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Abstract. Multiresolution methods like the wavelet packets or the cos ine
packets are more and more used in physical applications and i n particular
in two-dimensional turbulence. The theoretical bases of th ese decompositions
have been introduced in the �rst part of this paper. The numer ical results have
shown that the wavelet packets decomposition is well suited for studying this
kind of problem: the visualization of the vorticity �eld is b etter, without any
kind of artifacts contrary to the visualization with the cos ine packets �ltering.
The current second part of the paper is devoted to the physica l interpretation
of the �ltering process proposed in the �rst part. Only the wa velet packets
decomposition is considered here since the cosine packets did not give an entire
satisfaction.

1. Introduction. We have shown in the �rst part of this paper [6] that the wavelet
packets �ltering can be successfully used for analyzing two-dimensional turbulence.
This technique allows to separate two kinds of structures, the solid rotations com-
posed by the core of the vortices from the background mainly composed by vorticity
�laments. Furthermore, contrary to a direct cut-o� �lterin g, the wavelet packets
�ltering leads to continuous �ltered �elds. The spurious e� ects of the discontinu-
ities created by a direct �ltering have been discussed in [7]. There, it was shown
that the discontinuities are responsible for the creation of spurious coe�cients in
Fourier space thus altering the corresponding energy and enstrophy spectra.
The goal of this second part is to re�ne the explanations given in the �rst part and
to detail the physical interpretation of the �ltered �elds g iven in [4]. In particular,
the energy and enstrophy 
uxes have been computed and allow to get a better
understanding of the energy and enstrophy transfer processes through the scales.
A few results about the pressure �eld are also given in the paper.

2. Theoretical background. Two dimensional turbulence, in a �nite but peri-
odic domain, is governed by two invariants, the energy and the enstrophy. The
mean energyper unit mass E is de�ned by,

E �
�

1
2

jv j2
�

=
1
2

1
S(BL )

Z

B L

jv(x )j2dx (1)

whereBL denotes the physical domain of de�nition of v and S(BL ) its correspond-
ing surface. If one considers nowv as aL-periodic function, it can be decomposed
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as a Fourier series:
v(x ) =

X

k

v̂ (k )e
2 i�

L k :x ; k 2 Z2: (2)

The low-pass �ltered velocity function is then de�ned as,

v<
K (x ) =

X

j k j� K

v̂ (k )e
2 i�
L k :x (3)

and the high-pass �ltered velocity function as:

v>
K (x ) =

X

j k j>K

v̂ (k )e
2 i�
L k :x : (4)

This decomposition of the velocity,

v(x ) = v<
K (x ) + v>

K (x ); (5)

was used for the �rst time by Obukhov [12], [13]. Introducing this splitting in
the Navier-Stokes equations, one obtain a scale-by-scale energy budget equation
described by Frisch [8]:

@t E(K ) + � E (K ) = DE (K ) + FE (K ): (6)

where

E(K ) �
�

1
2

jv<
K j2

�
=

1
2

X

j k j� K

jv̂ (k )j2; (7)

denotes the cumulative energy, �E (K ) the energy 
ux due to the non linear terms
through the wavenumberK , DE (K ) the energy dissipation, andFE (K ) the energy
injection. The energy spectrum is then de�ned by,

E(k) �
dE(k)

dk
; (8)

and the total energy can be rewritten as,

E =
Z 1

0
E(k)dk: (9)

The same splitting can be used in the Navier-Stokes equationwritten for the vor-
ticity and a scale-by-scale enstrophy budget equation can be obtained:

@t Z (K ) + � Z (K ) = DZ (K ) + FZ (K ); (10)

where Z (K ) denotes the cumulative enstrophy, � Z (K ) the enstrophy 
ux, DZ (K )
the enstrophy dissipation, and FZ (K ) the enstrophy injection. The enstrophy Z
can be de�ned in the same way as the energy,

Z �
�

1
2

j! j2
�

=
1
2

1
S(BL )

Z

B L

j! (x )j2dx ; (11)

where ! = r � v is the vorticity �eld. The relation between the enstrophy an d the
enstrophy spectrum is then given by:

Z =
Z 1

0
Z (k)dk (12)

where Z (k) stands for the enstrophy spectrum. The energy and enstrophy spectra
are linked to each other in Fourier space by the following relation:

Z (k) =
�

2�k
L

� 2

E(k) (13)
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which reduces to

Z (k) = k2E(k) (14)

in a 2� -periodic bounded domain. Using the same notation as Tung and Gkioulekas
in [16] this relation can be written in a more general form:

Z (k) = �( k)E(k): (15)

The 
uxes are also related to each other by the same kind of relation:

@� Z (k)
@k

= �( k)
@� E (k)

@k
: (16)

Outside the forcing range, the 
uxes should verify the following inequality:

�( k)� E (k) < � Z (k): (17)

This inequality is a consequence of the classical boundary conditions: periodic or
in�nite. However, as described in [6], our experiments consist in the numerical
simulation of two-dimensional channel 
ow perturbed by arrays of cylinders with
a no-slip boundary condition in the across-channel direction. A non homogeneous
Dirichlet condition is imposed in the beginning of the channel, and an absorbing
condition is imposed at the end. The spectra are computed in aselected square
located at the end of the channel. Thus we do not have any periodic condition in
any case, and the relations described above between the energy and the enstrophy
spectra do not hold anymore. It has been shown in [7] that the energy-enstrophy
relation numerically diverges in our particular case. A detailed study has been
performed, and the results have shown that a Windowed Fourier Transform has to
be used for the spectra computations in order to remove the discontinuities created
by the boundary conditions.

3. The experimental setup and the �ltering process.

3.1. Experimental setup. In the �rst part [6], two numerical experiments, called
simulation I and II , had been performed. Slightly di�erent versions of simulation
II are considered in this paper. The additional cylinders along the channel are
still useful in order to increase the number of merging events, and thus to enhance
the inverse energy cascade phenomenon. In the �rst part, theenergy injection
scalekinj had been considered to be equal to the diameter of the �ve big cylinders
(kinj � 10). But it is a matter of fact that the small cylinders along t he sides of
the channel induce a second small energy injection aroundk = 20. So the energy
injection should be considered to lie between 10 and 20. In order to get a better
localized energy injection, the �ve big cylinders have beenreplaced by ten small
cylinders. From now, all the obstacles have the same diameter and induce the same
energy injection scale. The Reynolds number based on the cylinders diameter is
Re = 50000 that is large enough to get a fully developed turbulent 
ow. This is
about the same value as those used in soap �lm experiments [5,11]. A snapshot of
the vorticity �eld is given in Figure 1

The simulations have been performed on a 640� 2560 grid and the averages have
been computed with 25 snapshots. A Tukey window with the parameter equal to
0:1 has been used in all the computations in order to remove the discontinuities
created by the boundary conditions.
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Figure 1. Snapshot of the vorticity �eld

3.2. The �ltering process. The theory concerning the wavelet packets has been
already detailed in [6] and will not be reminded here. The same Daubechies type
wavelets are used in the current paper to build the packets array, and the entropy
criterion is used in the best basis selection process. In [6], few tests had been
performed in order to get the best wavelet mother, and to determine the number of
scales necessary for an e�cient representation of the 
ow. The criterion was then
the minimization of the entropy. It had been shown that it was not necessary to
perform the wavelet packets decomposition over more than 3 scales when the �nest
scale corresponds to a 320� 1280 grid. It has to be reminded that the scale sequence
goes from �nest scales to coarsest scales. It leads to the most e�cient representation
in the entropy meaning but not to the smoothest �elds after �ltering. It has been
shown in [7] that, as long as one is concerned with smoothing the discontinuities,
it is necessary to go over at least 4 scales (for a �nest scale corresponding to a
320� 1280 grid). That means that in [6], where only 3 scales were considered,
some spurious coe�cients due to the discontinuities remained in the spectra, and
the slopes detected in the �gures were partly altered. So in the results presented
in this second part of the paper, all the decompositions havebeen performed over
5 scales for a 640� 2560 grid. The overall �ltering process can be summarized as
follows:

1. Computation of the wavelet packets decomposition of the two components of
the velocity v = ( u; v) over 5 scales.

2. Separation of the velocity �elds into two sub�elds: one sub�eld, vs = ( us; vs),
where the wavelet packet coe�cients have their modulus larger than a given
threshold � and another one,v f = ( uf ; vf ) where the wavelet packet coe�-
cients are smaller than� .

3. Construction of the corresponding vorticity �elds, ! s and ! f . The �ltered
�eld ! s is then essentially composed by solid rotations, and the! f by vorticity
�laments.

4. Computations of the physical data: energy/enstrophy spectra/
uxes.

The velocity decomposition v = vs + v f is orthogonal and leads to the energy
spectrum decomposition:

E(k) = Es(k) + E f (k); (18)

as can be veri�ed in Figure 2.
First of all, we have to remark that because of the use of the windowing the

slopes in the original spectrum are steeper than the ones shown in [6]. Now we
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Figure 2. Original and �ltered (WP 5 scales) energy spectra
(kinj � 20).

observe a �rst slope around k � 2 and a second slope aroundk � 5:5. This is due
to the fact that all the spurious coe�cients due to the discon tinuities have been
removed. One can then notice that both components are multiscale, although
the part with the vortices dominates at low wavenumbers and the part mainly
composed by �laments dominates at high wavenumbers. The �rst slope is not
really clear but the second one is evident. These slopes and this decomposition can
be also observed on the enstrophy spectra given in Figure 3. It has been shown in
[7] that the relation (15) with �( k) = 4 � 2k2 between the energy and the enstrophy
spectra is veri�ed only in the middle part of the spectra.

Remark: The pressure �eld is rarely studied in papers about two-dimensional
turbulence but nevertheless can bring interesting information about the 
uid. A
snapshot of the end of the pressure �eld is given in Figure 4.

The pressure �eld can be compared to the corresponding vorticity �eld. The
decomposition into the two sub�elds obtained by the �lterin g process is also given
in Figure 4.

As can be easily observed, the peaks of the pressure correspond exactly to vor-
ticity peaks. They correspond obviously to the solid rotation structures, and it can
be expected that the pressure spectrum should present the same behavior as the
solid rotations spectrum. Both spectra are given in Figure 6and the similarity
between the shape of the pressure spectrum and the shape of the solid rotations
energy spectrum is clear.
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Figure 3. Original and �ltered (WP 5 scales) enstrophy spectra
(kinj � 20).

4. Energy and enstrophy 
uxes. We recall that the energy 
ux is computed
from the non linear term in the Navier-Stokes equation written in Fourier space:

� E (k) =
Z + 1

k
TE (k0)dk0 (19)

where TE (k) is the nonlinear energy transfer function and is obtained by angular

integration of \v � (k ): \(v:r )v (k ). The enstrophy 
ux is obtained in the same way:

� Z (k) =
Z + 1

k
TZ (k0)dk0 (20)

where TZ (k) is the enstrophy transfer function and is obtained by angular

integration of \w� (k ): \(v :r )w(k ).

The inequality in equation (17) brought to the attention of T ung and Gkioulekas
by Danilov has been discussed in [16]. According to Tung and Gkioulekas, if an
inertial range exists, then this inequality describes the process of the transition from
the leading cascade to the subleading cascade observed in the energy spectrum. As
can be noticed in Figure 7, this inequality is veri�ed almost everywhere except
in a small range at large scales. It is not surprising since the inertial range does
not stretch out on large scales. It has been mentionned by Tran in [15] that the
behavior at large scales of a 
uid in an elongated and doubly periodic domain is far
from understood. He describes in that paper how the inverse energy cascade can be
partially stopped. Furthermore in our case, the boundary conditions are di�erent
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Figure 4. Snapshots at the end of the channel (kinj � 20)

and the 
uid dynamics at large scale is very hard to predict. However, it can be
noticed that the inequality is veri�ed around k = 20 which is supposed to be the
injection scale.

Let us now study the energy and enstrophy 
uxes themselves. The energy and
enstrophy 
uxes corresponding to those experiments are respectively given in Fig-
ure 8 and 9. The energy 
ux is negative for wavenumbersk below the injection
scale 20 and slightly positive above. The enstrophy 
ux is onthe other hand pos-
itive above the injection scale, and negative below. The zero crossing corresponds
approximately to the injection scale. These results show the existence of leading
cascades, upscales for the inverse energy cascade and downscales for the direct en-
strophy cascade but also the existence of subleading cascades as theoretically shown
by Tung and Gkioulekas in [9, 10] and [16]. It can also be noticed that the injection
scale being relatively large, the energy cascade cannot be developed completely.
On the other side, the enstrophy cascade does not present any\plateau" because
we did not use any arti�cial dissipation term like an hypervi scosity term. The two
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Figure 5. Snapshots at the end of the channel (kinj � 20)
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Figure 6. Pressure and solid rotations spectra (kinj � 20).

cascades could be improved by using arti�cial dissipation terms at large and small
scales.

4.1. Fluxes for the �ltered �elds. In order to study, in detail, the energy trans-
fer, we focus now on the nonlinear energy transfer function which, due to the
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orthogonal decomposition, can be written as:

TE (k ) = \v � (k ): \(v:r )v (k )

= \vs
� (k ): \(v :r )vs (k ) + \vs

� (k ): \(v :r )v f (k ) (21)

+ \v f
� (k ): \(v:r )vs (k ) + \v f

� (k ): \(v :r )v f (k ):

The global energy transfer can be split into four parts corresponding to the
multiscale transfers from one sub�eld to itself or to the other one. For instance,
cvs

� (k ): \(v:r )v f (k ) is the energy transfer from the vorticity �laments sub�eld to
the solid rotation sub�eld. The 
uxes corresponding to each term in the expression
for the total energy transfer function will be denoted as forexample � f ! s

E which is
the 
ux corresponding to the transfer term previously described. In the same way,
the nonlinear enstrophy transfer term is also split into four parts:

TZ (k ) = \! � (k ): \(v :r )! (k )

= \! �
s (k ): \(v :r )! s(k ) + \! �

s (k ): \(v :r )! f (k ) (22)

+ \! �
f (k ): \(v:r )! s(k ) + \! �

f (k ): \(v:r )! f (k ):

Using these decompositions, the 
uxes associated with eachstructure as well as the

uxes associated with the interactions of the two structures can be obtained. Let
us �rst consider the energy 
uxes of the whole 
ow and of the separate structures
in Figure 8.

The energy 
ux for the vortices shows a large negative part atsmall k which
is similar to the total 
ux and becomes very small and close to zero beyond the
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Figure 8. Energy 
uxes of the whole 
ow and of the separate
structures (kinj � 20).

injection scale. The energy 
ux associated with the �laments is negative but small
at small k and becomes slightly positive near the injection scale before becoming
zero at the high k end.

The enstrophy 
ux for the vortices is negative at small k and becomes close
to zero beyond the injection scale. The enstrophy 
ux for the �laments is on the
other hand large and positive for the high k after the injection scale and is very
close to the value of the total 
ux in this region of wavenumbers. This preliminary
examination of the 
uxes indicates that the main part of the energy 
ux comes
from the solid rotations while the main part of the enstrophy 
ux comes from the
�lamentary structures.
It is however possible to give a more detailed analysis of theenergy and enstrophy
transfers. When computing the nonlinear terms, we are comparing in fact the
Fourier spectrum of a two dimensional �eld, \! s(k ) for instance, to the Fourier

spectrum of a transported �eld, \(v:r )! f (k ) on the other hand. The energy 
ux
from the vortices to the �laments and vice versa are an order of magnitude smaller
than the 
ux due to the �laments or the 
ux due to the vortices. However, the
cross 
uxes of enstrophy show an interesting feature in Figure 10. � f ! s

Z and � s! f
Z

are of opposite sign and have amplitudes comparable to the total enstrophy 
ux.
However, the sum of these two 
uxes � f ! s

Z + � s! f
Z turns out to be very close to

zero. While the transfer from the �laments to the vortices is positive at small k and
very close to zero beyond the injection scale, the 
ux of enstrophy from the vortices
to the �laments is negative at small k and goes to zero at highk. Although both

uxes compensate each other, there is a clear interaction between the two di�erent
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structures. The vortices transfer enstrophy to the �lament s from the small scales
to the large scales while the �laments transfer enstrophy tothe vortices from large
scales to the small scales.

4.2. The inverse energy cascade. In order to improve the generation of each
cascade separately, one can try to move the injection scale from one side of the
spectrum to the other one. However, the possible shifts are very limited due to
numerical constraints. The penalization method used to take into account the
obstacles in the equations and the discretization step sizedo not allow the use of
very small cylinders. One can however de�ne obstacles of size corresponding to an
injection scale of kinj � 40. The Reynolds number is still kept equal to 50000 in
these new numerical computations. The computations have been performed on a
grid of size 1024� 4096. A snapshot corresponding to this new geometry is given
in Figure 11. The statistics to compute the 
uxes have been performed only on 20
snapshots in order to limit the size of the data. Consequently the 
uxes are less
smooth than in the previous case.

Figure 11. Snapshot of the vorticity �eld

As can be expected, the inverse energy cascade has more room to take place and
the energy 
ux tends to go to zero at the largest scales (Figure 12) and goes back
to zero close to the injection scale (k � 40).
The direct enstrophy cascade still exists at scales larger than the injection scale
(Figure 13) and can be observed untilk � 100. One can also notice that the
enstrophy 
ux crosses the zero axis around the injection scale (k � 40).

4.3. The direct enstrophy cascade. In order to study the direct enstrophy cas-
cade, the geometry of the numerical experiment has been modi�ed again. The
turbulence is now created by three arrays of big cylinders.This setup produces an
injection scale kinj located around k = 9 ( Re = 50000). The computations have
been performed on a grid of size 512� 2048. A snapshot of the vorticity �eld
corresponding to this setup is given in Figure 14.

As can be veri�ed on the corresponding energy 
ux given in �gure 15, the injec-
tion scale is too large to allow the development of a full inverse energy cascade.

The enstrophy 
ux is given in Figure 16 and it can be observed on the graph that
the direct enstrophy cascade beyond the injection scale does exist. But it can also
be observed a strong enstrophy transfer from the injection scale toward the largest
scales. One notice again that the enstrophy 
ux crosses the zero axis around the
injection scale (k � 9).
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Figure 12. Energy 
uxes of the whole 
ow and of the separate
structures (kinj � 40).

Finally, the shifting of the injection scale from kinj � 9 to k � 40 essentially
in
uences what is going on before the injection scale but modify only slightly the

uxes beyond it. However, if a much larger injection scale could be set then the
enstrophy cascade would be certainly altered. In addition,one can observe that
the amplitude of the enstrophy 
ux increases whith the injection scale. This is due
to the fact that the number of vortices also increases with the injection scale.

5. Decomposition of the transport operator. We have studied in the previous
paragraphs the roles played by the various structures in theglobal energy and
enstrophy transfers and the interactions occurring between them. It is however
possible to specify how these interactions take place or more exactly what are
the media allowing those transfers. Indeed, thanks to the decomposition of the
transport operator itself, it will be shown in this part that the solid rotations of
the vortices are the means of transport of the energy and enstrophy transfers.

Thus the transport operator can be decomposed into two parts:

(v:r ) = ( vs :r ) + ( v f :r ): (23)

By performing this decomposition one can separate the energy or enstrophy trans-
port due to the solid rotations from the transport due to the � laments. Finally
each term of the equations (21) and (22) can be also split intotwo parts leading to
the following complete decompositions:
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Figure 13. Enstrophy 
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Figure 14. Snapshot of the vorticity �eld

TE (k ) = \vs
� (k ): \(vs :r )vs (k ) + \vs

� (k ): \(v f :r )vs (k ) (24)

+ \vs
� (k ): \(vs :r )v f (k ) + \vs

� (k ): \(v f :r )v f (k )

+ \v f
� (k ): \(vs :r )vs (k ) + \v f

� (k ): \(v f :r )vs (k )

+ \v f
� (k ): \(vs :r )v f (k ): + \v f

� (k ): \(v f :r )v f (k );

and
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Figure 15. Energy 
uxes of the whole 
ow and of the separate
structures (kinj � 9).

TZ (k ) = \! �
s (k ): \(vs :r )! s(k ) + \! �

s (k ): \(v f :r )! s(k ) (25)

+ \! �
s (k ): \(vs :r )! f (k ) + \! �

s (k ): \(v f :r )! f (k )

+ \! �
f (k ): \(vs :r )! s(k ) + \! �

f (k ): \(v f :r )! s(k )

+ \! �
f (k ): \(vs :r )! f (k ) + \! �

f (k ): \(v f :r )! f (k ):

For instance, the second term in the right hand side of (25) describes the enstrophy
transfer from the solid rotations to themselves by the �lamentary structures. One
can thus detail the main terms responsible for the 
uxes:

� s! s
E = � s! s! s

E + � s! f ! s
E ; (26)

for the energy transfer and,

� f ! f
Z = � f ! s! f

Z + � f ! f ! f
Z ; (27)

for the enstrophy transfer. The various terms corresponding to these decomposi-
tions have been computed for the �rst numerical experiment with the injection scale
kinj equal to 20 described in the beginning of the paper. The decompositions are
given in Figures 17 and 18. The outstanding result of these decompositions is that
in both cases the solid rotations are the media responsible for the two transfers.
Thus the vortices transport the energy from vortices to vortices and the enstrophy
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Figure 16. Enstrophy 
uxes of the whole 
ow and of the separate
structures (kinj � 9).

from �laments to �laments. The �lamentary structures are re sponsible for the di-
rect enstrophy cascades thanks to the solid rotations dynamics. On the other hand,
the inverse energy cascade is completely due to the vortices.

6. Conclusion. All the results presented in this paper were obtained with a forcing
naturally created by the obstacles. No arti�cial force has been introduced and the
dissipation is only due to the classical term without any hyper or hypo viscosity.
The boundary conditions are quite realistic and close to theconditions that can
be found in a river with a two dimensional turbulence createdby the pillars of a
bridge for instance. The theory for this realistic setup does not yet exist, and the
comparison to the classical Kolmogorov-Leith-Kraichnan can be only limited. Tran
in [15] studied the case of a large-scale transverse 
ows of incompressible 
uid in
an elongated doubly periodic domain. He concluded that manyquestions are still
open and should be adressed by numerical methods. Our numerical experiments
shed light on this particular problem.
Concerning our speci�c numerical experiments, we can conclude that an inverse
energy cascade and a direct enstrophy cascade exist. An inverse enstrophy cascade
and a small direct energy cascade also exist. The importanceof these cascades is
linked to the size of the injection scale. Furthermore, the energy spectra do not
present the classicalk � 5=3 and k � 3 slopes. We found a scaling law ink � 2 for the
inverse energy transfer and ink � 5:5 for the enstrophy transfer. The energy cascade
is due to an energy transfer inside the core of the vortices and the enstrophy cascade
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Figure 17. Decomposition of the main term responsible for the
energy cascade (kinj � 20).

is due to an enstrophy transfer from �laments to themselves.The structures alowing
the two transfers are the solid rotation parts of the vortices.
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