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Abstract

Numerical simulations of the 2D lid-driven cavity flow are performed for a wide
range of Reynolds numbers. Accurate benchmark results are provided for steady
solutions as well as for periodic solutions around the critical Reynolds number.
Numerous comparisons with the results available in the literature are given. The
first Hopf bifurcation is localized by a study of the linearized problem.
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1 Introduction

The classical lid-driven cavity problem has been investigated by many authors
since some pioneer works giving good results of steady solutions twenty years
ago [8], [20]. Their results were confirmed by many other studies and the
solution obtained at Re = 1000 for instance is quite close from one author to
another. Nevertheless there still are very different results concerning the first
Hopf bifurcation and the behaviour of the solution for intermediate and high
Reynolds numbers. In a former work [5], it was suggested that the first Hopf
bifurcation occurs around Reynolds number Re = 7500. Since then various
results were given in the literature. This first bifurcation was given under
Re = 7500 in [6] or [18], close to Re = 8000 in [7], [2] or [19] while some
authors localize it at Re = 10000 and even close to Re = 30000 [12]. The
aim of this work is to shed some light on this fundamental issue and to give
benchmark results for Reynolds numbers up to Re = 10000.

The numerical simulation lie on a finite differences discretization and on a
multigrid solver with a cell-by-cell relaxation procedure [22], [5]. Classical
Euler or Gear time schemes are coupled to a second order approximation of the
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linear terms in space. To achieve a good accuracy a special care of convective
terms is required. In this work, they are treated explicitly and approximated
by third order schemes to get both low diffusion effects and stability. A new
third order scheme is constructed and compared to the classical ones, namely
the original third-order upwind scheme, the quickest scheme [16] and an other
upwind scheme based on a centered stencil [13].

The next section is devoted to the governing equations and the time and space
discretization. Then the multigrid solver is described and a special emphasis
is given on the discretization of convection terms. We recall three third order
schemes and construct carefully a fourth one which is compared to the others
on accurate benchmark results for steady solutions at Re = 1000 and Re =
5000. Then, by computing the first Lyapunov exponent, we study the linear
stability to determine the critical Reynolds number R, corresponding to the
first Hopf bifurcation. This study shows that this critical Reynolds number R,
is close to Re = 8000. Further, we compute some periodic solutions beyond
this value and in particular the solution at Re = 10000. For all these results
until Re = 10000, the grid convergence is achieved and reliable results are
obtained on an uniform 512 x 512 cells grid.

2 Governing equations and discretization

2.1 The Navier-Stokes equations

Let © = (0,1) x (0,1) be a 2D square cavity and 7 > 0 the simulation time,
the governing equations of an unsteady incompressible flow are the evolution
Navier-Stokes equations written in primitive variables as:

( 1
OU — oAU+ (U V)U +Vp =0 in ]0, T[x €
V-U=0 in 10, 7[xQ

4 U(t,z,y) = (=1,0) on]0,T[xI; (1)

Ut,z,y) = (0,0)  on]0,T[xI
U(0,z,y) = Up(z,y) in Q

where U = (u,v) and p are respectively the velocity and the pressure, I'; is the
top boundary, I'y represents the three other sides and Uj is an initial datum.
The boundary condition is chosen so that the primary vortex is positive. Most
of the time, the flow is assumed to start from rest and thus Uy = 0.



2.2 Time discretization

The system of equations (1) is discretized by means of either a first order
Euler scheme or a second order Gear scheme. The linear terms are treated
implicitly whereas the convection terms are treated explicitly. We denote by
U™ the approximation of U at time ¢, = ndt where n € IN and 6t is the time
step. Thus, the Euler semi-discretized system reads :

(U 1 Ut
Z A" no_ (-1 n-1 10
5t T U"+Vp 5 (U v)U in
< V.-U"=0 in (2 (2)
U" = (-1,0) on I'
\ Uu" = (0,0) on [y

' 3;;: - %AU" + Vp" = 2({5;_12— 2t . v)Unt
—[g 5+ (U™ 2. V)U"? inQ
‘ V.U =0 in Q (3)
Ur = (-1,0) on I'y
\ U = (0,0) on Ty

We shall see in the last sections the difference between these two schemes. Of
course to compute steady solutions the influence of the time scheme is weak
but for evolution solutions it can be of main importance.

2.3 Space discretization

The system of equations (2) or (3) is discretized in space by finite differences
on an uniform staggered grid G}, the mesh size of which is h = dx = dy, where
dx and 0y are the step discretization in each direction. The discrete values of
the pressure are located at the center of each cell and those of the velocity
field are located at the middle of the sides as shown on figure 1.

The discretization of the left hand side of equations (2) or (3) is achieved
using second order centered finite differences. For a generic inner cell that
means that for instance

5t Re " =P



is approximated at point (i — 1, j) by
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Let us point out to the reader that due to the use of staggered grids the
discretization of the diffusion terms at the boundary with a second order
schemes yields modified formulas as
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The second equation of the momentum equation for the component v is dis-
cretized in the same way. The divergence-free equation is approximated at the
pressure point (7, j) by
n n n P ()
Yirg — Miga | Cats iy

ox oy

This point is crucial as it links the four velocity components of the same cell.

The convection terms in the right hand side of equations (2) are approximated

by the third order Murman-like scheme constructed in section 4. For instance
unil n—1 n—1 n—1 n—1

—— —u"T 0u" T —v" T Oyu

ot

is approximated at point (i — %, j) by
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(uzf_ﬂ+l uﬁf_ﬂ)
The correspondlng term for the vertical component of the velocity v is dis-
cretized in the same way. The construction of this scheme is presented in
section 4 where we give a comparison of various third order schemes.

1 = 0 on the bottom wall.



3 Multigrid solver

The discretization of the coupled velocity-pressure system of equations (2) or
(3)yields to solve a discrete linear system L,V;* = By ' or L,V" = C7,' +
C;jgl where L, represents the discrete operator, B,Tl is the discrete equivalent
of the right hand side of (2), C7,' +C%, " is the discrete equivalent of the right
hand side of (3) and V;* = (U}, p}) is the approximate solution to compute.
We solve this discrete linear system by the FAS multigrid solver [11] on a
sequence of grids from the fine grid chosen for the approximation G, to a
coarsest grid (G; as coarse as 4 x 4 cells. The multigrid algorithm uses a V-
cycle procedure illustrated below for the computation of the fine grid solution
Vit =V} on grid G, in the case of system (2).

For k=1 to number_of_V-cycles do
7k _ Qv k—1 pn—1
Vo =S (Ly, Vi By
Correction on coarse grids
( For q=p-1,1,-1 do
V,; = RV,
B(I; = RZ+1(B§+1 - Lq+1‘~/qlfu) + qu
S\ VE=8¢0(L,, Vi, BY

q q

k
q

Updating of the fine grids

For q=2,p do
~ ~ 5k
Vi =VE+PLI(VE Vi)

Vk = S(Uz)(LQ: ‘A/;Ika B(I;)

q q

Convergence test

{ if HBI?_I - LprkH < ¢ stop iterations

In this algorithm S,g”) denotes the smoother used on grid Gy to compute an
approximate solution of the linear system doing v iterations. The restriction
Rg“ and prolongation P; ; operators describe the linear interpolation oper-
ators from fine-to-coarse and from coarse-to-fine grids respectively. Moreover
the second member that contains the convective term is discretized only on
the finest grid G, and the second member on the coarse grids B,’; is mainly
obtained by restriction.

The smoothing operator S performs v, or vs iterations of a Gauss-Seidel cell-
by-cell procedure that leads to solve a 5 X 5 linear system corresponding to



the 5 unknowns of a cell [22].

a 0 0 0 1/ U?_%,j (D,’f’l)i_%’j
0 o 0 0-1/0z | | wly; (Dz_l)i+§,j
0 0 o 0 oy || R | = | (Dh Dot
0 0 0 a-1y ||y, (D501
—1/0x 1/6z —1/6y 1/dy 0 Py 0

In this system o = & + (5 + %) and the other quantities of the linear

operator are relaxed in the second member. So (D7), 1 ; represents the sum
of these relaxed terms and (B,’f’l)i_%,j. We solve this 5 X 5 coupled system
directly by a direct method. Indeed, eliminating the first four unknowns in the
first four equations we get p};, then the other unknowns follow. Let us point

out that the fifth equation ensures the free divergence constraint in each cell.

4 Discretization of convection terms

The direct numerical simulation of high Reynolds number flows requires in
particular a good approximation of convection terms. The challenge is to find
out a scheme that ensures both accuracy and stability. Many works have dealt
with this problem in the last two decades and with finite differences it appears
that a good choice is to take a third order scheme (see for instance [16]). In-
deed, the stability of first order schemes is very good, but their accuracy is
poor as they induce a lot of diffusion. On the contrary, second order schemes
are more accurate but their stability is in general not ensured. In any cases,
low order schemes neither capture the small eddies in the boundary layer nor
convey properly the coherent structures. A way to improve the resolution of
the method is to construct a high accurate scheme which holds good stability
properties.

We first present or recall some third order schemes for a nonlinear convec-
tion equation constructed with the help of Euler scheme. Considering the one



dimensional convection equation

Owu(t,x) + 0y f(u(t,z)) =0, t >0, x € R (4)

we denote a(u) = f'(u), A the ratio 2 and u! the numerical approximation of
u(ndt,idx).

The well known first order Murman scheme reads

=l — My ) () — A y)(uf — ul) (5)

where ™ = max(a,0); a~ = min(a, 0) and

Fi ) fW?) o on
n
uP,  —u? if uiyy # uf

f'(uf) if “?+1 =uy.

This scheme is stable, TVD and conservative. The disadvantage of this scheme
is to introduce a lot of numerical diffusion. In fact, by Taylor series expansion
at a generic point (¢, )

2

u(t + ot, :15:3? —u(t.z) _ Opu(t, ) + %attu(ta ) + %atttu(t: x) + 0(6t°)(6)

and

fba) = bz =02) _ 5 e 0y — %””amf(t, z) + %ﬁamf(t, z) + 0(62%)(7)

one gets, when f is a monotonous increasing function, that the first order
Murman scheme is a second order approximation in time and space of the
following convection-diffusion equation

Oyu(t,x) + 0p f (u(t, x)) — %81((1 — Aa(u))0p f(u))(t,z) = 0.

To improve the approximation in time, it is possible to use Gear scheme or
Runge-Kutta methods for instance. Another way is to keep Euler scheme in
time and use Lax-Wendroff process to get high order schemes. In this case,
one has to express the time derivatives in (6) by space derivatives of the flux
using equation (4). After Lax and Wendroff, this idea was used to construct a
third order scheme for the advection equation [21] and gives rise to the famous



Quickest scheme [16] which is based on upwind biases cubic interpolation. This
scheme reads in conservative form

n+1

n 2 3
wpt = = Aa) 07 - ay8)) — M@, 67 —aie) ()
where ¢§i); represents the second order Lax-Wendroff part
2

(e +f) = A (uf, — ul))

N | =

2 _
¢z’+% -

and ¢§i)g the third order part

(1—(Aa? 1)?)
3 3 ;
¢z('+)% - 12 ) <U?+2 — U —up =l = Szgn(a?ﬁ)(uﬁ? = Bugyy +3uf —
(1 - ()‘ _|_l)2
_ 6z = (uf - 2uf 4] ) if g,y >0
] (1= (Aa} %) ), .
5 (uz Yo — 2u 41+ U ) otherwise.

However, this procedure is quite difficult to handle for the full Navier-Stokes
equations without using a splitting method.

We now propose some schemes which use only a third order approximation
in space. To obtain a better approximation in time we can use for instance a
Gear scheme as proposed in subsection 2.2. When f is a monotonous increasing
function, we propose a third order Murman-like scheme that consists in using
centered finite differences to approach 0., f and upwind differences to approach
Oz f in (7). The resulting scheme reads

A A

U?—l))

uptt = = AA T = S (At = A )+ G (A S = 2801 + A f1)(9)

where Az—%f = fz — fi—l-
When equation (4) has a meaning in non-conservative form

owu(t, z) + a(u)Oyu(t,z) =0, t >0, z € R (10)
it is possible to give a non-conservative version of the previous schemes. In
particular the third order present scheme becomes

ultt = u?

——)\a 1AZ+1u ——)\a IA 1u +1)\a 3A u" if al ! >0 (11)

/\a 1A Lu” ——)\a 1A1+1u +1/\a+3A if a? 1<0



Note that if a ! > (0 and a

2

1 < 0 the contribution of each term are added.

In [13], Kawamura et al. propose a third order upwind scheme which can be

written explicitly in non-conservative form as

a(ui) (U, — 2u?, | + 9u?

s 10U, + 2ul
palud)(uiy — 2uy + 9ui — 10u7, | + 2u?,

) if a(u

P

>0

(12

o) otherwise

This scheme is different from the standard third order upwind scheme which

uses a non-centered stencil

a(ui)(2u?, | + 3ul — 6ul_ | +ul,) if a(u?) >0

au) (2ui_y + 3uif —

ob op

n .
- bu; | + u',) otherwise

(13

)

These non-conservative schemes can be applied directly to the full Navier-
Stokes equations. We illustrate below the four third order schemes on the dis-
cretization of the term —v™ '9,u™ ! in the second member at point (i — 3:J )

(see figure 1).

Present
n—1 n—1 n—1
_1ynl A1t _5,n-1 A1, 1 4 lgynl B g, 3 if Un 1
3%i—1,5+1 &y . 6 i—L15-1 oy ) 6 i—15-3 oy ) ~14-%
_Lym e T L T I R e 4 Lyl Aiogg43"" if ]
3Ti—5.—3 3y 6 i—5.i+3 3y 6 i—5.5+3 3y i—5.0+3
Upwind 3
n—1 (1, n—1 1, n—1 n—1 1, n—1 n—1
1)2._%,].(3112._%’3.Jrl 2Ui 1y~ Uii11 T, ,)/0y if v} iy >0
n—1 (1, n—1 1, n—1 n—1 1, n—1
vi_%,j(Sui_%,j_l Ul L, ;,JH)/(Sy otherwise
1 1/,,n—1 n—1 n—1
where v = (v 4+ 0" +U + v ).
_%a 4( 2_11]_% 1_17.]+l ; Za]"’%)
Kawamura
n—1 (1, n—1 1, n—1 3, n—1 5, n—1 1, n—1 : n—1
Uz’—%,j(ﬁui—%,j—ﬂ sUiijpr T oW1 T 3% 1 T 3ui—%,j—2)/5y if o775, >0
n—1 (1, n-1 1, n—-1 3, n—1 _ 5, n-1 1, n—1 :
vz.i%,j(ﬁ,uii%,ji2 LI LA Wil AR LA ;,J+2)/5y otherwise
Quickest
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un—l +u'{L—1 _ 6t ,n—1 n—1 n—1

i—1 .4 =0 U U
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=50 g y g im5d il
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(1 (Jyvi_%’jJr%) )(ui_%,jJr2 2ui_%,j+1 +ui_%,j) otherwise
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(1 (Jyvi_%,._l) )(ui_%,j+1 2u._%,j + ui_%’j_l) otherwise

To take into account the boundary conditions, we use two fictitious cells out-
side of the domain where the velocity is linearly extrapolated according to its
value at the boundary.

5 Numerical comparison on steady solutions

In this section, we compare the previous schemes on steady solutions for which
an abundant literature is available. First results were already given about
twenty years ago in [8] and [20]. Since then, many authors compared their re-
sults to these pioneer works. The results presented in this section are computed
with Euler scheme in time whatever the space discretization is for convection
terms. Indeed, as the solution is steady, the time scheme has no influence on
the accuracy of the final solution. These solutions are qualified as steady when
the relative error between two time steps is less than 1072 on a significant
time interval. This steady property is also seen on the velocity or pressure
signals at monitoring points that are constant and on the phase portraits that
reduce to a single point.

5.1 The Re=1000 lid driven cavity flow

The first classical test case we consider is the cavity flow at Re = 1000.
Recently, an accurate study has been performed using a Chebyshev collocation
method [3] for this test case. They obtain a good convergence up to seven
digits on two consecutive approximations. Numerous comparisons with other
results of the literature can be found in this paper. The solution computed
with our method is plotted on figure 2. It exhibits a large primary vortex with
two secondary vortices in the two bottom corners. The pressure isolines are
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plotted after setting the pressure equal to zero at the center of the cavity.
The values of the stream-function, the vorticity and the pressure contours are
given on table 1. As in [3], the value 0.1175 of the stream-function is chosen to
better represent the primary vortex core. The plain isolines refer to positive
values and the dotted isolines refer to non positive values.

First of all, we give comparisons on tables 2 and 3 of the four different third
order schemes presented in section 4. They concern the value and the location
of the extrema of the stream-function to which is added the value of the
vorticity at the same location. The choice of these values is governed by the
data available in the literature. We can see on these tables that three schemes
give about the same values on a sequence of grids but not the Quickest scheme
[16] which is far too diffusive. Among the three others, the scheme proposed
by Kawamura et al. is less stable than the two others. Indeed it requires a CFL
condition more restrictive. For instance on the grid 128 x 128 the time step
0t = 0.006 is needed instead of ¢ = 0.008. This is not surprising because this
scheme uses a centered stencil and is in some sense more centered than the
others. The CFL condition imposed by the explicit treatment of convection
terms gives 6t = 0.0078125. Then this scheme needs a CFL number around
0.75 when the others accept a CFL number slightly greater than one. Then
we compare our results to these of the literature and plot the same data in
table 4. We compare, on one hand, on a coarse grid to the classical results in
[8], [20] and [22] and on the other hand on a fine grid to the very accurate
results obtained in [3] with 160 Chebyshev polynomials. We can see that the
present results compare very well and that the results on the medium grids
are already very good.

Some other quantities are available in the literature. In particular the velocity,
the pressure and the vorticity along the centerlines of the cavity. Once again,
we can see on tables 5 and 6 that the present results are in very good agreement
with the results found in [3].

Finally, we think that in addition to local quantities it is interesting to com-
pare global quantities as the total kinetic energy F, the enstrophy Z and the
palinstrophy P defined by

1 1 1
E=3 [P, 7=5 [lwlfdz, P=3 [|IVo|de
Q Q Q

where w = 9,v — Oyu is the vorticity. Denoting Us; = (uiy, vij) = ((uzy1; +
uifé’j)/Q, (Ui’j+% + Um;%)/2) the velocity at the center of a cell, the energy is
approximated by

1 2 2

§5x6y Vi (uij +vij)-
The other quantities are computed in the same way with the vorticity evalu-

ated at the vertices of the mesh and its gradient at the middle of the cell sides.
As the solution is stationary, these quantities yield a constant value which is

11



about the same for the three first schemes as shown on table 7. We can see that
the grid convergence is achieved for the kinetic energy whereas it is false for the
two other quantities. Indeed for this problem, because of the singularity at the
corner, it is not possible to get convergence as there is a jump of the velocity
that induces infinite derivatives. It is well known that the enstrophy behaves
like 1/ near the singular corners [3], [2] and thus the enstrophy and palinstro-
phy go to infinity as the mesh size goes to zero. The same quantities computed
for the regularized cavity problem with U(t,z,1) = (—162%(1 — z)?,0) gives
converged values as can be seen on table 8.

5.2  The Re=5000 lid driven cavity flow

This Reynolds number Re = 5000 is a good choice as there are some compar-
isons available in the literature and as the steady solution is still stable but
not too far from the first Hopf bifurcation. For this test case, there is no very
accurate results as in the previous case and we choose our results obtained
with the present scheme on a fine grid 2048 x 2048 as a reference. This solution
is plotted on figure 3. It exhibits in addition to the two secondary vortices in
the bottom corners a third vortex in the upper right corner and much stronger
gradients than the solution at Re = 1000.

We compare again the four third order schemes at this Reynolds number. We
can see on tables 9 and 10 that the Quickest scheme is still too diffusive. We
can also make the same remark about the stability for Kawamura et al. scheme
that needs a CFL number 0.75. The two other schemes give close results. The
comparison with the results of the literature (table 11) is quite difficult as the
results are most often given on a single grid. In [22] this is due to the lost of
stability on finer grids. Nevertheless our results are coherent with the results
given in [8], [17], [15] and [10]. The last point we present is the comparison of
the global quantities energy and enstrophy. The grid convergence is reached
for the kinetic energy and we can see on table 12 that the upwind scheme
and the present scheme give about the same results. The whole comparison
in subsections 5.1 and 5.2 shows that the steady solutions we get are in very
good agreement with the one of the literature and also shows that among the
four third order schemes the upwind scheme and the present scheme are the
best. We choose to perform all the simulations to the end of the paper with
our proposed scheme.
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6 Linear stability
6.1 Linearized problem

In this section, we are studying the stability of the steady solution. We want
to know as accurately as possible when the steady solution loses its stability
to the benefit of a periodic solution, which corresponds to the localization of
the first Hopf bifurcation. In other terms, how far a steady-state solution can
be observed numerically ? To answer this question we propose to compute the
first Lyapunov exponent of the linearized system. As we are only interested in
the first Hopf bifurcation, we assume that a small perturbation (V) ¢) is added
to the steady solution (Ug,ps) of system (1). The stability study consists
in looking at the behaviour of the perturbation along time. This behaviour
is driven by the smallest real part of the eigenvalues of the linearized space
operator. If the steady solution is stable, the perturbation goes to zero when
t goes to infinity as e#!’ where yu; is the first Lyapunov exponent defined by
(see [1]) :
i LeEIVOL
t—r+o00 t

Using the fact that (Us, ps) is a steady solution, we have to solve the simplified
linear problem :

1
OV = AV + (Us V)V + (V- V)Us + Vg =0 in 2x(0,T)
V-V=0 in Qx(0,7)

V=V, in Q
V=0 on 00 x (0,7)

(14)

where the nonlinear term (V' - V)V is neglected.

6.2 Steady solution analysis

The problem (14) is solved exactly in the same way that the initial problem
(1). The only difficulty is that the numerical solution V" at time ndt becomes
very small for large n. So, the solution is normalized at each time iteration by
setting V* = V"/||[V"!|| and the Lyapunov exponent is approximated by

S > 4
. not
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if we take ||Vp|| = 1. The results are not very sensitive to the initial datum V4.
We can choose either an arbitrary datum satisfying the boundary conditions
such that ||[V4]| = 1 or the difference between a periodic and a steady solution
of (1) normalized to one.

The main difficulty is probably to well determine the convergence criteria.
It appears that the behaviour of the sequence V" is very different from low
Reynolds numbers to high Reynolds numbers. At Re = 10 for instance, the
norm of V™ decreases very fast and cannot be the unique criterion of con-
vergence. Indeed, the value of the Lyapunov exponent can be very far to the
converged value even if ||[V"|| = 107'%. It is then necessary to add a crite-
rion based on the relative error on the approximation of p;. Conversely for
Reynolds numbers higher than 5000 the norm of V" decreases very slowly and
the relative error is smaller than ||[V"]|. So, we decide to take two criteria for
the convergence ||V"| < 107% and ||x? — p ||/ ||| < 1076. We stop the
computation only if the two criteria are satisfied.

Another important point is the computation of the steady solution (Us, ps)
for high Reynolds numbers. It is absolutely necessary that the steady state
has been completely achieved. On coarse grids, the solution with Euler scheme
can be periodic and thus the linearized computation will fail (see figure 4).
In this case, either the use of Gear scheme or a computation on a finer grid
is necessary to reach the steady state and insure the success of the conver-
gence of V™. The plots of figure 4 show that both choices are efficient. Until
Re = 8000, we get a steady solution on grid 256 x 256 as well as on finer grids.
For low Reynolds numbers the convergence to the Lyapunov exponent is very
fast and monotonous. On the contrary, for high Reynolds numbers the con-
vergence is very slow and not monotonous. Actually the sequence uf oscil-
lates around the limit for a long time. For example at Re = 8000 the value
pu1 = —0.0026 (see table 13) is reached at time 7" = 2400 and then u} oscillates
slightly around this value. The fact that the first Lyapunov exponent goes to
zero indicates that the steady solution looses its stability and that the critical
Reynolds number is very close to Re = 8000. Moreover, the presence of the first
Hopf bifurcation is confirmed by the computation of the solution of Navier-
Stokes system which is stationary under this value and periodic beyond. The
numerical approximation yields the stable solution whatever the initial datum
is. Even starting with the steady solution obtained at Re = 8000, the con-
vergence process for a simulation at Re = 8050 drifts slowly towards a stable
periodic solution. Once again, we see the need of an accurate time scheme to
get the right solution at Re = 8050. On grid 256 x 256 we get after a very long
simulation time a steady solution with Euler scheme whereas we get a periodic
solution with Gear scheme. But on grid 512 x 512 or on finer grids both time
schemes give a periodic solution with the same frequency f = 0.45 (see figure
5). We can conclude from our numerical tests performed on several consecutive
grids that the critical Reynolds number for the 2D lid-driven cavity problem
is 8000 < R, < 8050 within less than 1% of error. The present value of the
critical Reynolds number is also confirmed by the few results available in the
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literature, in particular in [7] or [19] where the first eigenvalues are computed.
In these papers, the authors localize the first Hopf bifurcation at Re = 7998.5
or Re = 8031.93 when the eigenvalue with the smallest real part reaches the
imaginary axis. In references [2], [17] and [18] the critical Reynolds number is
given respectively around Re = 8018, between Re = 7500 and Re = 8500 and
around Re = 7400.

7 Periodic solutions

After the first Hopf bifurcation, there is a stable periodic solution. At Re =
8100, the solution computed on grid 512 x 512 with Gear scheme in time
and the present scheme in space is a purely periodic solution with frequency
f = 0.45 as shown on figure 6. On this figure is plotted the time evolution of
the first component of the velocity at monitoring point (14/16,13/16) and a
Fourier analysis is performed for this signal. However the behaviour is exactly
the same for other quantities as the pressure, the second component of the
velocity or the vorticity. Moreover the same results are obtained at the other
points considered, namely (1/2,1/2), (1/16,1/2), (3/16,1/16), (14/16,1/16)
and (14/16,15/16) even if there is some variations on the amplitude of the
signals. These points are chosen in order to well analyze the behaviour of the
solution in every part of the cavity. For Re = 8200 a good periodic solution
is obtained with the same frequency (see figure 6). Let us point out to the
reader that for these Reynolds numbers the grid convergence is achieved as
the solutions on two consecutive grids 512 x 512 and 1024 x 1024 are identical.
In addition the frequency is very close to the one obtained at Re = 8000 in
[7], Re = 8018 in [2] and Re = 8500 in [17].

Then we compute the solution at Re = 10000. This value is probably the
most famous value and for quite a long time the question was to know if the
steady solution was stable or not for this Reynolds number. Some pioneer
works [8], [20] and also some more recent works [12], [19], [23] report stable
steady solutions until this value. Definitely, we can assert that the steady
solution is not stable any more at Re = 10000 as we have proven in the
previous section that the first Hopf bifurcation occurs around Re = 8000. Some
computations on several consecutive grids with various initial data show that
the stable solution is mainly periodic with small variations in the amplitude of
the time evolution at the monitoring points (see figure 7). The results on grids
512 x 512 and 1024 x 1024 are very similar and give the same main frequency
f = 0.61. The time history of the kinetic energy is also a periodic signal
with the same frequency that oscillates around the mean value £ = 0.046.
The Fourier analysis as well as the phase portraits show that the variations
in amplitude yield a solution which is not purely periodic and exhibits some
low frequencies fo, = 0.175 and f; = 0.4375 (figures 7 and 8). This shows
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that we have got a new branch of solutions which is in accordance with the
results found in [2] at Re = 9765 and in [18] at Re = 10300. A computation
on a finer 2048 x 2048 cells grid confirms these results and gives exactly the
same frequencies. On figure 9 the vorticity field is plotted along a main period
from time ¢ = 0 to time ¢ = 1.64 to show the evolution of the secondary
vortices that deform slightly the primary vortex. Indeed, the primary vortex
is still attached to the three walls of the cavity but the secondary vortices
are unstable. The secondary and tertiary vortices in the bottom left corner
are almost stable and pulse slowly whereas the secondary vortices in the two
other corners are splitted into two pieces and re-formed along time. The flow
patterns of figure 9 are very close to those shown in [6].

8 Conclusions

Simulations of the 2D lid-driven cavity flow have been performed for various
Reynolds numbers already studied. Highly accurate benchmark results are
provided including new global quantities as the kinetic energy and the enstro-
phy. The results are compared to the best results available in the literature.
The first Hopf bifurcation is obtained at Reynolds number close to Re = 8000
and a mainly periodic solution is described at Re = 10000 with a main fre-
quency f = 0.61. The grid convergence is achieved for each Reynolds number
but it appears that the numerical simulations on grid 512 x 512 are accurate
enough to well represent the solution even for Re = 10000.
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Isolines values

Stream-function -0.1 -0.08 -0.06 -0.04 -0.02 -0.01
3x1073 -1x1073 -3x107* -1x107* -3x107° -1x107°
-3x107%  -1x107%  -1x1077 -1x107% -1x107% -1x10710
0.0 1x10710  1x107° 1x107% 1x1077 1x107S
3x107¢  1x107® 3x107° 1x107* 3x107* 1x1073

3x1073 0.01 0.03 0.05 0.07 0.09

0.1 0.11 0.115 0.1175

Vorticity -40.0 -35.0 -30.0 -25.0 -20.0 -15.0

-10.0 -8.0 -6.0 -4.0 -3.0 -2.0

-1.0 -0.5 -0.2 0.2 0.5 1.0

2.0 3.0 4.0 6.0 8.0 10.0

15.0 20.0 25.0 30.0 35.0 40.0

Pressure from -2.0 to 2.0 by step 0.01

Table 1

Contours values of the stream-function, the vorticity and the pressure.
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Scheme Grid Vmaz w X y
Present 128x128 0.11786 2.0508 0.46875 0.5625
Upwind 3 128x128 0.11796 2.0549 0.46875 0.5625
Kawamura 128x128 0.11790 2.0557 0.46875 0.5625
Quickest 128x128 0.11503 1.9910 0.46875 0.5625
Present 256256 0.11865 2.0634 0.46875 0.5664
Upwind 3 256x256 0.11870 2.0644 0.46875 0.5664
Kawamura 256x256 0.11867 2.0636 0.46875 0.5664
Quickest 256 %256 0.11599 2.0069 0.46875 0.5664
Present 512x512 0.11886 2.0665 0.46875 0.56445
Upwind 3 512x512 0.11887 2.0668 0.46875 0.56445
Kawamura 512x512 0.11887 2.0667 0.46875 0.56445
Quickest 512x512 0.11741 2.0350 0.46875 0.56445
Present 1024 x1024 0.11892 2.0674 0.46875 0.56543
Upwind 3 1024 x1024 0.11892 2.0674 0.46875 0.56445
Kawamura 1024 x1024 0.11892 2.0674 0.46875 0.56445
Quickest 1024x1024 0.11798 2.0434 0.46875 0.56445
Table 2

Comparison of the four third order schemes on the primary vortex at Re = 1000 :

maximum of the stream-function, vorticity and location.
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Scheme Grid Ymin w X y
Present 128x128 -1.7003x103 -1.1304 0.14063 0.10938
Upwind 3 128x128 -1.7322x1073 -1.1204 0.14063 0.10938
Kawamura 128x128 -1.7281x1073 -1.1138 0.14063 0.10938
Quickest 128x128 -1.7689x1073 -1.0771 0.13281 0.10938
Present 256256 -1.7219x1073 -1.1345 0.13672 0.11328
Upwind 3 256x256 -1.7303x1073 -1.1333 0.13672 0.11328
Kawamura 256x256 -1.7295%x1073 -1.1322 0.13672 0.11328
Quickest 256 %256 -1.7551x1073 -1.1340 0.13672 0.10938
Present 512x512 -1.7279%x1073 -1.1137 0.13672 0.11133
Upwind 3 512x512 -1.7300x1073 -1.1132 0.13672 0.11133
Kawamura 512x512 -1.7299%1073 -1.1131 0.13672 0.11133
Quickest 512x512 -1.7419%1073 -1.1082 0.13477 0.11133
Present 1024 x1024 -1.7292x1073 -1.1120 0.13574 0.11230
Upwind 3 1024 x1024 -1.7297x1073 -1.1143 0.13672 0.11133
Kawamura 1024 x1024 -1.7297x1073 -1.1143 0.13672 0.11133
Quickest 1024x1024 -1.7333x1073 -1.1265 0.13672 0.11133
Table 3

Comparison of the four third order schemes on the lower left secondary vortex at
Re = 1000 : minimum of the stream-function, vorticity and location.
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Scheme Grid Vmaz w X y
Present 128x128 0.11786 2.0508 0.46875  0.5625
Ghia [8] 128x128 0.117929 2.04968 0.4687 0.5625
Schreiber [20]  140x 140 0.11603 2.026 0.47143  0.56429
Vanka, [22] 320x 320 0.1173 - 0.4562 0.5625
Present 1024x1024  0.11892 2.0674 0.46875  0.56543
Botella [3] N = 160 0.1189366 2.067753 0.4692 0.5652
Scheme Grid Vmin w X y
Present 128x 128 -1.7003x 1073 -1.1304 0.14063  0.10938
Ghia [8] 128x128 -1.75102x103 -1.15465 0.14062  0.1094
Schreiber [20]  140x140 -1.700x10°3 -0.999 0.13571  0.10714
Vanka [22] 320x320  -1.74x10°3 - 0.1375  0.1063
Present 1024x1024  -1.7292x1073 -1.1120 0.13672  0.11230
Botella [3] N =160  -1.729717x1073 -1.109789  0.13602 0.1118
Table 4

Comparison of various works on the primary vortex and on the lower left secondary
vortex at Re = 1000.
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y u, Ref[8] u, Ref[3] wu, Present p, Ref[3] p, Present w, Ref[3] w, Present
1.0000 -1.00000 -1.00000 -1.00000 0.052987 0.052971 14.7534 14.792
0.9688 -0.57492 -0.58083 -0.58031 0.051514 0.051493  9.49496 9.4781
0.9531 -0.46604 -0.47233 -0.47239  0.050329 0.050314  4.85754 4.8628
0.7344 -0.18719 -0.18867 -0.18861 0.012122 0.012113  2.09121 2.0909
0.5000 0.06080  0.06205 0.06205 0.000000 0.000000  2.06722 2.0669
0.2813  0.27805  0.28036 0.28040 0.040377 0.040381 2.26722 2.2678
0.1016  0.29730  0.30045 0.30029 0.104187 0.10416 -1.63436 -1.6352
0.0625 0.20196  0.20233 0.20227  0.109200 0.10916 -2.31786 -2.3174
0.0000  0.00000  0.00000 0.00000 0.110591 0.11056 -4.16648 -4.1554
Table 5

Horizontal velocity, pressure and vorticity through the vertical centerline of the
cavity at Re = 1000 with the present scheme on grid 1024 x 1024.

x v, Ref[8] v, Ref]3] v D, Ref[3] P w, Ref[3] w
0.0000  0.00000  0.00000 0.00000 0.077455 0.077429 -5.46217  -5.4967
0.0391 -0.27669 -0.29368 -0.29330 0.078685 0.078658 -8.24616  -8.2462
0.0547 -0.39188 -0.41037 -0.41018 0.077154 0.077128 -6.50867 -6.5097
0.1406 -0.42665 -0.42645 -0.42634 0.049029 0.049004  3.43016 3.4294
0.5000 0.02526  0.02579  0.02580 0.000000  0.00000  2.06722 2.0669
0.7734  0.33075  0.33399 0.33398 0.047260 0.047259  2.00174 2.0010
0.9062  0.32627 0.33304 0.33290 0.084386 0.084369 -0.82398 -0.82517
0.9297  0.29012  0.29627  0.29622 0.087653 0.087625 -1.50306  -1.5025
1.0000  0.00000  0.00000 0.00000 0.090477 0.090448 -7.66369 -7.6333
Table 6

Vertical velocity, pressure and vorticity through the horizontal centerline of the
cavity at Re = 1000 with the present scheme on grid 1024 x 1024.
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Scheme Grid Energy Enstophy Palinstrophy
Present 128x128 0.043641 17.567 0.14377x 106
Upwind 3 128x128 0.043721 17.685 0.15280x 106
Kawamura, 128x128 0.043672 17.634 0.14815x 1016
Quickest 128x128 0.041973 17.394 0.14462x 1016
Present 256 %256 0.044286 19.328 0.48476x 106
Upwind 3 256 %256 0.044313 19.363 0.49696x 1016
Kawamura, 256 %256 0.044300 19.348 0.49253x 106
Quickest 256 %256 0.042690 19.159 0.48594x 1016
Present 512x512 0.044458 20.908 0.17708x 1017
Upwind 3 512x512 0.044466 20.918 0.17862x1017
Kawamura, 512x 512 0.044463 20.915 0.17831x1017
Quickest 512x512 0.043580 20.818 0.17749x10*7
Present 1024 %1024 0.044503 22.424 0.68169x 1017
Upwind 3 1024 % 1024 0.044500 22.426 0.68358x1017
Kawamura 1024 % 1024 0.044500 22.425 0.68343x 1017
Quickest 1024x1024 0.043967 22.374 0.68260x 1017
Table 7

Comparison of the four third order schemes on the global quantities energy, enstro-
phy and palinstrophy at Re = 1000.
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Scheme Grid Energy Enstophy Palinstrophy

Present 64x64 0.021564 4.6458 0.56113x10**
Present 128x128 0.022315 4.7711 0.70138x10**
Present 256 x 256 0.022542 4.8123 0.78165x 1074
Present 512x512 0.022607 4.8243 0.82699x 1074
Table 8

Convergence of the total quantities for the regularized cavity problem at Re = 1000.
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Scheme Grid Vmaz w X y
Present 128x128 0.11731 1.8595 0.48438 0.53906
Upwind 3 128x128 0.11755 1.9797 0.48438 0.53906
Kawamura 128x128 0.11795 1.8938 0.48438 0.53906
Quickest 128%x128 0.10889 1.6967 0.48438 0.53906
Present 256256 0.12064 1.9125 0.48438 0.53516
Upwind 3 256x256 0.12085 1.9196 0.48438 0.53516
Kawamura 256x256 0.12097 1.9219 0.48438 0.53516
Quickest 256 <256 0.11331 1.7706 0.48438 0.53516
Present 512x512 0.12173 1.9299 0.48438 0.53516
Upwind 3 512x512 0.12182 1.9327 0.48438 0.53516
Kawamura 512x512 0.12182 1.9331 0.48438 0.53516
Quickest 512x512 0.11710 1.8351 0.48438 0.53516
Present 1024 x1024 0.12193 1.9322 0.48535 0.53516
Upwind 3 1024 x1024 0.12200 1.9343 0.48535 0.53516
Table 9

Comparison of the four third order schemes on the primary vortex at Re = 5000 :

maximum of the stream-function, vorticity and location.
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Scheme Grid Ymin w X y
Present 128x128 -2.9313x10 3 -2.7718 0.19531 0.070313
Upwind 3 128x128 -3.0228 x1073 -2.4974 0.19531 0.078125
Kawamura 128x128 -2.9790x 1073 -2.4705 0.19531 0.078125
Quickest 128x128 -3.7090x 1073 -3.4205 0.19531 0.070313
Present 256 %256 -3.0348x 1073 -2.6330 0.19141 0.074219
Upwind 3 256 %256 -3.0630x 1073 -2.6810 0.19531 0.074219
Kawamura 256 x 256 -3.0573x1073 -2.6746 0.19531 0.074219
Quickest 256 x256 -3.4009x 1073 -3.1966 0.19531 0.070313
Present 512x512 -3.0618x1073 -2.7458 0.19531 0.072266
Upwind 3 512x512 -3.0708x1073 -2.7368 0.19531 0.072266
Kawamura 512x512 -3.0699x1073 -2.7355 0.19531 0.072266
Quickest 512x512 -3.2265x 1073 -2.9918 0.19531 0.070313
Present 1024x1024 -3.0694x1073 -2.7245 0.19434 0.073242
Upwind 3 1024x1024 -3.0722x10°3 -2.7735 0.19629 0.072266
Table 10

Comparison of the four third order schemes on the lower left secondary vortex at
Re = 5000 : minimum of the stream-function, vorticity and location.
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Scheme Grid Ymaz w X y

Present 256256 0.12064 1.9125 0.48438 0.53516
Ghia [8] 256x256 0.118966 1.86016  0.4883  0.5352
Huser [12] 80x80 stretched 0.1219 2.001 - -
Kim-Moin [14] 96x96 stretched 0.112 1.812 - -
Goodrich [10] 256x256 0.118 - 0.48438 0.53516
Vanka [22] 160% 160 0.0920 - 0.4875  0.5313
Pan-Glowinski [17] 256 x256 0.121218 - 0.4844  0.5352
Kupperman [15] 128x128 0.12216 - - -
Present (reference) 2048x2048 0.12197 1.9327  0.48535 0.53516
Scheme Grid Ymin w X y
Present 256256 -3.0348x1073  -2.6330  0.19141 0.074219
Ghia [8] 256x256 -3.0835x1073  -2.66354 0.1914  0.07422
Goodrich [10] 256 x 256 313 x1073 - 0.1953  0.07422
Vanka [22] 160x 160 -5.49 x1073 - 0.15 0.0813
Present (reference) 2048x2048 -3.0706x10°3  -2.7244  0.19434  0.073242
Table 11

Comparison of various works on the primary vortex and on the lower left secondary
vortex at Re = 5000.
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Scheme Grid energy enstrophy
Present 128128 0.043566 30.861
Upwind 3 128x128 0.043740 31.986
Kawamura 128%x128 0.043874 30.601
Quickest 128%x128 0.038563 29.535
Present 256256 0.046204 34.368
Upwind 3 256x256 0.046353 34.851
Kawamura 256 %256 0.046347 34.645
Quickest 256x256 0.041537 33.709
Present 512x512 0.047066 36.768
Upwind 3 512x512 0.047132 36.957
Kawamura 512x512 0.047126 36.890
Quickest 512x512 0.044084 36.325
Present 1024x1024 0.047255 38.643
Upwind 3 1024x1024 0.047292 38.698
Present 2048 %2048 0.047290 40.261
Table 12

Comparison of the four third order schemes on the global quantities energy and
enstrophy at Re = 5000.
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Re 10 100 1000 5000 7800 8000
T 38 110 242 1386 2243 7442
1 -5.2 -0.56 -0.076 -0.013 -0.0082 -0.0026
Table 13

Evolution of the Lyapunov exponent with Reynolds number.
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Fig. 1. A staggered cell
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Fig. 2. Steady solution at Re = 1000 computed with present scheme on grid
1024 x 1024. From left to right stream-function, vorticity and pressure fields.

31



Fig. 3. Steady solution at Re = 5000 computed with present scheme on grid
2048 x 2048. From left to right stream-function, vorticity and pressure fields.
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Fig. 6. Horizontal velocity history (left) and power spectrum (right) on grid 512x512
at monitoring point (14/16,13/16) for Re = 8100 and Re = 8200. Computation with
Gear scheme in time and present scheme in space.
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Fig. 7. Horizontal velocity history (left) and power spectrum (right) at monitoring
point (14/16,13/16) for Re = 10000. Computation with Gear scheme in time and
present scheme in space.
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Fig. 8. Phase portrait on grid 512 x 512 (left) and on grid 1024 x 1024 (right) at
monitoring point (14/16,13/16) for Re = 10000. Computation with Gear scheme in
time and present scheme in space.
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Fig. 9. Evolution of the streamfunction during one main period for Re = 10000 on
grid 1024 x 1024. From top to bottom and left to right are represented times ¢ = 0,
t=0.328, t = 0.656, t = 0.984, t = 1.312 and ¢ = 1.64.
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