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Abstract. Multiresolution methods like the wavelet packets or the cos ine
packets are more and more used in physical applications and i n particular
in two-dimensional turbulence. The theoretical bases of th ese decompositions
have been introduced in the rst part of this paper. The numer ical results have
shown that the wavelet packets decomposition is well suited for studying this
kind of problem: the visualization of the vorticity eld is b etter, without any
kind of artifacts contrary to the visualization with the cos  ine packets ltering.
The current second part of the paper is devoted to the physica | interpretation
of the ltering process proposed in the rst part. Only the wa  velet packets
decomposition is considered here since the cosine packets did not give an entire
satisfaction.

1. Introduction.  We have shown in the rst part of this paper [6] that the wavelet
packets ltering can be successfully used for analyzing twalimensional turbulence.
This technique allows to separate two kinds of structures, he solid rotations com-
posed by the core of the vortices from the background mainly emposed by vorticity
laments. Furthermore, contrary to a direct cut-o lterin g, the wavelet packets
Itering leads to continuous Itered elds. The spurious e ects of the discontinu-
ities created by a direct Itering have been discussed in [7] There, it was shown
that the discontinuities are responsible for the creation d spurious coe cients in
Fourier space thus altering the corresponding energy and estrophy spectra.

The goal of this second part is to re ne the explanations given in the rst part and
to detail the physical interpretation of the Itered elds g iven in [4]. In particular,
the energy and enstrophy uxes have been computed and allowda get a better
understanding of the energy and enstrophy transfer process through the scales.
A few results about the pressure eld are also given in the papr.

2. Theoretical background. Two dimensional turbulence, in a nite but peri-
odic domain, is governed by two invariants, the energy and tle enstrophy. The
mean energyper unit massE is de ned by,

1. ., 1 1 . .
E SViT = 25(B1) BLJV(X)J dx (1)

where B denotes the physical domain of de nition of v and S(B_ ) its correspond-
ing surface. If one considers now as al -periodic function, it can be decomposed
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as a Fourier series: X .
vix)=  0(k)etT k¥, k2 z% )
k
The low-pass Itered velocity function )I(S then de ned as,
Vi) = e(k)e T ©)
ki K
and the high-pass Itered velocity fung;tion as:
vi()= o e(keth @
jki>K
This decomposition of the velocity,
V(x) = v (x)+ vi (X); (5)

was used for the rst time by Obukhov [12], [13]. Introducing this splitting in
the Navier-Stokes equations, one obtain a scale-by-scalsmergy budget equation
described by Frisch [8]:

@E(K)+ g(K)= De(K)+ Fe(K): (6)
where
E(K 1. .., _1X (k)2 .
(K) SVkl® =5 1K) (7)
jkj K

denotes the cumulative energy, e (K) the energy ux due to the non linear terms
through the wavenumberK , Dg (K ) the energy dissipation, andFg (K ) the energy
injection. The energy spectrum is then de ned by,

dE(K)
E()  — ®)
and the total energy can be rewritten as,
1
E = E (k)dk: 9)

0
The same splitting can be used in the Navier-Stokes equatiomvritten for the vor-
ticity and a scale-by-scale enstrophy budget equation can & obtained:

@Z(K)+ z(K)= Dz(K)+ Fz(K); (10)

where Z (K') denotes the cumulative enstrophy, 7 (K) the enstrophy ux, Dz (K)
the enstrophy dissipation, and Fz (K ) the enstrophy injection. The enstrophy Z
can be de ned in the same way as the energy,

1

1
Z ' o= so=— j(0)jPdx; 11
5l ] 25(B1) &, (x) (11)
where! = r v is the vorticity eld. The relation between the enstrophy an d the
enstrophy spectrum is then given by:
1
Z= Z(k)dk (12)

0

where Z (k) stands for the enstrophy spectrum. The energy and enstropy spectra
are linked to each other in Fourier space by the following retion:

2
Z(k) = % E (K) (13)
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which reduces to
Z (k) = k2E (k) (14)

ina 2 -periodic bounded domain. Using the same notation as Tung ath Gkioulekas
in [16] this relation can be written in a more general form:

Z(k) = ( KE(K): (15)
The uxes are also related to each other by the same kind of reltion:
@ z(k) _ @ e (k).
@K ( k) @k (16)
Outside the forcing range, the uxes should verify the following inequality:
(k) e(k)< z(k): a7

This inequality is a consequence of the classical boundaryonditions: periodic or
in nite. However, as described in [6], our experiments conist in the numerical
simulation of two-dimensional channel ow perturbed by arrays of cylinders with
a no-slip boundary condition in the across-channel directon. A non homogeneous
Dirichlet condition is imposed in the beginning of the chanrel, and an absorbing
condition is imposed at the end. The spectra are computed in aelected square
located at the end of the channel. Thus we do not have any peridic condition in
any case, and the relations described above between the eggrand the enstrophy
spectra do not hold anymore. It has been shown in [7] that the mergy-enstrophy
relation numerically diverges in our particular case. A detiled study has been
performed, and the results have shown that a Windowed Fourie Transform has to
be used for the spectra computations in order to remove the dicontinuities created
by the boundary conditions.

3. The experimental setup and the lItering process.

3.1. Experimental setup. In the rst part [6], two numerical experiments, called
simulation | and Il, had been performed. Slightly di erent versions of simulation
Il are considered in this paper. The additional cylinders alog the channel are
still useful in order to increase the number of merging evers, and thus to enhance
the inverse energy cascade phenomenon. In the rst part, theenergy injection
scaleki,y had been considered to be equal to the diameter of the ve bigyinders
(Kinj 10). But it is a matter of fact that the small cylinders along t he sides of
the channel induce a second small energy injection arounl = 20. So the energy
injection should be considered to lie between 10 and 20. In der to get a better
localized energy injection, the ve big cylinders have beenreplaced by ten small
cylinders. From now, all the obstacles have the same diameteand induce the same
energy injection scale. The Reynolds number based on the dpders diameter is
Re = 50000 that is large enough to get a fully developed turbulemn ow. This is
about the same value as those used in soap Im experiments [3,1]. A shapshot of
the vorticity eld is given in Figure 1

The simulations have been performed on a 640 2560 grid and the averages have
been computed with 25 snapshots. A Tukey window with the paraneter equal to
0:1 has been used in all the computations in order to remove the idcontinuities
created by the boundary conditions.
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Figure 1. Snapshot of the vorticity eld

3.2. The ltering process. The theory concerning the wavelet packets has been
already detailed in [6] and will not be reminded here. The sare Daubechies type
wavelets are used in the current paper to build the packets anay, and the entropy
criterion is used in the best basis selection process. In [6few tests had been
performed in order to get the best wavelet mother, and to detemine the number of
scales necessary for an e cient representation of the ow. The criterion was then
the minimization of the entropy. It had been shown that it was not necessary to
perform the wavelet packets decomposition over more than 3cales when the nest
scale corresponds to a 3201280 grid. It has to be reminded that the scale sequence
goes from nest scales to coarsest scales. It leads to the ntascient representation

in the entropy meaning but not to the smoothest elds after ltering. It has been
shown in [7] that, as long as one is concerned with smoothinghe discontinuities,
it is necessary to go over at least 4 scales (for a nest scaleooesponding to a
320 1280 grid). That means that in [6], where only 3 scales were esidered,
some spurious coe cients due to the discontinuities remaired in the spectra, and
the slopes detected in the gures were partly altered. So in he results presented
in this second part of the paper, all the decompositions havdéeen performed over
5 scales for a 640 2560 grid. The overall ltering process can be summarized as
follows:

1. Computation of the wavelet packets decomposition of the wo components of
the velocity v = (u;v) over 5 scales.

2. Separation of the velocity elds into two sub elds: one sub eld, vs = (us;Vs),
where the wavelet packet coe cients have their modulus larger than a given
threshold and another one,v; = (us;Vv;) where the wavelet packet coe -
cients are smaller than .

3. Construction of the corresponding vorticity elds, ! and ! ;. The ltered
eld ! 5 is then essentially composed by solid rotations, and thé s by vorticity
laments.

4. Computations of the physical data: energy/enstrophy spetra/ uxes.

The velocity decompositionv = vg + v; is orthogonal and leads to the energy
spectrum decomposition:

E(k) = Es(k) + Ef (k); (18)
as can be veri ed in Figure 2.

First of all, we have to remark that because of the use of the widowing the

slopes in the original spectrum are steeper than the ones shm in [6]. Now we
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Figure 2. Original and Itered (WP 5 scales) energy spectra
(ki 20).

observe a rst slope aroundk 2 and a second slope aroundk °°. This is due

to the fact that all the spurious coe cients due to the discontinuities have been

removed. One can then notice that both components are multisale, although

the part with the vortices dominates at low wavenumbers and the part mainly

composed by laments dominates at high wavenumbers. The rg¢ slope is not

really clear but the second one is evident. These slopes antlis decomposition can
be also observed on the enstrophy spectra given in Figure 3t has been shown in
[7] that the relation (15) with ( k) =4 2k? between the energy and the enstrophy
spectra is veri ed only in the middle part of the spectra.

Remark: The pressure eld is rarely studied in papers about two-dimensional
turbulence but nevertheless can bring interesting informaion about the uid. A
shapshot of the end of the pressure eld is given in Figure 4.

The pressure eld can be compared to the corresponding vortity eld. The
decomposition into the two sub elds obtained by the lIterin g process is also given
in Figure 4.

As can be easily observed, the peaks of the pressure corresgloexactly to vor-
ticity peaks. They correspond obviously to the solid rotation structures, and it can
be expected that the pressure spectrum should present the s@ behavior as the
solid rotations spectrum. Both spectra are given in Figure 6and the similarity
between the shape of the pressure spectrum and the shape ofétsolid rotations
energy spectrum is clear.
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Figure 3. Original and ltered (WP 5 scales) enstrophy spectra

(Kinj 20).

4. Energy and enstrophy uxes. We recall that the energy ux is computed
from the non linear term in the Navier-Stokes equation written in Fourier space:
+1
e(k) = Te (k9)dk® (19)

k

where Tg (k) is the nonlinear energy transfer function and is obtained ly angular

integration of v (k):(v:\r )v(k). The enstrophy ux is obtained in the same way:
+1
z(k) = Tz (k)dk° (20)
k

where Tz (k) is the enstrophy transfer function and is obtained by angubr
integration of W (k):(v:Y )w(k).

The inequality in equation (17) brought to the attention of T ung and Gkioulekas
by Danilov has been discussed in [16]. According to Tung and W@oulekas, if an
inertial range exists, then this inequality describes the pocess of the transition from
the leading cascade to the subleading cascade observed iretlenergy spectrum. As
can be noticed in Figure 7, this inequality is veri ed almost everywhere except
in a small range at large scales. It is not surprising since té inertial range does
not stretch out on large scales. It has been mentionned by Tra in [15] that the
behavior at large scales of a uid in an elongated and doubly priodic domain is far
from understood. He describes in that paper how the inverserergy cascade can be
partially stopped. Furthermore in our case, the boundary canditions are di erent
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Figure 4. Snapshots at the end of the channelK;,; 20)

and the uid dynamics at large scale is very hard to predict. However, it can be
noticed that the inequality is veri ed around k = 20 which is supposed to be the
injection scale.

Let us now study the energy and enstrophy uxes themselves. fie energy and
enstrophy uxes corresponding to those experiments are rggectively given in Fig-
ure 8 and 9. The energy ux is negative for wavenumbersk below the injection
scale 20 and slightly positive above. The enstrophy ux is onthe other hand pos-
itive above the injection scale, and negative below. The zer crossing corresponds
approximately to the injection scale. These results show tle existence of leading
cascades, upscales for the inverse energy cascade and dovahss for the direct en-
strophy cascade but also the existence of subleading casaslas theoretically shown
by Tung and Gkioulekas in [9, 10] and [16]. It can also be notied that the injection
scale being relatively large, the energy cascade cannot beedeloped completely.
On the other side, the enstrophy cascade does not present arlplateau” because
we did not use any arti cial dissipation term like an hypervi scosity term. The two
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Figure 5. Snapshots at the end of the channelK;,; 20)
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Figure 6. Pressure and solid rotations spectra Kin; 20).

cascades could be improved by using arti cial dissipation erms at large and small
scales.

4.1. Fluxes for the Itered elds. In order to study, in detail, the energy trans-
fer, we focus now on the nonlinear energy transfer function wich, due to the
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Figure 7. z g allowing to verify the Danilov inequality.

orthogonal decomposition, can be written as:
Te (k) ¥ (K):(vY v(k)
Vs (K):(vik Jvs(k) + Vs (K):(vib Yvr (K) (21)
+ % (K):(vik )vs(K) + W (K)s(vir vy (K):
The global energy transfer can be split into four parts corresponding to the
multiscale transfers from one sub eld to itself or to the other one. For instance,
s (k):(\):r )vs (k) is the energy transfer from the vorticity laments subeld to

the solid rotation sub eld. The uxes corresponding to each term in the expression

for the total energy transfer function will be denoted as forexample fE’ ® which is
the ux corresponding to the transfer term previously described. In the same way,

the nonlinear enstrophy transfer term is also split into four parts:
Tz(k) = M (k):(v¥)! (k)
= M k)(vih ) (k) + M (k)i ) g (k) (22)
+ 0 ()i(vit ) s(k) + M (K)(vi ) g (K):
Using these decompositions, the uxes associated with eacktructure as well as the
uxes associated with the interactions of the two structures can be obtained. Let

us rst consider the energy uxes of the whole ow and of the separate structures
in Figure 8.

The energy ux for the vortices shows a large negative part atsmall k which
is similar to the total ux and becomes very small and close tozero beyond the
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0.2 : —_— : —_—

Figure 8. Energy uxes of the whole ow and of the separate
structures (Kin; 20).

injection scale. The energy ux associated with the laments is negative but small
at small k and becomes slightly positive near the injection scale befe becoming
zero at the high k end.

The enstrophy ux for the vortices is negative at small k and becomes close
to zero beyond the injection scale. The enstrophy ux for the laments is on the
other hand large and positive for the highk after the injection scale and is very
close to the value of the total ux in this region of wavenumbers. This preliminary
examination of the uxes indicates that the main part of the energy ux comes
from the solid rotations while the main part of the enstrophy ux comes from the
lamentary structures.

It is however possible to give a more detailed analysis of thenergy and enstrophy
transfers. When computing the nonlinear terms, we are compang in fact the

Fourier spectrum of a two dimensional eld, .“s(k) for instance, to the Fourier

spectrum of a transported eld, (v:? )!'t (k) on the other hand. The energy ux
from the vortices to the laments and vice versa are an order ¢ magnitude smaller
than the ux due to the laments or the ux due to the vortices. However, the
cross uxes of enstrophy show an interesting feature in Figue 10. fz! * and §! f

are of opposite sign and have amplitudes comparable to the tal enstrophy ux.

However, the sum of these two uxes fz! S+ 3 " turns out to be very close to
zero. While the transfer from the laments to the vortices is positive at small k and
very close to zero beyond the injection scale, the ux of engsbphy from the vortices
to the laments is negative at small k and goes to zero at highk. Although both

uxes compensate each other, there is a clear interaction teveen the two di erent
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Figure 9. Enstrophy uxes of the whole ow and of the separate
structures (Kin; 20).
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Figure 10. Cross uxes of enstrophy (Kinj 20).
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structures. The vortices transfer enstrophy to the laments from the small scales
to the large scales while the laments transfer enstrophy tothe vortices from large
scales to the small scales.

4.2. The inverse energy cascade. In order to improve the generation of each
cascade separately, one can try to move the injection scaledm one side of the
spectrum to the other one. However, the possible shifts areery limited due to
numerical constraints. The penalization method used to tale into account the
obstacles in the equations and the discretization step sizelo not allow the use of
very small cylinders. One can however de ne obstacles of szcorresponding to an
injection scale of Kin; 40. The Reynolds number is still kept equal to 50000 in
these new numerical computations. The computations have ben performed on a
grid of size 1024 4096. A snapshot corresponding to this new geometry is given
in Figure 11. The statistics to compute the uxes have been peformed only on 20
shapshots in order to limit the size of the data. Consequentl the uxes are less
smooth than in the previous case.

Figure 11. Snapshot of the vorticity eld

As can be expected, the inverse energy cascade has more roootake place and
the energy ux tends to go to zero at the largest scales (Figue 12) and goes back
to zero close to the injection scalek  40).

The direct enstrophy cascade still exists at scales largerhian the injection scale
(Figure 13) and can be observed untilk 100. One can also notice that the
enstrophy ux crosses the zero axis around the injection scla (k  40).

4.3. The direct enstrophy cascade. In order to study the direct enstrophy cas-
cade, the geometry of the numerical experiment has been moed again. The
turbulence is now created by three arrays of big cylinders.his setup produces an
injection scale kin; located aroundk = 9 (Re = 50000). The computations have
been performed on a grid of size 512 2048. A snapshot of the vorticity eld
corresponding to this setup is given in Figure 14.

As can be veri ed on the corresponding energy ux given in gure 15, the injec-
tion scale is too large to allow the development of a full invese energy cascade.

The enstrophy ux is given in Figure 16 and it can be observed a the graph that
the direct enstrophy cascade beyond the injection scale deeexist. But it can also
be observed a strong enstrophy transfer from the injection sale toward the largest
scales. One notice again that the enstrophy ux crosses theero axis around the
injection scale k 9).
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0.1 : _— : —_—

Figure 12. Energy uxes of the whole ow and of the separate
structures (Kin; 40).

Finally, the shifting of the injection scale from Kiy 9to k 40 essentially
in uences what is going on before the injection scale but mody only slightly the
uxes beyond it. However, if a much larger injection scale cald be set then the
enstrophy cascade would be certainly altered. In addition,one can observe that
the amplitude of the enstrophy ux increases whith the injection scale. This is due
to the fact that the number of vortices also increases with tre injection scale.

5. Decomposition of the transport operator. We have studied in the previous
paragraphs the roles played by the various structures in theglobal energy and
enstrophy transfers and the interactions occurring betwea them. It is however
possible to specify how these interactions take place or merexactly what are
the media allowing those transfers. Indeed, thanks to the deomposition of the
transport operator itself, it will be shown in this part that the solid rotations of
the vortices are the means of transport of the energy and ensbphy transfers.
Thus the transport operator can be decomposed into two parts

(vir Y=(vsir )+ (vsir): (23)

By performing this decomposition one can separate the eneygor enstrophy trans-
port due to the solid rotations from the transport due to the laments. Finally
each term of the equations (21) and (22) can be also split intdwo parts leading to
the following complete decompasitions:



14

CH.-H BRUNEAU, P. FISCHER, H. KELLAY

1000

800

600

400

200

-200

-400

-600 i -
10 10 10

Figure 13. Enstrophy uxes of the whole ow and of the separate
structures (Kin; 40).

and

Figure 14. Snapshot of the vorticity eld

Te(k) = Vs (K):(vs¥ vs(k) + Vs (K):(ve ¥r Jvs(k) (24)
+ Vs (K):(vs Y Jvi (k) + Vs (K)i(ve ¥ )vr (K)
+ W (K):(vs Y Vs (k) + W (K):(vi ¥ vs(K)
+ W (K):(vsY ve (K): + W (K)x(ve Y vy (K);
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Figure 15. Energy uxes of the whole ow and of the separate
structures (Kin; 9).

T2(k) = M (k):(ve¥ ) s(k) + M(k):(vi ¥ )1 (k) (25)
+ b ():(vs Y ) (k) + A (k)(ve Y )1 e(K)
+ 0 (K)i(ve ) (k) + M (K):(vr ¥ ) s(K)
+ M )(veX ) (k) + N (K)(ve Y ) (K):
For instance, the second term in the right hand side of (25) decribes the enstrophy
transfer from the solid rotations to themselves by the lamentary structures. One
can thus detail the main terms responsible for the uxes:
sts- slslsy SE!f!s; (26)
for the energy transfer and,

fZ!f= fz!s!f+ fZ!f!f; @7)
for the enstrophy transfer. The various terms correspondirg to these decomposi-
tions have been computed for the rst numerical experiment with the injection scale
kinj equal to 20 described in the beginning of the paper. The decopositions are
given in Figures 17 and 18. The outstanding result of these d@mpositions is that
in both cases the solid rotations are the media responsibleof the two transfers.
Thus the vortices transport the energy from vortices to vortices and the enstrophy
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Figure 16. Enstrophy uxes of the whole ow and of the separate
structures (Kin; 9).

from laments to laments. The lamentary structures are re sponsible for the di-
rect enstrophy cascades thanks to the solid rotations dynarnes. On the other hand,
the inverse energy cascade is completely due to the vortices

6. Conclusion. Allthe results presented in this paper were obtained with a brcing
naturally created by the obstacles. No arti cial force has been introduced and the
dissipation is only due to the classical term without any hyper or hypo viscosity.
The boundary conditions are quite realistic and close to theconditions that can
be found in a river with a two dimensional turbulence createdby the pillars of a
bridge for instance. The theory for this realistic setup doe not yet exist, and the
comparison to the classical Kolmogorov-Leith-Kraichnan @n be only limited. Tran
in [15] studied the case of a large-scale transverse ows oficompressible uid in
an elongated doubly periodic domain. He concluded that manyquestions are still
open and should be adressed by numerical methods. Our numed! experiments
shed light on this particular problem.

Concerning our speci ¢ numerical experiments, we can conade that an inverse
energy cascade and a direct enstrophy cascade exist. An imge enstrophy cascade
and a small direct energy cascade also exist. The importancef these cascades is
linked to the size of the injection scale. Furthermore, the @ergy spectra do not
present the classicak %72 and k 2 slopes. We found a scaling law irk 2 for the
inverse energy transfer and ink 5 for the enstrophy transfer. The energy cascade
is due to an energy transfer inside the core of the vortices ahthe enstrophy cascade
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Figure 17. Decomposition of the main term responsible for the
energy cascade Kj; 20).

is due to an enstrophy transfer from laments to themselves. The structures alowing
the two transfers are the solid rotation parts of the vortices.
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