, experiments may be di�cult or impos-

sible. So, the numerical simulation is probably the best way to answer the question (see for
e.g. References [2, 3]). It is now possible to simulate the dispersion of contaminants in large
domains for millions of years. The di�culty is to use an approximation accurate enough to
capture correctly the phenomena for such space and time scales.
The aim of this paper is to propose e�cient schemes and algorithms to solve realistic bench-

marks, in particular the COUPLEX 1 (see Reference [2] or the web page [4]) in a heterogeneous
porous medium. The main result is the construction of a nearly second-order accurate scheme
for the approximation of a convection–di�usion–reaction equation with a nonlinear term in
the time derivative.
Next section is devoted to the modellization using Darcy’s law for the �ow and a sys-

tem of convection–di�usion–reaction equations for the displacement of the radionuclides. The
adsorption of the radio elements on the porous matrix is also taken into account and often
leads to a nonlinear term in the time derivative. This last point is one of the major di�culties
we have to deal with.
In Section 3, we present the whole approximation in two space dimensions with emphasis

to the convection scheme which is studied in details. In addition to the nearly second-order
accuracy, the scheme is proven to be positive and stable even if the medium is heterogeneous.
Beyond these mathematical results, numerical illustrations show at Section 4 that the ap-

proximation is relevant. Indeed it is observed that the schemes are robust enough to represent
correctly the evolution of a contaminant through a discontinuity of the medium.
Finally, the end of the paper is devoted to COUPLEX 1 benchmark concerning a leak of

a nuclear waste repository in a heterogeneous medium constituted of marl, limestone, clay
and dogger rocks. Good results are obtained despite the strong discontinuities between these
various layers.

2. THE MODEL

We consider a water saturated heterogeneous porous medium the porosity of which is denoted
by �.
According to de Marsily [5] and Bear [6], the miscible displacement of a free substratum s

whose concentration in the water is c may be governed by the following convection–di�usion
equation representing mass conservation:

�(X )@tc(t; X ) + div(c(t; X )V (X ))− div(D∇c(t; X ))=0 (1)

where t and X ∈Rd denote, respectively, the time and space variables and V =(Vi)i=1;:::;d is the
�ltration velocity. In this equation, div(c(t; X )V ) represents the convection phenomenon while
div(D∇c(t; X )) stands for the di�usion–dispersion one. The tensor D=dmI + ds is the sum
of the e�ective di�usion taking into account both the molecular di�usion and the tortuosity
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DISPLACEMENT OF RADIONUCLIDES IN A POROUS MEDIUM 1055

dmI with a positive coe�cient and of the mechanical dispersion ds [7–11]. The mechanical
dispersion tensor is de�ned as

ds= |V |(�lE(V ) + �t(I − E(V ))); (E(V ))ij=
ViVj
|V |2

where the nonnegative constants �l and �t denote, respectively, the longitudinal and the
transversal dispersion coe�cients. Thus the di�usion–dispersion tensor D is �nally coercive.
Other forms can be found in Reference [10] or [12].
The heterogeneity of the medium implies that the coe�cients �, dm, �l and �t depend on X

but they are assumed to be constant in time.
The adsorption phenomenon can also be taken into account. We denote by F the adsorbed

phase of the substratum s, and because it only occurs at the solid matrix, its contribution to
the initial equation (1) leads to

�@tc+ (1− �)�s@tF + div(cV )− div(D∇c)=0 (2)

where �s(X ) is the density of the solid phase at location X . As the adsorption phenomenon
is assumed to be instantaneous, F is a mapping of the nonnegative variable c and is called
‘adsorption isotherm’. In Reference [5] the author gives several examples of such isotherm F
which are assumed to be functions of X to represent the heterogeneity of the medium:

Linear isotherm : F(X; c) = �1(X )c

Quadratic isotherm : F(X; c) = �1(X )c − �2(X )c2

Langmuir’s isotherm : F(X; c) =
�1(X )c

1 + �2(X )c
Freundlich’s isotherm : F(X; c) = �1(X )c1=n

Exponential isotherm : c= �1(X )e�2(X )F(X;c)

where n∈N?, �1 and �2 are nonnegative functions.
If the chemical species s is assumed to be radioactive, then it must lose its mass along the

time. The radioactive decay factor of s is denoted by �. As this phenomenon exists in both
the aqueous and the adsorbed phases, the mass conservation equation �nally writes

�(@tc+ �c) + (1− �)�s(@tF(X; c) + �F(X; c)) + div(cV )− div(D∇c)=0
But the disintegration of s may produce other chemical species of lower mass, and these
other chemical species might also be radioactive and produce again and again other ones
until the produced atom nucleus are stable. Thus a contamination by a �nite number m of
radionuclides sk the concentrations of which are ck has to be considered and yields to the
following convection–di�usion–reaction system:

@t(�ck + (1− �)�sFk(X; ck)) + div(ckV )− div(Dk∇ck)

+�k(�ck + (1− �)�sFk(X; ck))−
m∑
l=1
l�=k

�l
Mk

Ml
rkl(�cl + (1− �)�sFl(X; cl))=0
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where Mk is the molar mass of sk , rkl denotes the production rate of sk by sl, and �l=0 if
sl is not radioactive. Note that the adsorption isotherms and the di�usion–dispersion operators
now depend on k. Since a nuclear reaction is irreversible, the m radionuclides can be ordered
such that Rkl=Mk=Mlrkl is a lower triangular matrix with zero value on the main diagonal.
Moreover, the sum of the coe�cients of each row never overtakes 1.
As the contaminant does not change much the characteristics of the �uid, we assume that

both the density � and the viscosity � of the �uid are independent of the concentration vector
and the �ltration velocity V is given by Darcy’s law

V (t; X )= − K(X )
�

(∇p(t; X )− �g) (3)

where p is the pressure, g is the gravity vector, and K ∈Md(R) is the X -dependent perme-
ability tensor. The Darcy law is valid in our case as we consider a porous medium of porosity
smaller than 0:8 with small �ltration velocities. Thus neither Brinkman equation nor Forch-
heimer terms are required [13]. Water being supposed incompressible, the free-divergence
equation div (V )=0 is imposed. In summary we have to solve the following set of equations
for the pressure p, the velocity V and the concentrations vector c=(c1; : : : ; cm)T as unknowns
in an open bounded set (0; T )×�

div
(

−1
�
K(X )(∇p(t; X )− �g)

)
=0 (4)

V (t; X )= − 1
�
K(X )(∇p(t; X )− �g) (5)

@tGk(X; ck(t; X )) + V (t; X )∇ck(t; X )− div(Dk(X; V (t; X ))∇ck(t; X ))

+�kGk(X; ck(t; X ))−
k∑
l=1
�lRklGl(X; cl(t; X ))=fk(t; X ); ∀k=1; : : : ; m (6)

where the Gk are given by

Gk(X; ck(t; X ))=�(X )ck(t; X ) + (1− �(X ))�s(X )Fk(X; ck(t; X ))
and the source terms fk(t; X ) represent an eventual leak from a nuclear waste repository. To
solve this system we need to add initial and boundary conditions that will be given for each
numerical test.

3. APPROXIMATION

3.1. Generalities

In this section a method is described to approximate the system above in a two-dimensional
space domain where the space variable is denoted by X =(x; y). In all this work � is
a rectangular domain (0; L)× (0; l). An accurate �nite volume method is used on a uni-
form Cartesian grid with rectangular cells of size �x×�y. The interval (0; T ) is split
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into subintervals (tn; tn+1) and the time step �tn is de�ned by tn+1− tn and will be denoted by
�t in all the sequel. Furthermore, we write �x=�t=�x, �y=�t=�y, and we set xi=(i− 1

2 )
�x; yj=(j − 1

2 )�y; xi+ 1
2
= i�x, yj+ 1

2
= j�y and

Xi; j=

(
xi

yj

)
; Xi+ 1

2 ; j
=

(
xi+ 1

2

yj

)
; Xi; j+ 1

2
=

⎛
⎝ xi

yj+ 1
2

⎞
⎠ ; Xi+ 1

2 ; j+
1
2
=

⎛
⎝ xi+ 1

2

yj+ 1
2

⎞
⎠

The cells are assumed to be centred in Xi; j. A generic cell is denoted by Qi; j=(xi− 1
2
; xi+ 1

2
)×

(yj− 1
2
; yj+ 1

2
) and �i; j= @Qi; j (Figure 1). For every function � de�ned on (0; T )×�, �ni; j, �ni+ 1

2 ; j
,

�n
i; j+ 1

2
and �n

i+ 1
2 ; j+

1
2
are, respectively, the approximations of �(tn; Xi; j), �(tn; Xi+ 1

2 ; j
), �(tn; Xi; j+ 1

2
)

and �(tn; Xi+ 1
2 ; j+

1
2
) and the sequence (�ni; j)i; j is denoted by �

n.
The approximate pressure (pn)n and velocity (Vn)n are computed by solving, respectively,

Equations (4) and (5) (see Section 3.2 for more details). Then starting from c0 the approximate
concentration vector cn+1 is obtained by the resolution of Equations (6) on the interval (tn; tn+1)
with the given velocity Vn.
For the resolution of the convection–di�usion–reaction equations (6), two main di�culties

arise. On the one hand, the presence of various di�erential operators makes our way towards
the operator splitting technique so as to treat separately the convection and the di�usion–
reaction terms as

@tGk(X; ck) + V ∇ck = 0 (7)

@tGk(X; ck)− div(Dk∇ck) + �kGk(X; ck)−
k∑
l=1
�lRklGl(X; cl) = fk (8)

If ck;n is the approximation of ck(tn; :), a �rst way to construct a splitting scheme for (7) and
(8) would be to use the recurrent sequence

ck;n+1 =S2(�t;S1(�t; ck;n)) (9)

where S1 and S2 are, respectively, approximation schemes for (7) and (8).
In the linear case it is proven in Reference [14] that such a way of splitting leads to a

too large numerical error so that for every schemes S1 and S2, the resulting scheme S2 ◦S1

becomes automatically a �rst-order accurate scheme in time. So the Strang splitting method
of References [14, 15] is more appropriate. It is de�ned by

ck;n+1 =S1

(
�t
2
;S2

(
�t;S1

(
�t
2
; ck;n

)))
(10)

XXi ij +1/2,j

Xi+1/2,j+1/2

Qi,j

X +1/2ji,

Q
i,j

Γ

Γi, j +1/2

i +1/2,j

Figure 1. The cell Qi; j.
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and then in the linear case the additional error from this splitting technique to each scheme
is only O(�t2). We use it by extension even if Gk is nonlinear.
On the other hand, we have to deal with the strong spatial heterogeneities of the porous

medium modelling the ground. This will be discussed in Section 5 where a realistic test case
is performed.
The main result of this work is presented in Section 3.3.2 where we adapt the numerical

study of the hyperbolic systems of conservation laws summed up in Reference [16] to the
nonlinear Gk case. Starting from a two-dimensional limitation technique [10, 17] for transport
equations such that divV =0, we build a nearly second-order accurate scheme approximat-
ing (7).

3.2. Approximation of the pressure and the �ltration velocity

Darcy equation (4) at time tn is solved in a classical way by a second-order �nite volumes
scheme on the cell Qi; j. Hence the Stokes formula leads to

−
∫
�
i+ 12 ; j

K(X )@xp(tn; X ) dy +
∫
�
i− 1

2 ; j

K(X )@xp(tn; X ) dy

−
∫
�
i; j+ 12

K(X )(@yp(tn; X ) + �g) dx +
∫
�
i; j− 1

2

K(X )(@yp(tn; X ) + �g) dx=0

where K(X )= (1=�)K(X ). Then, the values of K on the interfaces are evaluated with an
harmonic average

1
Ki+ 1

2 ; j
=
1
2

(
1

Ki; j
+

1
Ki+1; j

)
and

1
Ki; j+ 1

2

=
1
2

(
1

Ki; j
+

1
Ki; j+1

)

Then the space derivatives of the pressure are approximated by the centred second-order
di�erences scheme, so that the corresponding scheme to compute the pressure reads as follows:

�y
�x
(Ki+ 1

2 ; j
(pni; j − pni+1; j) +Ki− 1

2 ; j
(pni; j − pni−1; j)) +

�x
�y

(Ki; j+ 1
2
(pni; j − pni; j+1)

+Ki; j− 1
2
(pni; j − pni; j−1)) +�x�g(Ki; j− 1

2
− Ki; j+ 1

2
)=0 (11)

The whole approximation yields a linear system Apn=Ln, where Ln contains the Dirichlet or
Neumann boundary conditions. The matrix A is a strongly dominant �ve diagonals matrix.
The inversion of this system is carried out by the conjugated bi-gradient method, which needs
to be preconditioned for a realistic heterogeneous porous medium (see Section 5).
The velocity V =(u; v) is �nally computed on the interfaces thanks to Equation (3) with

the second-order centred scheme

uni+ 1
2 ; j
= − Ki+ 1

2 ; j

pni+1; j − pni; j
�x

; vni; j+ 1
2
= − Ki; j+ 1

2

(pni; j+1 − pni; j
�y

+ �g
)
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Note that

1
�x
(uni+ 1

2 ; j
− uni− 1

2 ; j
) +

1
�y

(vni; j+ 1
2
− vni; j− 1

2
)= 0

3.3. Approximation of the convection equation (7)

Let be

G:
�×R −→ R

(X;C) �→ G(X;C)

a function such that

• ∀X ∈�; G(X; 0)=0,
• ∀X ∈�; C �→G(X;C) is a continuous increasing bijective mapping.

We want to approximate the equation

@tG(X;C(t; X )) + V (X ) · ∇C(t; X )=0 (12)

For a porous medium modellization, such a mapping G represents

G(X;C)=�(X )C + (1− �(X ))�s(X )F(X;C) (13)

where C is a concentration and F is an usual adsorption isotherm. In the sequel G−1(X;C)
denotes the unique real number such that G(X;G−1(X;C))=C.
Assuming C is constant on every cell Qij, we build a scheme of the form

G(Xi; j; Cn+1i; j )=G(Xi; j; C
n
i; j)−�tL(X;Cn)

where L is a mapping. Since G is bijective on R, such a scheme is always well de�ned.
Then, Cn+1i; j is obtained by inverting G(Xi; j; Cn+1i; j ). It remains to require these numerical solu-
tions verify some physical properties such as positivity and boundedness. Note that without
positivity the isotherm functions lose their meaning.

3.3.1. Classical �rst-order accurate schemes. The Upwind-like scheme: For any real z, we set

z+ =
|z|+ z
2

and z−=
|z| − z
2

so that z+¿0, z−¿0 and z= z+ − z−. The classical upwind scheme can easily be extended
to the nonlinear case. Equation (12) is discretized as follows:

G(Xi; j; Cn+1i; j )=G(Xi; j; C
n
i; j)−�xu+i; j�Cni− 1

2 ; j
+�xu−

i; j�C
n
i+ 1

2 ; j
− �yv+i; j�Cni; j− 1

2
+ �yv−i; j�C

n
i; j+ 1

2

where �Cn
i+ 1

2 ; j
=Cni+1; j − Cni; j, �C

n
i; j+ 1

2
=Cni; j+1 − Cni; j. According to Proposition 3 in

Appendix A, the scheme is l∞-stable and positive under the CFL condition

max
i; j

(
�x|ui; j|+ �y|vi; j|

	i; j(G)

)
61
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where

	i; j(G)= min

⎛
⎝ inf

z1 ; z2∈R+
z1 �=z2

(
G(Xi; j; z1)−G(Xi; j; z2)

z1 − z2

)
; inf
z1 ; z2∈R−
z1 �=z2

(
G(Xi; j; z1)−G(Xi; j; z2)

z1 − z2

)⎞⎠ (14)

The linearized-transport-projection scheme: This �rst-order scheme built in this work is based
on the Murman �nite volume technique (see Appendix B). Assuming that C �→G(X;C) is
di�erentiable, the quantity 1=@CG(X;C) is denoted by H (X;C), and sometimes, when it is not
ambiguous, by H (C). Then the scheme reads

G(Xi; j; Cn+1i; j ) =G
1;n
i; j =G(Xi; j; C

n
i; j)

−�x
(
1− �y

2
(v+
i; j+ 1

2
Hn
i; j+ 1

2
+ v−

i; j− 1
2
Hn
i; j− 1

2
)
)
(u+
i− 1

2 ; j
�Cni− 1

2 ; j
− u−

i+ 1
2 ; j
�Cni+ 1

2 ; j
)

−�y
(
1− �x

2
(u+
i+ 1

2 ; j
H n
i+ 1

2 ; j
+ u−

i− 1
2 ; j
H n
i− 1

2 ; j
)
)
(v+
i; j− 1

2
�Cni; j− 1

2
− v−

i; j+ 1
2
�Cni; j+ 1

2
)

−�x�y
2
(u−
i+ 1

2 ; j
H n
i+ 1

2 ; j
(v+
i+1; j− 1

2
�Ci+1; j− 1

2
− v−

i+1; j+ 1
2
�Ci+1; j+ 1

2
)

+u+
i− 1

2 ; j
H n
i− 1

2 ; j
(v+
i−1; j− 1

2
�Ci−1; j− 1

2
− v−

i−1; j+ 1
2
�Ci−1; j+ 1

2
)

+v+
i; j− 1

2
Hn
i; j− 1

2
(u+
i− 1

2 ; j−1
�Cni− 1

2 ; j−1 − u−
i+ 1

2 ; j−1
�Cni+ 1

2 ; j−1)

+v−
i; j+ 1

2
Hn
i; j+ 1

2
(u+
i− 1

2 ; j+1
�Cni− 1

2 ; j+1
− u−

i+ 1
2 ; j+1

�Cni+ 1
2 ; j+1

)) (15)

Proposition 1
Under the CFL conditions

�y
2
(v+
i; j+ 1

2
Hi; j+ 1

2
+ v−

i; j− 1
2
Hi; j− 1

2
+Hi± 1

2 ; j
(v−
i±1; j+ 1

2
+ v+

i±1; j− 1
2
))6 1

�x
2
(u+
i+ 1

2 ; j
Hi+ 1

2 ; j
+ u−

i− 1
2 ; j
Hi− 1

2 ; j
+Hi; j± 1

2
(u−
i+ 1

2 ; j±1
+ u+

i− 1
2 ; j±1

))6 1

�x(u−
i+ 1

2 ; j
+ u+

i− 1
2 ; j
)
(
1− �y

2
(v+
i; j+ 1

2
Hi; j+ 1

2
+ v−

i; j− 1
2
Hi; j− 1

2
)
)

+�y(v−i; j+ 1
2
+ v+

i; j− 1
2
)
(
1− �x

2
(u+
i+ 1

2 ; j
Hi+ 1

2 ; j
+ u−

i− 1
2 ; j
Hi− 1

2 ; j
)
)
6	i; j(G)

the linearized-transport-projection scheme (15) is both l∞-stable and positive.

This result comes directly from Proposition 3.
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3.3.2. A nearly second-order accurate limited scheme. Our main result is presented here.
Using the Lax–Wendro� technique, the aim of this paragraph is to adapt the method of
References [10, 17] for a nonlinear G to construct a second-order accurate scheme. Starting
from Taylor formula for G where time derivatives are replaced by space derivatives thanks
to Equation (B1) in Appendix B we get

G(X;C(tn+1; X ))=G(X;C(tn; X ))−�t V · ∇C + �t
2

2
div(H (X;C)div(CV )V ) + O(�t3)

Integrating the result on the cell Qi; j yields

∫
Qij
G(X;C(tn+1; X )) =

∫
Qij
G(X;C(tn; X ))−�t

∫
Qij
V · ∇C

+
�t2

2

∫
�ij
H (X;C)

(
u2 uv

uv v2

)
∇C · n d
+

∫
Qi; j

O(�t3)

Finally, the spatial derivatives are approximated as in Reference [10] by centred �nite di�er-
ences schemes, taking into account the direction of the �ow (remember H is always positive):

∫
Qij
u@xC dx dy≈ �y

2
(ui+ 1

2 ; j
�Ci+ 1

2 ; j
+ ui− 1

2 ; j
�Ci− 1

2 ; j
)

∫
Qij
v@yC dx dy≈ �x

2
(vi; j+ 1

2
�Ci; j+ 1

2
+ vi; j− 1

2
�Ci; j− 1

2
)

∫
�
i+ 12 ; j

H (C)u2@xC dy≈ �y
�x
Hi+ 1

2 ; j
u2i+ 1

2 ; j
�Ci+ 1

2 ; j

∫
�
i+ 12 ; j

H (C)uv@yC dy≈ Lni+ 1
2 ; j

∫
�
i; j+ 12

H (C)v2@yC dx≈ �x
�y

Hi; j+ 1
2
v2i; j+ 1

2
�Ci; j+ 1

2

∫
�
i; j+ 12

H (C)uv@xC dx≈ Lni; j+ 1
2

where

Lni+ 1
2 ; j
=�yHn

i+ 1
2 ; j

ui+ 1
2 ; j

2

{
vi; j+ 1

2
�Ci; j+ 1

2
+ vi; j− 1

2
�Ci; j− 1

2
if ui+ 1

2 ; j
¿0

vi+1; j+ 1
2
�Ci+1; j+ 1

2
+ vi+1; j− 1

2
�Ci+1; j− 1

2
if ui+ 1

2 ; j
¡0

Lni; j+ 1
2
=�xHn

i; j+ 1
2

vi; j+ 1
2

2

{
ui+ 1

2 ; j
�Ci+ 1

2 ; j
+ ui− 1

2 ; j
�Ci− 1

2 ; j
if vi; j+ 1

2
¿0

ui+ 1
2 ; j+1

�Ci+ 1
2 ; j+1

+ ui− 1
2 ; j+1

�Ci− 1
2 ; j+1

if vi; j+ 1
2
¡0
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The same argument on the other edges of Qi; j leads to the second-order accurate
Lax–Wendro�-like scheme

G(Xi; j; Cn+1i; j ) =G(Xi; j; C
n
i; j)− �x

2
(ui+ 1

2 ; j
�Ci+ 1

2 ; j
+ ui− 1

2 ; j
�Ci− 1

2 ; j
)

−�y
2
(vi; j+ 1

2
�Ci; j+ 1

2
+ ui− 1

2 ; j
�Ci; j− 1

2
)

+
�2x
2
(Hn

i+ 1
2 ; j
u2i+ 1

2 ; j
�Ci+ 1

2 ; j
−Hn

i− 1
2 ; j
u2i− 1

2 ; j
�Ci− 1

2 ; j
)

+
�2y
2
(Hn

i; j+ 1
2
v2i; j+ 1

2
�Ci; j+ 1

2
−Hn

i; j− 1
2
v2i; j− 1

2
�Ci; j− 1

2
)

+
�x�y
2
(Lni+ 1

2 ; j
− Lni− 1

2 ; j
) +

�x�y
2
(Lni; j+ 1

2
− Lni; j− 1

2
) (16)

We make this scheme l∞-stable and positive thanks to Proposition 3 with usual 2D �ux-
limitation arguments. We refer the reader to References [18, 19]. We construct a limited
scheme which is second-order accurate assuming divV =0 (see Appendix C for more details).
Let ’ be a positive function such that

’(x)

{
=0 if x60

6min(M;Mx) if x¿0
(17)

where M62. Introducing the following notations:

rn−
i− 1

2 ; j
=
u−
i+ 1

2 ; j
�Cn

i+ 1
2 ; j

u−
i− 1

2 ; j
�Cn

i− 1
2 ; j

; rn+
i+ 1

2 ; j
=
u+
i− 1

2 ; j
�Cn

i− 1
2 ; j

u+
i+ 1

2 ; j
�Cn

i+ 1
2 ; j

rn−
i; j− 1

2
=
v−
i; j+ 1

2
�Cn

i; j+ 1
2

v−
i; j− 1

2
�Cn

i; j− 1
2

; rn+
i; j+ 1

2
=
v+
i; j− 1

2
�Cn

i; j− 1
2

v+
i; j+ 1

2
�Cn

i; j+ 1
2

’ni+ 1
2 ; j
=

⎧⎨
⎩
’(rn−

i+ 1
2 ; j
) if ui+ 1

2 ; j
60

’(rn+
i+ 1

2 ; j
) if ui+ 1

2 ; j
¿0

; ’ni; j+ 1
2
=

⎧⎨
⎩
’(rn−

i; j+ 1
2
) if vi; j+ 1

2
60

’(rn+
i; j+ 1

2
) if vi; j+ 1

2
¿0

and

�i; j=1− �y
2
(v+
i; j+ 1

2
Hn
i; j+ 1

2
+ v−

i; j− 1
2
Hn
i; j− 1

2
); �i; j=1− �x

2
(u+
i+ 1

2 ; j
H n
i+ 1

2 ; j
+ u−

i− 1
2 ; j
H n
i− 1

2 ; j
) (18)

�̃i+ 1
2 ; j
=max(�x|ui+ 1

2 ; j
|; �y(v+i+1; j− 1

2
+ v−

i+1; j+ 1
2
); �y(v+i−1; j− 1

2
+ v−

i−1; j+ 1
2
))

�̃i; j+ 1
2
=max(�y|vi; j+ 1

2
|; �x(u−

i+ 1
2 ; j+1

+ u+
i− 1

2 ; j+1
); �x(u+i− 1

2 ; j−1
+ u−

i+ 1
2 ; j−1

))
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we get the following nearly second-order limited scheme that is written down as an extension
of the previous �rst-order scheme:

G(Xi; j; Cn+1i; j )

=G1;ni; j − �x
2
(|ui+ 1

2 ; j
|(�i; j − �̃i+ 1

2 ; j
)’ni+ 1

2 ; j
�Cni+ 1

2 ; j
− |ui− 1

2 ; j
|(�i; j − �̃i− 1

2 ; j
)’ni− 1

2 ; j
�Cni− 1

2 ; j
)

−�y
2
(|vi; j+ 1

2
|(�i; j − �̃i; j+ 1

2
)’ni; j+ 1

2
�Cni; j+ 1

2
− |vi; j− 1

2
|(�i; j − �̃i; j+ 1

2
)’ni; j− 1

2
�Cni; j− 1

2
)

+
�x�y
4
(Hn

i+ 1
2 ; j
u−
i+ 1

2 ; j
(|vi+1; j− 1

2
|’ni+1; j− 1

2
�Cni+1; j− 1

2
− |vi+1; j+ 1

2
|’ni+1; j+ 1

2
�Cni+1; j+ 1

2
)

+Hn
i− 1

2 ; j
u+
i− 1

2 ; j
(|vi−1; j− 1

2
|’ni−1; j− 1

2
�Cni−1; j− 1

2
− |vi−1; j+ 1

2
|’ni−1; j+ 1

2
�Cni−1; j+ 1

2
)

+Hn
i; j+ 1

2
v−
i; j+ 1

2
(|ui− 1

2 ; j+1
|’ni− 1

2 ; j+1
�Cni− 1

2 ; j+1
− |ui+ 1

2 ; j+1
|’ni+ 1

2 ; j+1
�Cni+ 1

2 ; j+1
)

+Hn
i; j− 1

2
v+
i; j− 1

2
(|ui− 1

2 ; j−1|’
n
i− 1

2 ; j−1�C
n
i− 1

2 ; j−1 − |ui+ 1
2 ; j−1|’

n
i+ 1

2 ; j−1�C
n
i+ 1

2 ; j−1)) (19)

Proposition 2
Under the following CFL conditions:

�t
(

1
2�y

(v+
i; j+ 1

2
Hn
i; j+ 1

2
+ v−

i; j− 1
2
Hn
i; j− 1

2
)

+max
(
1
�x

|ui± 1
2 ; j

|Hn
i± 1

2 ; j
;
1
�y

(v+
i+1; j− 1

2
+v−

i+1; j+ 1
2
);

1
�y

(v+
i−1; j− 1

2
+v−

i−1; j+ 1
2
)
))

61

(20)

�t
(
1
2�x

(u+
i+ 1

2 ; j
H n
i+ 1

2 ; j
+ u−

i− 1
2 ; j
H n
i− 1

2 ; j
)

+max
(
1
�y

|vi; j± 1
2
|Hn
i; j± 1

2
;
1
�x
(u−
i+ 1

2 ; j+1
+u+

i− 1
2 ; j+1

);
1
�x
(u+
i− 1

2 ; j−1
+u−

i+ 1
2 ; j−1

)
))

61

(21)

1
	i; j(G)

(�xu−
i+ 1

2 ; j
(2�i; j − �̃i− 1

2 ; j
H n
i− 1

2 ; j
) + �xu+i− 1

2 ; j
(2�i; j − �̃i+ 1

2 ; j
H n
i+ 1

2 ; j
)

+�yv−i; j+ 1
2
(2�i; j − �̃i; j− 1

2 ; j
H n
i; j− 1

2 ; j
) + �yv+i; j− 1

2
(2�i; j − �̃i; j+ 1

2 ; j
H n
i; j+ 1

2 ; j
))61 (22)

the nearly second-order scheme (19) is l∞-stable and positive.
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The proof of this proposition is detailed in Appendix C. In the same way it is possible to
improve the order of the scheme, for instance to third-order following Reference [17] but the
present scheme is much easier to implement and gives satisfactory results on the classical test
cases. Usual �ux limiters are recalled

Roe’s limiters : ’(r)= max(0;min(	r; 1);min(	; r)) where 16	62

For 	=1, such a ’ is called the Minmod limiter. For 	=2, it corresponds to the Superbee
limiter

Van Leer’s limiter : ’(r)=

⎧⎪⎨
⎪⎩
0 if r60

2r
1 + r

if r¿0

3.4. Approximation of the reaction–di�usion equation (8)

Let S be a radionuclide of concentration C generated by a �nite number k of other elements
that are called sl; l=1; : : : ; k, the concentrations of which are denoted, respectively, by cl.
The following reaction–di�usion equation on the unknown C is considered

@tG(X;C)− div(D(X; V (X ))∇C) + �G(X;C)−
k∑
l=1
�lRlGl(X; cl)=f(t; X )

Note that if C denotes the concentration of a specie sk in Equation (6), then the coe�cient Rl
stands for the real number Rkl, while f and � are related to fk and �k . Concentration C is
assumed known at time tn.
First, the time derivative term @tG(X;C) is approximated at �rst-order by Euler scheme

@tG(X;C)≈ G(X;C
n+1)−G(X;Cn)
�t

Next, to avoid a too restrictive CFL condition, the di�usion operator div(D∇C) is treated
implicitly, as well as the other terms. Note in addition that since the matrix R is lower
triangular with zero value on the main diagonal, Equations (6) can be solved sequentially
from the �rst one, so that

∑k
l=1 �

lRlGl(X; cl) is known at time tn+1 and thus can be treated
implicitly without any di�culty. The equation

G(X;C(tn+1; X ))−G(X;C(tn; X )n)
�t

− div(D(X; V (X ))∇C(tn+1; X ))

+�G(X;C(tn+1; X ))−
k∑
l=1
�lRlGl(X; cl(tn+1; X ))=f(tn+1; X )

is integrated on the cell Qi; j. The velocities components ui± 1
2 ; j
and vi;± 1

2
are given and

the scheme developed in Reference [10] yields using the Stokes formula as the tensor D
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is symmetric∫
Qi; j
div(D∇C) =

∫
�
i+ 12 ; j

(D11@xC +D12@yC) dy −
∫
�
i− 1

2 ; j

(D11@xC +D12@yC) dy

+
∫
�
i; j+ 12

(D12@xC +D22@yC) dx −
∫
�
i; j− 1

2

(D12@xC +D22@yC) dx

where @xC= @xC(tn+1; X ) and @yC= @yC(tn+1; X ). The space derivatives are then approxi-
mated by the second-order accurate centred �nite di�erences scheme as∫

�
i+ 12 ; j

D11@xC dy≈ �y
�x
D11i+ 1

2 ; j
(Cn+1i+1; j − Cn+1i; j )

∫
�
i+ 12 ; j

D12@yC dy≈ 1
2 D

12
i+ 1

2 ; j+
1
2
(Cn+1

i+ 1
2 ; j+1

− Cn+1
i+ 1

2 ; j
) + 1

2D
12
i+ 1

2 ; j− 1
2
(Cn+1

i+ 1
2 ; j

− Cn+1
i+ 1

2 ; j−1
)

∫
�
i; j+ 12

D12@xC dx≈ 1
2 D

12
i+ 1

2 ; j+
1
2
(Cn+1

i+1; j+ 1
2
− Cn+1

i; j+ 1
2
) + 1

2 D
12
i− 1

2 ; j+
1
2
(Cn+1

i; j+ 1
2
− Cn+1

i−1; j+ 1
2
)

∫
�
i; j+ 12

D22@yC dx≈ �x
�y

D22i; j+ 1
2
(Cn+1i; j+1 − Cn+1i; j )

where D11i+ 1
2 ; j
, D12i± 1

2 ; j± 1
2
and D22i; j+ 1

2
are the coe�cients of D evaluated using the velocities

ui+ 1
2 ; j
, vi; j+ 1

2
and

ui; j+ 1
2
= 1

4 (ui+ 1
2 ; j
+ ui− 1

2 ; j
+ ui− 1

2 ; j+1
+ ui+ 1

2 ; j+1
)

vi+ 1
2 ; j
= 1

4(vi; j+ 1
2
+ vi; j− 1

2
+ vi+1; j+ 1

2
+ vi+1; j− 1

2
)

ui± 1
2 ; j± 1

2
= 1

2 (ui± 1
2 ; j
+ ui± 1

2 ; j±1)

vi± 1
2 ; j± 1

2
= 1

2 (vi; j± 1
2
+ vi±1; j± 1

2
)

This process is repeated on the other edges of Qi; j giving the scheme:

(1 + ��t)G(Xi; j; Cn+1i; j ) +�tL(C
n+1)

= G(Xi; j; Cni; j) +�t
k∑
l=1
�lRlGl(Xi; j; cl;n+1i; j ) +�tfn+1i; j (23)

where

L(Cn+1) =− 1
�x2

(D11i+ 1
2 ; j
(Cn+1i+1; j − Cn+1i; j )−D11i− 1

2 ; j
(Cn+1i; j − Cn+1i−1; j))

− 1
�y2

(D22i; j+ 1
2
(Cn+1i; j+1 − Cn+1i; j )−D22i; j− 1

2
(Cn+1i; j − Cn+1i; j−1))
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− 1
2�x�y

(D12i+ 1
2 ; j+

1
2
(Cn+1i+1; j+1 − Cn+1i; j )−D12i− 1

2 ; j− 1
2
(Cn+1i; j − Cn+1i−1; j−1))

+
1

2�x�y
(D12i+ 1

2 ; j− 1
2
(Cn+1i+1; j−1 − Cn+1i; j )−D12i− 1

2 ; j+
1
2
(Cn+1i; j − Cn+1i−1; j+1))

This implicit scheme leads to a nonlinear system if G is nonlinear, or to a linear system
otherwise. A Newton method is chosen to inverse this system. The Jacobian matrices are
nine diagonals. Let us note that for realistic coe�cients and realistic velocities of porous
media �ows, the e�ective di�usion often predominates the mechanical dispersion, so that
the coe�cients D11 and D22 are often upper than D12. But this is not enough to prove the
positivity of the scheme. When D12 is constant it is easy to get the positivity and stability of
the scheme but since in general it is not, the space contributions do not lead to a diagonal
dominant matrix. However, thanks to the time term the quantity �=�t can dominate the
extra terms under a CFL condition. For a realistic heterogeneous porous medium �ow the
CFL condition given by the advection term can be used to solve the problem. The conjugate
bi-gradient method converges and the Jacobian matrices are preconditioned to improve the
performance.

4. NUMERICAL TESTS

This section is devoted to show the robustness of the schemes built in the previous section
to solve the convection–di�usion–reaction equation, by means of classical tests cases involv-
ing a constant velocity �eld such that divV =0. Here the geometry is very simple and the
heterogeneities are quite weak, so that these tests do not represent a real porous medium.
Nevertheless they allow to quantify the accuracy of the schemes. A more realistic test case
is proposed in the next section.

4.1. Classical convection in a circular velocity �eld

First, we use the limited scheme of Section 3.3.2 to solve the classical convection equation

@tC + V · ∇C=0

coupled to the usual boundary conditions. Setting �= (0; 1)× (0; 1), the velocity �eld is sup-
posed circular and centred at ( 12 ;

1
2 )

V =(−2
(y − 1
2 ); 2
(x − 1

2 ))

The initial condition for C is given by C=1 in the disk (x−0:25)2 +(y−0:5)260:0036, and
C=0 elsewhere. The CFL number is taken equal to 1 and the mesh is de�ned by the 100× 100
uniform Cartesian grid. The solution of some schemes are plotted at t=1 for which the exact
solution is the same than the initial condition (Figure 2). After these results we decide to use
in the following the second-order Superbee-limited scheme which is the more accurate. Note
that similar results are obtained with a linear adsorption G.
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Figure 2. Concentration contours and cross section along the axis y= 1
2 after one turn for the exact so-

lution (top-left), the upwind-like scheme (top-centre), the transport-projection scheme (15) (top-right),
the present nearly second-order scheme with Minmod (bottom-left), Van Leer (bottom-centre)

and Superbee limiters (bottom-right). Twenty isovalues are plotted between the extrema.
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4.2. Nonlinear convection in a homogeneous porous medium

We test now our scheme for a nonlinear adsorption G on the same domain and mesh. The
porosity, the density of the solid matrix and the velocity are assumed to be constant: �=0:5,
�s=1 and V =(1; 0:7).
The adsorption isotherm is de�ned by the quadratic law

F(X;C)= 1
2 C − 1

4 C
2

and we have to solve the following equation:

@t(�C + (1− �)�s( 12 C − 1
4 C

2)) + V · ∇C=0

The initial condition is given by C=1 in the disk (x − 0:2)2 + (y − 0:2)260:01, and C=0
elsewhere. The results are plotted on Figure 3. We observe clearly the retardation phenomenon
due to the adsorption. The solution presents a shock in front of the contaminant and an
expansion wave behind it. This is an obvious consequence of the concavity of the adsorption
mapping. Let us note that the grid convergence is almost achieved as about the same results
are obtained on a 200× 100 mesh.

4.3. Classical convection in a heterogeneous porous medium

Finally the scheme is tested for a heterogeneous porous medium on the same domain and
mesh. The porosity is assumed to be discontinuous across the line y= − 0:78

0:79 x + 0:78. The
value of the porosity is denoted by �g under this line and by �d above. The equation

�@tC + V · ∇C=0 for V =(0:3; 0:5)

is solved. The initial condition has the value 1 on the square (0:1; 0:3)× (0:1; 0:3) and 0
elsewhere (see Figure 4).
Two sets of porosity are chosen �g=0:6, �d=0:3 and �g=0:3, �d=0:6. The correspond-

ing results are plotted in Figures 5 and 6. A discontinuity of the porosity coe�cient � is
generally di�cult to handle but the results obtained with our scheme are relevant. Indeed
the contaminant crosses properly the discontinuity and a symmetric solution is recovered

Figure 3. Convection in an oblique velocity �eld with a quadratic adsorption. Concentration
contours of the initial condition (left), numerical solution at times t=0:2 (centre) and

t=0:4 (right), using twenty isovalues between 0 and 1.
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φ

φd

g

Figure 4. Geometry and initial condition for the discontinuous porosity convection problem.

Figure 5. Numerical solution with �g=0:6 and �d=0:3 at times t=0:1 (left), t=0:3 (centre) and
t=0:47 (right), using twenty isovalues between 0 and 1.

Figure 6. Numerical solution with �g=0:3 and �d=0:6 at times t=0:06 (left), t=0:15 (centre)
and t=0:6 (right), using twenty isovalues between 0 and 1.

beyond in both cases. This is quite normal because Proposition 2 does not require any
homogeneity of the medium.
In the �rst case the contaminant spreads because the porosity becomes twice smaller and

consequently the e�ective velocity of the contaminant becomes twice faster. On the contrary,
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in the second case the curve is compressed. Nevertheless, in both cases the mass
∫
�G(X;C) dX

remains unchanged along the time.

4.4. Convection–di�usion–reaction in a heterogeneous porous medium with a nonlinear
adsorption

The last test case of this section couples convection, di�usion and reaction phenomena in a
heterogeneous porous medium (Equation (6)) on the same domain and mesh. The medium is
discontinuous on both sides of the line y= x. The region above this line is denoted by �1,
and the region underneath is denoted by �2. The porosity is 0:3 for �1, and 0:2 for �2. The
velocity �eld is de�ned by

V =
(

− 

50

(
y − 1

2

)
;


50

(
x − 1

2

))

The displacement of two chemical species s1 and s2 is studied. The species s1 is assumed
radioactive, with 14 as molar mass. Its decay factor �1 is such that �1 = ln 2=T 1, where the
period T 1 = 15. The species s2 is assumed stable (�2 = 0) with 12 as molar mass, and is
generated by �liation from the element s1 with the rate 90%. The di�usion–dispersion tensor

Dk =dkmI + |V |(�kl E(V ) + �kt (I − E(V ))); (E(V ))ij=
ViVj
|V |2

is independent of k and its values are given in the Table I.
The adsorption isotherm for s1 is linear in �1 as F1(x; c1)= 1

10 c
1; and Langmuir-like in �2

as F1(x; c1)= 1
10 (c

1=1 + c1). The species s2 is assumed unadsorbated (F2(x; c2)=0 in �).
The boundary conditions are Dk∇ck · n− ckV · n=0 everywhere on the boundary. The initial
condition for s1 is c1 = 1 in the disk (x− 0:2)2 + (y− 0:5)2 =0:01 and c1 = 0 elsewhere. The
value c2 at t=0 is zero everywhere (see Figure 7). Obviously the geological coe�cients
presented here are not realistic in comparison with a ground, but nevertheless they allow to
observe that the scheme can take into account all the phenomena described in Section 2.
Solutions at times 2; 5 and 14 are plotted in Figure 8. We can observe that although s2 is not
present at t=0, it is produced by the destruction of s1. Thus by the way of the radioactivity s1

loses its mass along the time whereas s2 increases its one as Figure 9 shows. The di�erent
phenomena are well captured, in particular the species s2 goes faster as there is no delay
due to the adsorption as for the species s1. Moreover, the di�usion of the species is clearly
observed.

Table I. Value of the di�usion and dispersion coe�cients.

dkm �kl �kt

�1 0.00001 0.00005 0.00002
�2 0.000001 0.00001 0.000005
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Figure 7. Geometry for the convection–di�usion–reaction test-case (left), initial
conditions for s1 (centre), and for s2 (right).

Figure 8. Concentration contours c1 (top) and c2 (bottom) for the convec-
tion–di�usion–reaction problem at times t=2 (left), t=5 (centre) and t=14 (right).

Twenty isovalues between 0 and 1 are plotted.

Remark
In this last test case a splitting is needed and we can then compare the two splittings given
in Section 3. An iteration of the Strang splitting scheme (10) is more expansive than one of
the classical splitting scheme (9) but the Strang splitting scheme can be implemented with a
CFL number twice greater than the one of the classical splitting scheme. Finally, it converges
faster in terms of CPU time.
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Figure 9. Mass of s1 (left) and s2 (right) along the time.

5. THE COUPLEX 1 TEST CASE

This section presents the �nal test of this work where the ground is represented by several
geological layers. The additional di�culty in comparison to the previous computations is the
presence of strong heterogeneities that exist in the ground porous matrix. For example, the
permeability of clay rocks can be thousand or million times smaller than limestone ones, and
so the �nite volumes matrix of the scheme (11) can be very ill-conditioned. Moreover, the
e�ective di�usion dm, and the mechanical di�usion �l and �t of the tensor D can also be
thousand times greater from one rock to another. Thus the Jacobian matrices of the scheme
(23) are also often ill-conditioned. So it leads to precondition the matrices and we choose the
incomplete factorization of Gauss.
This benchmark has been proposed in 2001 by the French ANDRA to study the safety of

the nuclear waste repositories in the ground (see References [2, 4]). This test concerns the
displacement in the underground of the Iodine 129I and plutonium 242Pu elements which come
from a leak in a nuclear waste repository that lies into a clay layer. This clay layer is round
o� by a dogger and a limestone layer. The near ground is made of some marl rocks. The
geometry of this test is drawn on Figure 10. The repository R is modelled by the rectangular
uniform injection well

R= {(x; y)∈ [18440; 21680]× [244; 250]}
Note that the width of the domain is quite small in comparison with its length. Furthermore,
the width of the repository (6 m) is also very small compared with the width of the domain
(695 m), and this is a restriction for the uniform mesh we want to use, but such a mesh
is suitable to keep the accuracy of the approximation. Finally, because of the slowness of
the �ow, the time scaling is chosen very long (T =107 years) in comparison with the space
scaling. But the radio-elements leak from the repository over a small period compared with T
(see Figure 11).
As the boundary conditions for pressure and velocity �elds are assumed independent of time,

the �ow is also independent of time. The permeability tensor is the diagonal matrix K =KeI ,
where Ke is called the permeability coe�cient. Setting ke=�gKe=�, the hydrodynamic load
is de�ned by h= p

�g +y, so V = − ke∇h and div(−ke∇h)=0. This equation in the h variable
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Figure 10. Geometry for the COUPLEX 1 test-case.
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Figure 11. Source terms f̃
1
(left) and f̃

2
(right) along the time.

does not lead to an additional di�culty compared to Equation (4) as the following set of
boundary conditions is speci�ed:

h=289 on {25000} × [0; 200]
h=310 on {25000} × [350; 595]
h=180 + 160x=25000 on [0; 25000]× {695}
h=200 on {0} × [295; 595]
h=200 on {0} × [0; 200]
V · n=0 elsewhere

The coe�cient ke is de�ned in Table II.
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Table II. Value of the intrinsic permeabilities.

Marl Limestone Clay Dogger

ke (m=year) 3:1536× 10−5 6.3072 3:1536× 10−6 25.2288

Table III. Value of the di�usion and dispersion coe�cients.

129I 242Pu

d1m (m
2=year) �1l (m) �1t (m) d2m (m

2=year) �2l (m) �2t (m)

Dogger 5× 10−4 50 1 5× 10−4 50 1
Clay 9:48× 10−7 0 0 4:42× 10−4 0 0
Limestone 5× 10−4 50 1 5× 10−4 50 1
Marl 5× 10−4 0 0 5× 10−4 0 0

Figure 12. Hydrodynamic load contours for the COUPLEX 1 test case with
twenty isovalues between 180 and 340.

We are interested by the elements Iodine 129I and plutonium 242Pu that escape from the
repository. In system (6), the iodine is represented by s1 while the plutonium is depicted
by s2. The adsorption is assumed linear and is then modelled by two retardation factors R1

and R2 in the equations

�Rk@tck + V · ∇ck − div(Dk∇ck) + ��kRkck =fk(t; x); k=1; 2

The elements generated from the destruction of iodine and plutonium are not taken into
account. The other data of this benchmark are summarized in the following:

• In the clay layer, �R1 has the value 0:001 for 129I and 0:2× 105 for 242Pu. In the other
layers, �Rk =0:1 for both iodine and plutonium.

• �k = ln 2=T k , Tk being the period of the element sk : T 1 = 1:57× 107 years and
T 2 = 3:76× 105 years.

• For the di�usion–dispersion tensor,

Dk =dkmI + |V |(�kl E(V ) + �kt (I − E(V ))); (E(V ))ij=
ViVj
|V |2

and the X -dependent coe�cients are given in Table III.
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Figure 13. Concentration of 129I from left to right and top to bottom at times 10 110,
50 110, 100 000, 150 000, 200 000, 106, 5× 106 and 107 years. The contour values

are 10−12, 10−10, 10−8, 10−6, 10−4.

• The source terms fk denote the leaked concentrations. They vanish outside the repos-
itory and keep constant 
f

k
inside. Denoting by S the surface of the repository, the

quantities f̃k;q= S 
f
k;q
and the times tq they are related to are given in tabulated form

in a data �le available on site [4]. Their unity is the mol=year and their appearance is
shown on Figure 11.

The initial datum for iodine and plutonium is zero and the boundary conditions are for both

@ck

@n
=0 on {0} × [295:595]

@ck

@n
=0 on {0} × [0:200]

Dk∇ck · n − ckV · n=0 on [0:25000]× {0}
ck =0 elsewhere on the boundary
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Figure 14. Concentration of 242Pu at times 106 years (left), and 5× 106 years (right). The contour
values are 10−12, 10−10, 10−8, 10−6, 10−4.

The hydrodynamic load and concentrations of both radio-elements at time 200; 10110; 50110;
106 and 107 years are expected.
This benchmark has been performed with the 850× 208 uniform Cartesian mesh. The results

are drawn on Figures 12–14. We see in Figure 12 that the hydrodynamic load is directly linked
to the boundary conditions as the �ow goes from right to left in the limestone and dogger,
and the frontiers of clay and marl layers are not permeable. The concentrations of iodine
are plotted on Figure 13. The e�ects of the di�usion can be observed everywhere while the
convection is only important in limestone and dogger layers and generates a displacement
from right to left. The weak retardation phenomenon and the di�usion–dispersion coe�cients
allow the iodine to exit from the clay layer and its radioactivity period cannot avoid it to
move towards the near ground. The concentrations of plutonium are given on Figure 14.
The plutonium is more di�usive than the iodine, but its adsorption by the clay rock is so
strong that with the same velocity �eld, its radioactive decay does not allow it to escape
from the clay layer until its entire destruction. The results above are in very good agreement
with the ones of the literature [2]. This test case highlights the importance of the adsorption
phenomenon in the study of miscible displacements in a saturated porous medium.

6. CONCLUSION

In conclusion a stable and robust second-order scheme is built and tested on various test
cases. Despite the di�culties involved by the simulation of a real porous medium �ow that are
the convection phenomenon, the nonlinearity of the adsorption and the strong heterogeneities
between the di�erent geological layers a ground is composed with, the approximation yields
accurate results. We are able to perform quite realistic simulations of the displacement of
radionuclides in porous media. Furthermore, in spite of the slowness of general porous me-
dia �ows, radionuclides can reach the �oor before they are totally destroyed, even if they
come from a leak of some containers that are stocked deeply in the underground. This occurs
with convenient geological di�usion–dispersion coe�cient, and when the adsorption is su�-
ciently weak, as the displacement of the iodine shows for the COUPLEX 1 benchmark. When
the retardation phenomenon is too strong, the radionuclides are trapped in their geological
environment. This can be illustrated by the con�nement of the plutonium into the clay layer
in the same test case.
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APPENDIX A: POSITIVITY AND l∞ STABILITY

In this appendix we adapt some standard results (see References [16, 20]) on the approximation
of hyperbolic conservation laws to Equation (12).

De�nition 1
A nine points scheme in two space dimensions can be put on the incremental form when for
every n there exist twelve real numbers

A1i+ 1
2 ; j
; B1i− 1

2 ; j
; A2i+ 1

2 ; j+1
; B2i− 1

2 ; j+1
; A3i+ 1

2 ; j−1; B
3
i− 1

2 ; j−1; D
1
i; j+ 1

2
; E1i; j− 1

2
; D2i+1; j+ 1

2

E2i+1; j− 1
2
; D3i−1; j+ 1

2
; E3i−1; j− 1

2

such that

G(Xi; j; Cn+1i; j ) =G(Xi; j; C
n
i; j)

+A1i+ 1
2 ; j
�Cni+ 1

2 ; j
− B1i− 1

2 ; j
�Cni− 1

2 ; j
+ A2i+ 1

2 ; j+1
�Cni+ 1

2 ; j+1

−B2i− 1
2 ; j+1

�Cni− 1
2 ; j+1

+ A3i+ 1
2 ; j−1�C

n
i+ 1

2 ; j−1 − B3i− 1
2 ; j−1�C

n
i− 1

2 ; j−1

+D1i; j+ 1
2
�Cni; j+ 1

2
− E1i; j− 1

2
�Cni; j− 1

2
+D2i+1; j+ 1

2
�Cni+1; j+ 1

2

−E2i+1; j− 1
2
�Cni+1; j− 1

2
+D3i−1; j+ 1

2
�Cni−1; j+ 1

2
− E3i−1; j− 1

2
�Cni−1; j− 1

2

where

�Cni+ 1
2 ; j
=Cni+1; j − Cni; j and �Cni; j+ 1

2
=Cni; j+1 − Cni; j

We get the following stability result.

Proposition 3
Assume C �→G(X;C) is an increasing mapping. A scheme on the incremental form in the
sense of De�nition 1 is l∞-stable and positive provided that for every i and j

A1i+ 1
2 ; j

−D2i+1; j+ 1
2
− E2i+1; j− 1

2
¿ 0

D1i; j+ 1
2
− A2i+ 1

2 ; j+1
− B2i− 1

2 ; j+1
¿ 0

B1i− 1
2 ; j

−D3i−1; j+ 1
2
− E3i−1; j− 1

2
¿ 0

E1i; j− 1
2
− B3i− 1

2 ; j−1 − A3i+ 1
2 ; j−1¿ 0

A2i+ 1
2 ; j+1

+D2i+1; j+ 1
2
¿ 0

D3i−1; j+ 1
2
+ B2i− 1

2 ; j+1
¿ 0
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B3i− 1
2 ; j−1 + E

3
i−1; j− 1

2
¿ 0

A3i+ 1
2 ; j−1 + E

2
i+1; j− 1

2
¿ 0 (A1)

and

A1i+ 1
2 ; j
+D1i; j+ 1

2
+ B1i− 1

2 ; j
+ E1i; j− 1

2
6	i; j(G) (A2)

where

	i; j(G)= min

⎛
⎝ inf

z1 ; z2∈R+
z1 �=z2

(
G(Xi; j; z1)−G(Xi; j; z2)

z1 − z2

)
; inf
z1 ; z2∈R−
z1 �=z2

(
G(Xi; j; z1)−G(Xi; j; z2)

z1 − z2

)⎞⎠
Remark
In porous media �ow modelling, C �→G(X;C) belongs generally to C1(R?;R), so that 	i; j(G)
should be replaced by infC∈R? (@CG(Xi; j; C)) in (A2). The application @CG is positive.
According to (13), a su�cient CFL-like condition would be

A1i+ 1
2 ; j
+D1i; j+ 1

2
+ B1i− 1

2 ; j
+ E1i; j− 1

2
6�(Xi; j)

Proof
We �rst show the positivity property. Let Cni; j¿0, for every i; j. If C

n+1
i; j =0, there is nothing

to show, hence it may be assumed that Cn+1i; j �=0. Taking �rst Cni; j �=0, we de�ne two positive
numbers

	ni; j=
G(Xi; j; Cni; j)

Cni; j
and 	n+1i; j =

G(Xi; j; Cn+1i; j )

Cn+1i; j

Scheme (1) becomes

Cn+1i; j =
1
	n+1i; j

(	ni; j − A1i+ 1
2 ; j

−D1i; j+ 1
2
− B1i− 1

2 ; j
− E1i; j− 1

2
)Cni; j

+(A1i+ 1
2 ; j

−D2i+1; j+ 1
2
− E2i+1; j− 1

2
)Cni+1; j + (A

1
i+ 1

2 ; j
−D2i+1; j+ 1

2
− E2i+1; j− 1

2
)Cni; j+1

+(B1i− 1
2 ; j

−D3i−1; j+ 1
2
− E3i−1; j− 1

2
)Cni−1; j + (E

1
i; j− 1

2
− B3i− 1

2 ; j−1 − A3i+ 1
2 ; j−1)C

n
i; j−1

+(A2i+ 1
2 ; j+1

+D2i+1; j+ 1
2
)Cni+1; j+1 + (D

3
i−1; j+ 1

2
+ B2i− 1

2 ; j+1
)Cni−1; j+1

+(B3i− 1
2 ; j−1 + E

3
i−1; j− 1

2
)Cni−1; j−1 + (A

3
i+ 1

2 ; j−1 + E
2
i+1; j− 1

2
)Cni+1; j−1

and therefore the assumptions of the proposition yield the positivity of Cn+1i; j since 	ni; j¿	i; j(G).
The proof when Cni; j=0 is obvious.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:1053–1085



DISPLACEMENT OF RADIONUCLIDES IN A POROUS MEDIUM 1079

Now let us prove the stability property. If Cn+1i; j =C
n
i; j, there is nothing to show. If

Cn+1i; j �=Cni; j, we de�ne the positive number

	n+
1
2

i; j =
G(Xi; j; Cn+1i; j )−G(Xi; j; Cni; j)

Cn+1i; j − Cni; j
Scheme (1) can be rewritten as

Cn+1i; j =
1

	n+
1
2

i; j

(	n+
1
2

i; j − A1i+ 1
2 ; j

−D1i; j+ 1
2
− B1i− 1

2 ; j
− E1i; j− 1

2
)Cni; j

+(A1i+ 1
2 ; j

−D2i+1; j+ 1
2
− E2i+1; j− 1

2
)Cni+1; j + (D

1
i; j+ 1

2
− A2i+ 1

2 ; j+1
− B2i− 1

2 ; j+1
)Cni; j+1

+(B1i− 1
2 ; j

−D3i−1; j+ 1
2
− E3i−1; j− 1

2
)Cni−1; j + (E

1
i; j− 1

2
− B3i− 1

2 ; j−1 − A3i+ 1
2 ; j−1)C

n
i; j−1

+(A2i+ 1
2 ; j+1

+D2i+1; j+ 1
2
)Cni+1; j+1 + (D

3
i−1; j+ 1

2
+ B2i− 1

2 ; j+1
)Cni−1; j+1

+(B3i− 1
2 ; j−1 + E

3
i−1; j− 1

2
)Cni−1; j−1 + (A

3
i+ 1

2 ; j−1 + E
2
i+1; j− 1

2
)Cni+1; j−1

The scheme being positive, 	n+
1
2

i; j ¿	i; j(G), and we conclude on the l
∞-stability since Cn+1i; j is

a convex combination of the components of the vector Cn.

APPENDIX B: CONSTRUCTION OF THE LINEARIZED-TRANSPORT-
PROJECTION SCHEME (15)

This �rst-order scheme is based on the Murman �nite volume technique. The mapping
C �→G(X;C) is assumed di�erentiable, and the quantity 1=@CG(X;C) is denoted by H (X;C).
First note that since @CG never vanishes, Equation (12) is equivalent to the simple transport
equation

@tC +H (X;C)V · ∇C=0 (B1)

The velocities ui+ 1
2 ; j
and vi; j+ 1

2
are supposed known and constant on every cell sub-domain

de�ned in Figure B1. We set

˜̃V (X )=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V 1i; j := (ui+ 1
2 ; j
; vi; j+ 1

2
)T if X ∈Q1i; j

V 2i; j := (ui− 1
2 ; j
; vi; j+ 1

2
)T if X ∈Q2i; j

V 3i; j := (ui− 1
2 ; j
; vi; j− 1

2
)T if X ∈Q3i; j

V 4i; j := (ui+ 1
2 ; j
; vi; j+ 1

2
)T if X ∈Q4i; j

The equation

@tG(X;C(t; x)) + ˜̃V (X ) · ∇C(t; X )=0
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Figure B1. 2D-geometry for the linearized-transport-projection scheme.

is integrated among the space-time cell (tn; tn+1)×Qi; j. Hence the Stokes formula leads to

∫
Qi; j
(G(X;C(tn+1; X ))−G(X;C(tn; X ))) dX

∫ tn+1

tn

∫
@Q1i; j

C(t; X )V 1i; j · n dX dt +
∫ tn+1

tn

∫
@Q2i; j

C(t; X )V 2i; j · n dX dt

∫ tn+1

tn

∫
@Q3i; j

C(t; X )V 3i; j · n dX dt +
∫ tn+1

tn

∫
@Q4i; j

C(t; X )V 4i; j · n dX dt=0

where n stands for the outward unit normal to each sub-cell @Qli; j. To approximate C on @Q1i; j,
we consider successful Riemann problems on sides �1;1i; j ; �

1;2
i; j ; �

1;3
i; j ; �

1;4
i; j (see Figure B1). For

�1;1i; j ; C is evaluated as the exact solution of the constant-velocity convection equation

@tC̃(t; X ) + H̃ Ṽ :∇C̃(t; X )=0 for t ∈ (tn; tn+1); X ∈Qi; j (B2)

where C̃(tn; X ) is assumed to be known

C̃(tn; x; y)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cni; j if x6xi+ 1
2
and y6yj+ 1

2

Cni+1; j if x¿xi+ 1
2
and y6yj+ 1

2

Cni+1; j+1 if x¿xi+ 1
2
and y¿yj+ 1

2

Cni; j+1 if x6xi+ 1
2
and y¿yj+ 1

2
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and H̃ and Ṽ are de�ned to take into account the direction of the �ow

H̃ =Hn
i+ 1

2 ; j
and Ṽ =

(
ui+ 1

2 ; j

ṽ

)
with ṽ=

⎧⎨
⎩
vi; j+ 1

2
if ui+ 1

2 ; j
¿0

vi+1; j+ 1
2
otherwise

The exact solution of (B2) is C̃(t; X )= C̃(tn; x − H̃ui+ 1
2 ; j
(t − tn); y − H̃ ṽ(t − tn)).

The same process is repeated on �1;2i; j with

H̃ =Hn
i; j+ 1

2
and Ṽ =

⎛
⎝ ũ

vi; j+ 1
2

⎞
⎠ with ũ=

⎧⎨
⎩
ui+ 1

2 ; j
if vi; j+ 1

2
¿0

ui+ 1
2 ; j+1

otherwise

On �1;3i; j × (tn; tn+1) and �1;4i; j × (tn; tn+1), we take obviously C̃=Cni; j. Finally, the same arguments
than before for Q2i; j ; Q

3
i; j and Q

4
i; j, lead to scheme (15), and Proposition 1 follows easily from

Proposition 3.

APPENDIX C: LIMITATION OF SCHEME (16)

A �ux limitation technique is used as in Reference [10]. First scheme (16) is written as a
perturbation of the linearized transport-projection-like scheme

G(Xi; j; Cn+1i; j ) =G
1;n
i; j

−�x
2
(|ui+ 1

2 ; j
|(�ij −Hn

i+ 1
2 ; j
�i+ 1

2 ; j
)�Cni+ 1

2 ; j
− |ui− 1

2 ; j
|(�ij −Hn

i− 1
2 ; j
�i− 1

2 ; j
)�Cni− 1

2 ; j
)

−�y
2
(|vi; j+ 1

2
|(�ij −Hn

i; j+ 1
2
�i; j+ 1

2
)�Cni; j+ 1

2
− |vi; j− 1

2
|(�ij −Hn

i; j− 1
2
�i; j− 1

2
)�Cni; j− 1

2
)

−�x�y
4
(Hn

i− 1
2 ; j
u+
i− 1

2 ; j
(|vi−1; j+ 1

2
|�Cni−1; j+ 1

2
− |vi−1; j− 1

2
|�Cni−1; j− 1

2
)

+Hn
i+ 1

2 ; j
u−
i+ 1

2 ; j
(|vi+1; j+ 1

2
|�Cni+1; j+ 1

2
− |vi+1; j− 1

2
|�Cni+1; j− 1

2
)

+Hn
i; j− 1

2
v+
i; j− 1

2
(|ui+ 1

2 ; j−1|�C
n
i+ 1

2 ; j−1 − |ui− 1
2 ; j−1|�C

n
i− 1

2 ; j−1)

+Hn
i; j+ 1

2
v−
i; j+ 1

2
(|ui+ 1

2 ; j+1
|�Cni+ 1

2 ; j+1
− |ui− 1

2 ; j+1
|�Cni− 1

2 ; j+1
)) (C1)

where G1;ni; j is de�ned by (15), �i; j and �i; j are de�ned by (18), and

�i+ 1
2 ; j
= �x|ui+ 1

2 ; j
|; �i; j+ 1

2
= �y|vi; j+ 1

2
|

We obtain the nearly second-order limited scheme (19) thanks to an usual �ux limitation
argument.
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One sets 
i+ 1
2 ; j
= �xui+ 1

2 ; j
and 
i; j+ 1

2
= �yvi; j+ 1

2
. This scheme can be put on the incremental

form in the sense of De�nition 1 with the corresponding coe�cients

A1i+ 1
2 ; j
= 
−

i+ 1
2 ; j

(
�i; j − 1

2

(
(�i; j −Hn

i+ 1
2 ; j
�i+ 1

2 ; j
)’(rn−

i+ 1
2 ; j
)

−(�i; j −Hn
i− 1

2 ; j
�i− 1

2 ; j
)
’(rn−

i− 1
2 ; j
)

rn−
i− 1

2 ; j

))

B1i− 1
2 ; j
= 
+

i− 1
2 ; j

(
�i; j − 1

2

(
(�i; j −Hn

i− 1
2 ; j
�i− 1

2 ; j
)’(rn+

i− 1
2 ; j
)

−(�i; j −Hn
i+ 1

2 ; j
�i+ 1

2 ; j
)
’(rn+

i+ 1
2 ; j
)

rn+
i+ 1

2 ; j

))

D1i; j+ 1
2
= 
−

i; j+ 1
2

(
�i; j − 1

2

(
(�i; j −Hn

i; j+ 1
2
�i; j+ 1

2
)’(rn−

i; j+ 1
2
)

−(�i; j −Hn
i; j− 1

2
�i; j− 1

2
)
’(rn−

i; j− 1
2
)

rn−
i; j− 1

2

))

E1i; j− 1
2
= 
+

i; j− 1
2

(
�i; j − 1

2

(
(�i; j −Hn

i; j− 1
2
�i; j− 1

2
)’(rn+

i; j− 1
2
)

−(�i; j −Hn
i; j+ 1

2
�i; j+ 1

2
)
’(rn+

i; j+ 1
2
)

rn+
i; j+ 1

2

))

A2i+ 1
2 ; j+1

=
1
2
Hn
i; j+ 1

2

−
i; j+ 1

2

−
i+ 1

2 ; j+1

(
1− 1

2

(
’(rn−

i+ 1
2 ; j+1

)−
’(rn−

i− 1
2 ; j+1

)

rn−
i− 1

2 ; j+1

))

B2i− 1
2 ; j+1

=
1
2
Hn
i; j+ 1

2

−
i; j+ 1

2

+
i− 1

2 ; j+1

(
1− 1

2

(
’(rn+

i− 1
2 ; j+1

)−
’(rn+

i+ 1
2 ; j+1

)

rn+
i+ 1

2 ; j+1

))

D2i+1; j+ 1
2
=
1
2
Hn
i+ 1

2 ; j

−
i+ 1

2 ; j

−
i+1; j+ 1

2

(
1− 1

2

(
’(rn−

i+1; j+ 1
2
)−

’(rn−
i+1; j− 1

2
)

rn−
i+1; j− 1

2

))

E2i+1; j− 1
2
=
1
2
Hn
i+ 1

2 ; j

−
i+ 1

2 ; j

+
i+1; j− 1

2

(
1− 1

2

(
’(rn+

i+1; j− 1
2
)−

’(rn+
i+1; j+ 1

2
)

rn+
i+1; j+ 1

2

))
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A3i+ 1
2 ; j−1 =

1
2
Hn
i; j− 1

2

+
i; j− 1

2

−
i+ 1

2 ; j−1

(
1− 1

2

(
’(rn−

i+ 1
2 ; j−1

)−
’(rn−

i− 1
2 ; j−1

)

rn−
i− 1

2 ; j−1

))

B3i− 1
2 ; j−1 =

1
2
Hn
i; j− 1

2

+
i; j− 1

2

+
i− 1

2 ; j−1

(
1− 1

2

(
’(rn+

i− 1
2 ; j−1

)−
’(rn+

i+ 1
2 ; j−1

)

rn+
i+ 1

2 ; j−1

))

D3i−1; j+ 1
2
=
1
2
Hn
i− 1

2 ; j

+
i− 1

2 ; j

−
i−1; j+ 1

2

(
1− 1

2

(
’(rn−

i−1; j+ 1
2
)−

’(rn−
i−1; j− 1

2
)

rn−
i−1; j− 1

2

))

E3i−1; j− 1
2
=
1
2
Hn
i− 1

2 ; j

+
i− 1

2 ; j

+
i−1; j− 1

2

(
1− 1

2

(
’(rn+

i−1; j− 1
2
)−

’(rn+
i−1; j+ 1

2
)

rn+
i−1; j+ 1

2

))

Recall the limiter ’ de�ned by (17) veri�es the property

	1¿0; 	2¿0; b �=0⇒ −2	26	1’(a)− 	2’(b)b 62	1

If

�ij −Hi± 1
2 ; j
�i± 1

2 ; j
¿0 and �i; j −Hi; j± 1

2
�i; j± 1

2
¿0 (C2)

we get

Hn
i+ 1

2

−
i+ 1

2 ; j
�i+ 1

2 ; j
6 A1i+ 1

2 ; j
6 
−

i+ 1
2 ; j
(2�ij −Hn

i− 1
2 ; j
�i− 1

2 ; j
)

Hn
i− 1

2

+
i− 1

2 ; j
�i− 1

2 ; j
6 B1i− 1

2 ; j
6 
+

i− 1
2 ; j
(2�ij −Hn

i+ 1
2 ; j
�i+ 1

2 ; j
)

Hi; j+ 1
2

−
i; j+ 1

2
�i; j+ 1

2
6 D1i; j+ 1

2
6 
−

i; j+ 1
2
(2�i; j −Hn

i; j− 1
2
�i; j− 1

2
)

Hi; j+ 1
2

+
i; j− 1

2
�i; j− 1

2
6 E1i; j− 1

2
6 
+

i; j− 1
2
(2�i; j −Hn

i; j+ 1
2
�i; j+ 1

2
)

06 A2i+ 1
2 ; j+1

6Hn
i; j+ 1

2

−
i; j+ 1

2

−
i+ 1

2 ; j+1

06 B2i− 1
2 ; j+1

6Hn
i; j+ 1

2

−
i; j+ 1

2

u+

i− 1
2 ; j+1

06 D2i+1; j+ 1
2
6Hn

i+ 1
2 ; j

−
i+ 1

2 ; j

−
i+1; j+ 1

2

06 E2i+1; j− 1
2
6Hn

i+ 1
2 ; j

−
i+ 1

2 ; j

+
i+1; j− 1

2

06 A3i+ 1
2 ; j−1 6Hn

i; j− 1
2

+
i; j− 1

2

−
i+ 1

2 ; j−1

06 B3i− 1
2 ; j−16Hn

i; j− 1
2

+
i; j− 1

2

+
i− 1

2 ; j−1

06D3i−1; j+ 1
2
6Hn

i− 1
2 ; j

+
i− 1

2 ; j

−
i−1; j+ 1

2

06 E3i−1; j− 1
2
6Hn

i− 1
2 ; j

+
i− 1

2 ; j

+
i−1; j− 1

2

(C3)
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so that

A1i+ 1
2 ; j

−D2i+1; j+ 1
2
− E2i+1; j− 1

2
¿ 
−

i+ 1
2 ; j
H n
i+ 1

2 ; j
(�i+ 1

2 ; j
− (
+

i+1; j− 1
2
+ 
−

i+1; j+ 1
2
))

D1i; j+ 1
2
− A2i+ 1

2 ; j+1
− B2i+1; j+ 1

2
¿ 
−

i; j+ 1
2
Hn
i; j+ 1

2
(�i; j+ 1

2
− (
−

i+ 1
2 ; j+1

+ 
+
i− 1

2 ; j+1
))

B1i− 1
2 ; j

−D3i− 1
2 ; j−1 − E3i−1; j− 1

2
¿ 
+

i− 1
2 ; j
H n
i− 1

2 ; j
(�i− 1

2 ; j
− (
+

i−1; j− 1
2
+ 
−

i−1; j+ 1
2
))

E1i; j− 1
2
− A3i+ 1

2 ; j−1 − B3i−1; j+ 1
2
¿ 
+

i; j− 1
2
Hn
i; j− 1

2
(�i; j− 1

2
− (
+

i− 1
2 ; j−1

+ 
−
i+ 1

2 ; j−1
))

To verify the property (A1) in Proposition 3, our choice is to modify some second-order
terms: �i+ 1

2 ; j
and �i; j− 1

2
are, respectively, replaced in (C1) by

�̃i+ 1
2 ; j
=max(�i+ 1

2 ; j
; (
+

i+1; j− 1
2
+ 
−

i+1; j+ 1
2
); (
+

i−1; j− 1
2
+ 
−

i−1; j+ 1
2
))

�̃i; j+ 1
2
=max(�i; j+ 1

2
; (
−

i+ 1
2 ; j+1

+ 
+
i− 1

2 ; j+1
); (
+

i− 1
2 ; j−1

+ 
−
i+ 1

2 ; j−1
))

and then assumption (A1) turns to hold. However to justify estimates (C3), the condition (C2)
has to be veri�ed with these new coe�cients �̃i+ 1

2 ; j
and �̃i; j+ 1

2
. This is true under the CFL-like

conditions (20) and (21). It �nally remains to ful�ll the assumption (A2) of Proposition 3
to ensure positivity and stability of the scheme. For this, estimations (C3) can be used, and
they drive to (22).
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