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Abstract

Two-phase immiscible �uids in a two-dimensional micro-channels network are
considered. The incompressible Stokes equations are used to describe the New-
tonian �uid �ow while the Oldroyd-B rheological model is used to capture the
viscoelastic behavior. In order to perform numerical simulations in a complex
geometry like a micro-channels network, the volume penalization method is im-
plemented. To follow the interface between the two �uids, the level-set method
is used and the dynamics of the contact line is modeled by Cox law. Numerical
results show the ability of the method to simulate two-phase �ows and to follow
properly the contact line between the two immiscible �uids. Finally, simulations
with realistic parameters are performed to show the di�erence when a Newtonian
�uid is pushed by a viscoelastic �uid instead of a Newtonian one.

Keywords: micro�uidics, two-phase �ow, triple line, contact line, Cox model,
volume penalization method, level-set method, polymer, Oldroyd-B equations

1 Introduction

Micro-channels networks are frequently used in laboratories to mimic the �ow
conditions in a porous medium at the micro scale [11]. The main purpose of the
researchers is to show that some parts of the micro-channels can be reached by
modifying the �uid properties.
At this scale, the �ow is generally laminar and the motion of the interface be-
tween the two immiscible Newtonian �uids is controlled by the surface tension.
The modeling of two-phase �ow at micro scale has already been studied in the
past (for example [49, 52]) using the incompressible Stokes equations with various
viscosities and the level-set method to follow the interfaces. These works allowed
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to study, respectively in three-dimensions and in two-dimensions, the creation of
droplets in micro-channels and to bind the experimental data like the �ow rates
or the viscosities to the shapes and internal dynamics of the microdroplets.
One of the most important aspects to consider in two-phase �ow simulation at
the micro-scale, is the motion of the contact line. Many attempts to simulate the
dynamics of the contact line have been developed, a very good review of these
methods can be found in [36, 16, 45]. The dynamics of the contact line used in
this work is based on the theoretical Cox analysis [12]. Indeed, Cox provided a
general hydrodynamic description of a moving contact line, that links the triple
line velocity to the dynamic contact angle.
The aim of this work is to describe a numerical model to simulate in two-
dimensions a two-phase �ow of Newtonian and viscoelastic �uids, like polymeric
solutions, into a micro-channels, including a dynamic contact angle procedure
that describes the �uid-�uid-wall dynamics. To handle complex geometries, the
volume penalization method is used, adding a penalization term to the Stokes
equations to force the boundary condition on the solid parts.
This paper is structured as follows. The physical modeling is presented in section
2 with emphasis to the contact line problem. Then the mathematical modeling
is carefully detailed in section 3. Section 4 deals with the numerical resolution
and the numerical treatment of the triple lines to move properly the contact line.
Section 5 is devoted to a validation test. In section 6, the numerical results in
a single channel are discussed. Finally in the last section, the simulations in a
micro-channels network are shown.

2 Physical modeling

2.1 Micro-scale modeling

Incompressible �uid �ows are considered and modelized by means of Navier-
Stokes equations: 

∇ ·U = 0

ρ

(
∂U

∂t
+ U · ∇U

)
+∇p−∇ · T = 0,

(1)

where U is the velocity, p the pressure, ρ the density and T the extra-stress
tensor. In micro�uidics, the diameter of the channels is of the order of a few
tens of micrometers while the velocity is of the order of 1 cm/s. In addition, the
�ow quickly reaches a steady state and the viscous e�ects dominate the inertial
ones. Taking into account these assumptions the �rst two terms from the motion
equation of (1) can be neglected. The system (1) becomes the steady Stokes
problem: {

∇ ·U = 0,

∇ · T = ∇p.
(2)

In the case of a Newtonian �uid, the relation between T and the deformation
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tensor D is linear and the proportionality constant is the �uid viscosity η. This
leads to:

T = 2ηD, (3)

where D is given by

D =
∇U + (∇U)t

2
. (4)

Substituting (3) in (2), we have the Stokes equations to model an incompressible
and isothermal �ow of a Newtonian �uid at microscopic scale:{

∇ ·U = 0,

∇p− η∆U = 0.

In the case of a non-Newtonian �uid, like a polymeric solution, the relation
between T and D is non-linear. The extra-stress tensor T is decomposed into
two parts: a Newtonian contribution denoted Ts and a polymeric contribution
denoted Tp, namely

T = Ts + Tp. (5)

The Newtonian contribution can be calculated from (3). Then, the extra-stress
tensor T is given by:

T = 2ηD + Tp, (6)

where η is the solvent viscosity. Substituting (6) in (2) yields:{
∇ ·U = 0,

∇p− η∆U−∇ · Tp = 0.

It still remains to de�ne an equation for Tp. In the literature, many "appro-
priate" models are proposed for Tp (see [3, 27]). In order to choose this model,
several factors must be considered, such as the characteristics of the polymer or
the polymer concentration [27]. In this work, the Oldroyd-B model is used for
modeling the polymer solution. The Oldroyd-B model is a linear viscoelasticity
model which is well adapted for dilute polymer solutions [27]. The Oldroyd-B
model written in terms of the conformation tensor reads:

∇ ·U = 0,

∇p− η∆U− ηp
λ
∇ · τ = 0,

τ − I
λ

+
∂τ

∂t
+ (U · ∇)τ − (∇U)τ − τ (∇U)t = 0.

(7)

where ηp is the polymeric contribution to the solution viscosiy, λ is the charac-
teristic relaxation time, I is the identity tensor and τ is the conformation tensor
that is related to the polymeric tensor Tp by:

Tp =
ηp
λ

(τ − I) . (8)
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2.2 The contact line problem

The moving contact line problem is still an issue of controversy and debate
[28, 36]. The di�culty stems from the fact that the classical equations of hydro-
dynamics, coupled with the no-slip boundary condition leads to a multivalued
velocity �eld. For the �uid, the non-slip boundary condition (zero velocity at
the wall) must be satis�ed but the triple line is driven by a non-zero velocity.
When the no-slip boundary condition is maintained on the wall of a channel for
instance, the interface cannot move at the wall and so there is a �lm of �uid
between the wall and the entering �ow. Consequently the interface moves faster.
Various models have been proposed to deal with this singularity [35, 5, 36, 33, 4].
Some examples of these models are:

• Precursor �lm model: This model proposes the existence of a precursor
�lm ahead of the triple line [13]. The precursor �lm replaces the triple
line by a very thin layer of �uid, which eliminates the contact between
the �uid/�uid interface and the solid wall. This model can be interpreted
as a numerical artefact, with a physical sense, to eliminate the triple line
[14]. For more details about the numerical simulation of the triple line with
this method see [7, 14, 29, 31, 40]. The main limitation of this model is
the high computational cost: the accuracy of the results is improved by
reducing the thickness of the precursor �lm, however, it requires a very �ne
spatial resolution [20].

• Di�use interface models: These models treat the interface as a zone of
�nite thickness through which the �uid properties vary smoothly. These
models allow the contact line to move naturally through the di�usive �uxes
even if a no-slip condition is imposed. The di�use interface model most
commonly used to treat problems with triple lines is the Cahn-Hilliard
model [9, 15, 24, 26, 41, 56].

• Slip models: Another solution consists to replace the no-slip boundary
condition by a slip condition in the vicinity of the contact line [46, 22]. Slip
models have the particularity to introduce a parameter known as the slip

length. The slip length is de�ned as the distance to the wall from which
the tangential velocity is zero. Among these models there are the Navier
slip boundary condition [34, 21], the stress-free boundary condition [36],
the prescribed slip pro�le [50], the Cox model [12] and other models [4].

For this work, we have selected the hydrodynamic model proposed by Cox [12].
The model developed by Cox, was anticipated by both the experimental work of
Ho�man [23] and the analytical work of Dussan [17]. Many numerical studies
have made use of this model. For example, Afkhami et al. [1] and Dupont et
al. [16] developed a numerical contact angle model for VOF methods, Spelt [46]
and Sussman [48] proposed a level-set approach for the simulation of spreading
droplets, Zahedi et al. [57] proposed a conservative level-set method for contact
line dynamics where the contact angle at equilibrium is used to induce a move-
ment of the contact point by di�usion. In [53] Walker et al. used the explicitly
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tracked contact point moving along the solid boundary introduced by Spelt. A
technique to provide an accurate computation of the curvature at the wall is
developed and the results are compared with the Cox model for two tests cases.

Cox model considers two immiscible phases in contact with an homogeneous solid
phase along which the contact line will move with a velocity denoted Vcox. Let
U be the characteristic velocity of the �ow when a �uid 1 (with viscosity η1)
is displaced by another �uid 2 (with viscosity η2). If the �ows are driven by
surface tension, the capillary number Ca = η1U

γ � 1 with γ the surface tension
coe�cient. Cox [12] provides a general hydrodynamic description of a moving
contact line, that links the triple line velocity to the dynamic contact angle by

Vcox = γ
g(θd, q)− g(θE , q)

η2 Ln
(
L
ls

) , (9)

where θE is the equilibrium contact angle, θd is the dynamic contact angle,
L is a macroscopic length, ls is the slip length, q = η2

η1
and

g(θ, q) =

∫ θ

0

dθ

f(θ, q)
, (10)

with

f(θ, q) =
2 sin θ

(
q2
(
θ2 − sin2 θ

)
+ 2q

(
θ (π − θ) + sin2 θ

)
+
(

(π − θ)2 − sin2 θ
))

q
(
θ2 − sin2 θ

)
((π − θ) + cos θ sin θ) +

(
(π − θ)2 − sin2 θ

)
(θ − cos θ sin θ)

.

In the particular case of q � 1,

g(θ) =

∫ θ

0

x− sinx cosx

2 sinx
dx. (11)

In addition, if θd <
3π
4 , g(θ) ≈ θ3/9 the equation (9) can be approximated by

Vcox = γ
θ3
d − θ3

E

η2 9Ln
(
L
ls

) . (12)

3 Mathematical modeling

3.1 The governing equations

An incompressible and isothermal �ow of two immiscible �uids is considered. In
the micro�uidic context, the viscous e�ects are predominant compared to the
inertial ones. Thus, the Stokes equations are relevant to model the motion of
these �uids. One �uid is Newtonian and the other one is viscoelastic, they will
be denoted respectively �uid 1 and �uid 2. We denote Ω the domain, Ω1 the
sub-domain occupied by �uid 1 and Ω2 the sub-domain occupied by �uid 2. The
interface between the two �uids is de�ned as Σ = ∂Ω1 ∩ ∂Ω2, where ∂Ωi is the

5



boundary of Ωi and i = {1, 2}.
The motion of �uid 1 is governed by the incompressible Stokes equations:{

∇ ·U1 = 0,

−∇p1 +∇ · (2η1D1) = 0.
(13)

Whereas the motion of the viscoelastic �uid 2 is governed by Oldroyd-B model:
∇ ·U2 = 0,

−∇p2 +∇ · (2η2D2) +
ηp2
λ2
∇ · τ 2 = 0,

τ 2 − I
λ2

+
∂τ 2

∂t
+ (U2 · ∇)τ 2 − (∇U2)τ 2 − τ 2(∇U2)t = 0

(14)

where Di is the rate of deformation tensor of �uid i, Ui is the velocity of �uid
i, pi is the pressure of �uid i, η1 is the dynamic viscosity of �uid 1, η2 is the
dynamic viscosity of solvent of �uid 2, τ 2 is the conformation tensor of �uid 2,
λ2 is the relaxation time of �uid 2 and ηp2 is the polymer contribution to the
solution viscosity.
To complete the model of two-phase �ow, boundary conditions at the interface
must be added. We have respectively the continuity of velocity and the balance
between the jump of normal stress and the surface tension:

U1 = U2, (15)

(σ − δ) · n = γκn (16)

with n the unit normal vector to the interface, κ the curvature of the interface,
σ and δ the total stress tensors of �uid 1 and �uid 2 respectively, de�ned as
follows:

σ = −p1I + 2η1D1, (17)

δ = −p2I + 2η2D2 +
ηp2
λ2

(τ 2 − I). (18)

3.2 The level-set method

Many numerical techniques have been developed to precisely locate the interface
between two �uids [51, 37, 39]. A review of the theory, numerical approximations
and applications of the level-set method used in this work can be found in [43, 32].
In the level-set method, the interface Σ is represented by the zero isocontour of
a signed distance function denoted by φ called the level-set function (see Figure
1). Hence, at time t

Σ(t) = {x = (x, y) | φ(x, t) = 0}, (19)

where

φ(x, t) =

{
−d(x) if x ∈ Ω1,

+d(x) if x ∈ Ω2,
(20)
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and d(x) is the Euclidean distance from the point x = (x, y) to the interface Σ,
such that for all xΣ ∈ Σ, we have

d(x) =

{
−min | x− xΣ | if x ∈ Ω1,

+min | x− xΣ | if x ∈ Ω2.
(21)

The level-set function φ is a variety of iso-contours where the interface Σ is

ϕ=+d

ϕ=-d

Σ

ϕ=0

d

d

Figure 1: Level-Set function

de�ned implicitly. Each point of the domain knows its distance to the interface
and the phase to which it belongs thanks to the sign of φ. In other words, we
have 

φ(x, t) < 0 if x ∈ Ω1,

φ(x, t) > 0 if x ∈ Ω2,

φ(x, t) = 0 if x ∈ Σ.

(22)

The discontinuous functions η(φ), ηp(φ) and λ(φ) are de�ned by

η(φ) = η1 + (η2 − η1)H(φ), (23)

ηp(φ) = ηp2H(φ), (24)

λ(φ) = λ2H(φ), (25)

where H(φ) is the Heaviside function.
The evolution of the level-set function φ is governed by the equation:

∂φ

∂t
+ U · ∇φ = 0, (26)

where U is the �ow velocity. The unit normal to the interface n, drawn from Ω1

to Ω2, and the curvature κ can be expressed in terms of φ:

n =
∇φ
| ∇φ |

, κ = ∇ · n. (27)

Abrupt changes of η, ηp and λ across the interface could cause numerical di�cul-
ties. A regularization of these quantities is performed by introducing a smoothed
Heaviside function Hε de�ned as follows,

Hε(φ) =


0 if φ < −ε,
1
2

[
1 + φ

ε + 1
π sin

(
πφ
ε

)]
if | φ | ≤ ε,

1 if φ > ε,

(28)
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where ε is a parameter that determines the thickness of the interface. Typically
if ∆x is the mesh size, ε ∈ [∆x, 2∆x]. By replacing H(φ) by Hε(φ) in (23), (24)
and (25), we obtain the smoothed versions of η, ηp and λ respectively:

η(φ) = η1 + (η2 − η1)Hε(φ), (29)

ηp(φ) = ηp2Hε(φ), (30)

λ(φ) = λ2Hε(φ). (31)

Using the level-set function, the system of governing equations for the two �uids
(13) and (14) with the boundary conditions at the interface (15) and (16) can be
written as a system of equations valid in the whole domain Ω as follows:

∇ ·U = 0 in (0, T )× Ω

−∇p+∇ · (2η(φ)D) +∇ ·
(
ηp(φ)

λ(φ)
τ

)
− γκ(φ)δ(φ)

∇φ
| ∇φ |

= 0 in (0, T )× Ω

τ − I

λ(φ)
+
∂τ

∂t
+ (U · ∇)τ − (∇U)τ − τ (∇U)t = 0 in (0, T )× Ω

∂φ

∂t
+ U · ∇φ = 0 in (0, T )× Ω

(32)
where δ(φ) is the Dirac function. In the momentum equation, the surface tension
force is interpreted as a body force localized on the interface. The derivation of
this formulation can be found in [8].

3.3 Cox model interpretation

We denote by θd the angle between the �uid/�uid interface and the solid wall, by
θa the advancing critical angle and by θr the receding critical angle. The angles θa
and θr are known parameters in our simulations, they depend on several factors
such as the nature of �uids and the solid surface. During the simulation, the
interface is deformed by the �ow and the angle θd changes. The dynamic of the
triple line is modeled as follows:

• when the angle θd exceeds the angle θa, the triple line moves with a velocity
Vcox towards the �uid 1,

• on the other hand, if θd becomes smaller than θr, the triple line moves with
a velocity Vcox towards the �uid 2,

• otherwise, the triple line does not move.

Figure 2 shows a triple line in the three cases described above. According to
this model, the triple line remains steady when θr < θd < θa and it moves when
θd < θr or θd > θa. If θr < θd < θa, the boundary condition at the solid wall
is a no-slip condition. If the triple line is allowed to move, the no-slip boundary
condition is replaced by a slip condition in the vicinity of the triple line. The
velocity of the triple line is denoted Vcox and is calculated from the equation (9).
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�uid 2

�uid 1

θa
θr
•

φ(X, t) = 0

θd

(a) θr < θd < θa.
The triple line remains
steady.

θa

�uid 2

�uid 1

θd

Vcox

φ(X, t) = 0

•

(b) θd > θa.
The triple line moves
towards the �uid 1.

φ(X, t) = 0θr

�uid 2

�uid 1

θdVcox

•

(c) θd < θr.
The triple line moves
towards the �uid 2.

Figure 2: Cox model interpretation.

3.4 The penalization method and the dimensionless governing

equations

Figure 3 shows a computational domain with a micro-channels network. This
network is formed of micro-channels with di�erent diameters separated by non-
uniform distances. In order to overcome the di�culty of creating an adaptive
mesh to the geometry, the volume penalization method [2] is used. Therefore,
the boundary conditions on the immersed boundaries in the domain are taken
into account by adding penalization terms in the equations (32). Indeed, let Ω

Ωs

Ωf

Figure 3: Domain Ω = Ωf ∪ Ωs

be the domain shown in the Figure 3, we denote by Ωf the �uid part and Ωs

the reunion of solid obstacles. Instead of solving the system of equations (32)
in Ωf , an equivalent problem is solved in the whole domain Ω by penalizing
the velocity in the solid part. This method consists in adding the terms U

K and
τ−τ s
K in the second and third equations of system (32) respectively, where K can

be considered as a dimensionless permeability coe�cient and τ s is the identity
tensor. The value of K is set very large in the �uid zone (e.g. 1016 or more)
and very small in the solid part (e.g. 10−8). In consequence, the initial Stokes
equations are recovered in the �uid part as the extra term U

K vanishes and the
velocity is of the order 10−8 in the solid part (see [2] for more details). So the
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velocity is negligeable and the solid part is recovered. In the tensor equation, it
is not necessary to add the term τ−τ s

K to penalize the tensor in the solid parts.
However, results are more stable as one of the main di�culties of the numerical
simulations is to capture the strong gradients in the vicinity of the solid walls
[55].
To put the system of equations into dimensionless form, we choose the following
scaling:

x = Lcx
′, y = Lcy

′, t = Lc
Uc
t′,

p = ηcUc

Lc
p′, U = UcU

′, η = ηcη
′, ηp = ηcη

′
p, λ = Lc

Uc
λ′,

where the prime variables are the dimensionless quantities, Lc is the character-
istic length, Uc the characteristic velocity and ηc the characteristic viscosity. In
practice, the characteristic velocity is the injection velocity and the characteristic
length is the diameter of the channel where the viscoelastic �uid is injected. The
characteristic viscosity will be always η1, the dynamic viscosity of Newtonian
�uid 1. By introducing these dimensionless variables without the prime for the
sake of simplicity, the system of equations becomes on the whole domain Ω:



∇ ·U = 0,

−∇p+∇ · (2η(φ)D) +∇ ·
(
ηp(φ)

λ(φ)
τ

)
− 1

Ca
κ(φ)δ(φ)

∇φ
| ∇φ |

+
U

K
= 0,

τ − I
λ(φ)

+
∂τ

∂t
+ (U · ∇)τ − (∇U)τ − τ (∇U)t +

τ − τ s
K

= 0,

∂φ

∂t
+ U · ∇φ = 0,

(33)
where Ca is the capillary number de�ned by Ca = ηcUc

γ . The dimensionless
viscosities and the dimensionless relaxation time are:

η′(φ) = 1 + (
η2

ηc
− 1)Hε(φ), (34)

η′p(φ) =
ηp2
ηc
Hε(φ), (35)

λ′(φ) = λ′2Hε(φ). (36)

3.5 Initial and boundary conditions

Let Ω be the bounded domain in IR2 with boundary ∂Ω, we denote ∂Ωi the inlet
boundary where a constant velocity is imposed, ∂Ωp the part of boundary where
periodic conditions are speci�ed and ∂Ωo the outlet boundary where arti�cial
non-re�ecting boundary conditions are imposed [6].
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The initial conditions for each variable in the system (33) are:

u(x, 0) = 0 ∀x ∈ Ω

v(x, 0) = vinj ∀x ∈ ∂Ωi

τxx(x, 0) = 1 ∀x ∈ Ωf

τxx(x, 0) = 0 ∀x ∈ Ωs

τxy(x, 0) = 0 ∀x ∈ Ω

τyy(x, 0) = 1 ∀x ∈ Ωf

τyy(x, 0) = 0 ∀x ∈ Ωs

φ(x, 0) = φ0 ∀x ∈ Ω

(37)

where vinj is the constant injection velocity.
At inlet ∂Ωi, the injection velocity is prescribed for all times:{

u
∣∣
∂Ωi

= 0,

v
∣∣
∂Ωi

= vinj ,
(38)

Substituting (38) in the conformation tensor equation of system (33), yields:
τxx
∣∣
∂Ωi

= 1,

τxy
∣∣
∂Ωi

= 0,

τyy
∣∣
∂Ωi

= 1.

(39)

If (Uref , pref ) is a referential solution in Ω, the arti�cial non-re�ecting boundary
condition on ∂Ωo for the Newtonian �uid 1 reads:

σ(U, p) n = σ(Uref , pref ) n, (40)

where σ is the total stress tensor for the Newtonian �uid de�ned in (17) and n
is the outward unit normal vector to the domain. For the viscoelastic �uid 2, the
boundary condition on ∂Ωo is{

δ(U, p, τ ) n = δ(Uref , pref , τ ref ) n,

τ − τ ref = 0,
(41)

where δ is the total stress tensor for �uid 2 de�ned in (18). In these conditions
(Uref , pref ) can be for instance a Poiseuille �ow in a channel and τ ref is the
resulting tensor computed with this choice.

4 Numerical resolution

4.1 Time discretization

Let (Un, pn, τn, φn) be the approximation of (U, p, τ , φ) at time tn = n∆t where
n ∈ N and ∆t is the time step, (Un+1, pn+1) are computed �rst, then τn+1 and
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�nally φn+1. In Stokes equations, the terms 1
Caκ(φ)δ(φ)∇φ and ∇·τ are treated

explicitly. Therefore the semi discretized equations read:

∇ ·Un+1 = 0,

−∇pn+1 +∇ ·
(
2η(φn)D(Un+1)

)
+

Un+1

K
=

1

Ca
κ(φn)δ(φn)∇φn

−∇ ·
(
ηp(φ

n)

λ(φn)
τn
)
.

(42)

The conformation tensor equation is solved in two half-steps. First, the advection
term is taken into account,

τn+1/2 − τn

∆t
+ (Un+1 · ∇)τn = 0, (43)

then the others terms are considered:

(τn+1 − I)
λ(φn)

+
τn+1 − τn+1/2

∆t
−(∇Un+1)τn+1−τn+1(∇Un+1)T+

τn+1

K
= 0. (44)

The level-set transport equation is discretized in time by the explicit Euler
scheme:

φn+1 − φn

∆t
+ (Un+1 · ∇)φn = 0. (45)

Solving Stokes equations with an explicit treatment of the term associated to the
surface tension requires a stability criterion. In this work, the stability condition
proposed in [19] is used:

∆t ≤ cmin(η1, η2)

γ
∆x. (46)

The stability constraint (46) can be very restrictive when the velocity of the �ow
is very low compared to γ

η . Thus, if the numerical method leads to smoothed
curvature, the constant c can be of an order greater than one [19]. After some nu-
merical tests, we found that c = 6 is the critical value for which the computation
is always stable.

4.2 Space discretization

4.2.1 Computation of (Un+1, pn+1)

Let ∆x and ∆y be the space steps on a rectangular Cartesian grid, the points
(xi, yj) are the cell centers de�ned by

(xi, yj) =
((
i− 1

2

)
∆x,

(
j − 1

2

)
∆y
)
for i = 1, ..., Nx and j = 1, ..., Ny .

The pressure unknowns p are located at these centers while the velocity com-
ponents u and v are located at the middle of the edges of the cells as shown in
Figure 4.
The system (42) is transformed into a constrained minimization problem solved
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Figure 4: Notations of points and unknowns on a staggered cell.
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Figure 5: Control volumes Vu (red), Vv (blue), Vp (dotted lines)

by the augmented Lagrangian method [18]. Thus (Un+1, pn+1) is obtained using
Uzawa algorithm with 1 ≤ k ≤ L:

−∇pn+ k−1
L +∇ ·

(
2ηnD(Un+ k

L )
)

+ r1∇
(
∇ ·Un+ k

L

)
+

Un+ k
L

K
=

1

Ca
κ(φn)δ(φn)∇φn − ηp(φ

n)

λ(φn)
∇ · τn,

pn+ k
L = pn+ k−1

L − r2

(
∇ ·Un+ k

L

)
,

(47)

where r1 and r2 are the coe�cients of the augmented Lagrangian method.
Let Vu the control volume centered in u, Vv be the control volume centered in v
and Vp be the control volume centered in p (see Figure 5), the edges of Vu and
Vv are denoted ∂Vu and ∂Vv respectively with the notations:

∂Vu = ∂V x
u ∪ ∂V y

u = ∂V x+
u ∪ ∂V x−

u ∪ ∂V y+
u ∪ ∂V y−

u

∂Vv = ∂V x
v ∪ ∂V y

v = ∂V x+
v ∪ ∂V x−

v ∪ ∂V y+
v ∪ ∂V y−

v

where V x+
u is the edge oriented in the positive direction of x.

The equation for u in (47) is integrated over the control volume Vu using the
divergence theorem (the upper index are omitted) and writting δ as the Heaviside
derivative [52].
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−
∫
Vu

∂p

∂x
dxdy +

∫
V x+
u

2η
∂u

∂x
dy −

∫
V x−
u

2η
∂u

∂x
dy +

∫
V y+
u

η

(
∂u

∂y
+
∂v

∂x

)
dx

−
∫
V y−
u

η

(
∂u

∂y
+
∂v

∂x

)
dx + r1

∫
V x+
u

(
∂u

∂x
+
∂v

∂y

)
dy − r1

∫
V x−
u

(
∂u

∂x
+
∂v

∂y

)
dy

+

∫
Vu

u

K
dxdy =

∫
Vu

1

Ca
κ(φ)

∂H(φ)

∂x
dxdy −

∫
Vu

ηp
λ

(
∂τxx
∂x

+
∂τxy
∂y

)
dxdy,

where∫
Vu

1

Ca
κ (φ)

∂H

∂x
(φ) dx dy =

1

Ca

∫
Vu

∇ · n ∂H

∂x
(φ) dx dy

≈ 1

Ca

∫
Vu
∇ · n dx dy
∆x∆y

∫
Vu

∂H

∂x
(φ) dx dy,

with ∫
Vu

∂H

∂x
(φ) dx dy ≈ ∆y (Hε (φi,j)−Hε (φi−1,j))

and ∫
Vu

∇ · n dx dy =

∫
∂Vu

n · nu ds,

nu being the unit outward normal to Vu.
Finally, using the second order approximation

∫
Vc
qdx dy ≈ q̄∆x∆y, the �nite

volume scheme for u integrated over the control volume Vu is:

− (pi,j − pi−1,j) ∆y +

(
2ηi,j

ui+1,j − ui,j
∆x

− 2ηi−1,j
ui,j − ui−1,j

∆x

)
∆y

+ηu,yi,j+1

(
ui,j+1 − ui,j

∆y
+
vi,j+1 − vi−1,j+1

∆x

)
∆x− ηu,yi,j

(
ui,j − ui,j−1

∆y
+
vi,j − vi−1,j

∆x

)
∆x

+r1

(
ui+1,j − ui,j

∆x
+
vi,j+1 − vi,j

∆y

)
∆y − r1

(
ui,j − ui−1,j

∆x
+
vi−1,j+1 − vi,j

∆y

)
∆y +

ui,j
K

=
1

Ca

1

∆x∆y

((
nxi,j − nxi−1,j

)
∆y +

(
ñyi,j+1 − ñ

y
i,j

)
∆x
)

∆y (H (φi,j)−H (φi−1,j))

−
ηupi,j
λui,j

(
τxxi,j − τxxi−1,j

)
∆y −

ηupi,j
λui,j

(
τxxi,j+1 − τxyi,j

)
∆x,

(48)
where the diagonal components of the tensor τxx and τyy are located at the
centers of the cell like p and the extra diagonal components τxy are located at
the vertices. The equation for v is derived in the same way.

4.2.2 Computation of τn+1 and φn+1

Once the velocity and pressure are updated, the conformation tensor is computed
in two steps as said above in section 4.1. The �rst step consists in solving the
advection equation (43) discretized using WENO-5 scheme (Weithed Essentially
Non Oscillatory scheme of �fth order) as detailed in [30, 25]. This is done for

the three components of the tensor τ
n+1/2
xx , τ

n+1/2
yy and τ

n+1/2
xy . With staggered

grids, it is necessary to determine the other unknowns at the proper locations,
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which is done by linear interpolations.
Then, the second step solving equation (44) is performed using the second order
centered scheme and linear interpolations when needed. Hence the unknowns
τn+1
xx , τn+1

yy and τn+1
xy at time (n+ 1)∆t are updated.

Finally, the equation (45) is discretized once again using WENO-5 scheme on
a twice �ner grid in each direction to get φn+1 as accurately as possible. The
unknown φ is located at the vertices of this �ner grid and denoted φ̃. Besides
the values of the velocity are interpolated linearly on the �ner grid.
Practical experience suggests that level-set methods are sensitive to spatial ac-
curacy, whereas temporal truncation errors seem to produce signi�cantly less
deterioration of the numerical solution. In consequence, one can often use the
�fth-order accurate WENO method for spatial discretization and �rst-order Eu-
ler method for discretization in time [32]. Although it is shown in [54] that this
time integration leads to instabilities, we do not observe any oscillations as the
interface moves very slowly. Indeed, for our micro�uidics applications, the ve-
locity is very low and the time step is also very low due to the surface tension
term.

4.3 Redistanciation of the Level-Set

The transport equation of the Level-Set function (26) was built such that the
function φ is advected by the �ow velocityU. Unless the velocityU is the same for
all contour lines, this procedure implies that during the time iterations |∇φ| 6= 1.
In consequence, the Level-Set function loses its signed distance property leading
to erroneous calculations of the normal vector to the interface or numerical in-
stabilites in the areas where φ presents strong gradients. For this reason, it is
necessary to apply a redistanciation procedure to the Level-Set function to re-
cover the signed distance property. The need to do so in level-set calculations is
exposed in [10]. The main idea is to periodically recalculate the function φ (here
every twenty time step) without altering the position of the interface. In this
work, the Fast Marching method, presented in [42], is used for redistanciating
the Level-Set function. At the initialisation, the narrow band is de�ned as the
positive points with at least one horizontal or vertical negative neighbor. The
known points are the negative points.

4.4 Triple lines evolution

One of the main part of this work is the detection of triple lines and their evolu-
tion using Cox law. Here we have to take into account the penalization method
used to represent the solid parts inside the computational domain Ω. To illustrate
the problem let us have a look to the �ow inside a short symmetrical network
shown in Figure 6. One can see clearly the �uid 2 pushing the �uid 1 and the
interface between the two �uids which is the zero value of the level-set function.
The interface at the initialization is an horizontal straight line at the entrance
section that is pushed by �uid 2 and follows the solid parts. In this example,
there are six triple lines, two in each channel. They have �rst to be detected
and then they must remain steady or move according to the contact angle as
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explained in section 3.3.
A triple point is detected when the signs of the level-set function of two neigh-

Figure 6: Example of �ow interface in a short symmetrical network. The �uid 2
enters at the bottom and pushes the �uid 1 already present inside the network.

bouring solid points are opposite. The triple point is thus in between. This
detection must be done in accordance to the direction of the boundary of the
solid parts and to the direction of the �ow (see Figure 7). Once a triple point is
detected it is necessary to compute the contact angle at this point. The �rst step

ϕk,l+1>0
~

ϕk,l<0
~

triple line

Σ

Ωs

Ωf

(a) Vertical left boundary

triple line

Σ

ϕk,l<0
~

ϕk-1,l>0
~

Ωs

Ωf

(b) Horizontal right boundary

ϕk,l<0
~

triple line

Σ

ϕk+1,l>0
~

Ωs

Ωf

(c) Horizontal left boundary

Figure 7: Triple points detection with respect to the �ow direction. The solid
parts are colored in grey.

is to compute the normal vector at the triple point. For instance, if this point is
located between points (xk, yl) and (xk, yl+1) as in Figure 7 (a), the components
of this normal vector ñ∗ = (ñx

∗
, ñy

∗
) on the �ner grid are determined by linear

interpolation:

ñx
∗

= ñxk,l − φ̃k,l
ñxk,l+1 − ñxk,l
φ̃k,l+1 − φ̃k,l

, ñy
∗

= ñyk,l − φ̃k,l
ñyk,l+1 − ñ

y
k,l

φ̃k,l+1 − φ̃k,l
.

where ñ = (ñxk,l, ñ
y
k,l) denotes the normal vector at point (xk, yl). Due to the

�ner grid, the computation of the normal vector at points (xk, yl) and (xk, yl+1)
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is done with a smooth level-set function as the singularity occurs inside the solid
part. So it does not interfere except at the initialization when there is a �at
interface transverse to the channel.
Then the contact angle θd is computed from the normal ñ∗ as shown in Figure
8:

sin(α) =
ny

∗√
nx∗

2
+ ny∗

2
and θd = π − α. (49)

Finally the triple points may move accordingly to Cox law. When the contact

ϕ(X,t)=0

θd
  

α

nx*

ny*n*

nk,l+1

nk,l

Figure 8: Computation of the contact angle θd on a vertical left boundary.

angle θd is large enough, the triple point must move with the speed Vd and thus
Stokes equations are solved with a slip boundary condition in the vicinity V of
the triple point (for instance V = { (k, l− 3), (k, l− 2), (k, l− 1), (k, l), (k, l+ 1),
(k, l+ 2), (k, l+ 3) } according to the stencil of WENO-5 scheme. To do that the
penalization term is changed to U−Vd

K in the momentum equation with Vd given
by:

Vd =

{ ∑ntriples
i=1 (Vcox)i χVi if θd < θr or θd > θa,

0 otherwise,
(50)

where ntriples is the number of triple points and χVi the characteristic function
of the neighbourhood Vi of point i and Vcox is the Cox speed calculated from
equation (9).
When a triple point moves along a boundary, the Cox speed is imposed on Vi
according to its position on the mesh for Stokes equations as shown on Figure 9
and Figure 10. The speed Vcox is imposed in such a way that the induced �owrate
does not change when the point is moving.

5 Validation test

In this validation test, we propose to verify the accurate computation of the
interface curvature and how it sati�es the Laplace's law, which describes that
the pressure di�erence across the interface between two �uids is proportional
to the interface curvature with a coe�cient equals to the surface tension. By
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  (k,l)v   =Vcoxi,j

Triple line

(a)

(k,l)

v   =Vcoxi,j
Triple line

(b)

Figure 9: The triple point moves from a cell corner (a) to a middle of a side (b).

   (i,j−2) (i,j−1) (i,j) (i,j+1) (i,j+2) (i,j+3)   
0

Vcox/2

Vcox

(a)

   (i,j−2) (i,j−1) (i,j) (i,j+1) (i,j+2) (i,j+3)   
0

Vcox/2

Vcox

(b)

Figure 10: The speed Vcox when the point moves from the cell corner (a) to the
middle of the side (b) as in Figure 9.

considering a circular static drop inside two-dimensional channel, the Laplace's
law writes:

∆P =
γ

R
, (51)

where ∆P is the pressure di�erence across the �uid interface, γ is the surface
tension and R is the radius of curvature of the interface.

The parameters of the simulation are the viscosity inside the drop η1 = 55mPa.s,
the viscosity of the external �uid η2 = 305mPa.s, the coe�cient of the surface
tension γ = 32mN/m and the radius R = 10µm. The injection rate is zero. The
theoretical value of the pressure di�erence given by the equation (51) is 3200Pa.
A mesh convergence study is performed using four di�erent mesh sizes, results
are shown in Table 1. These results prove that the employed method for the
curvature computation is very e�cient as it is almost second order.
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Table 1: Mesh convergence study of the interface curvature. ∆Pnum is the nu-
merical di�erence pressure and E is the relative error.

Mesh ∆Pnum E Order

64× 64 3204.028 1.25× 10−3

128× 128 3201.213 3.79× 10−4 1.72
256× 256 3200.288 9.00× 10−5 2.07
512× 512 3200.087 2.71× 10−5 1.73

6 Results in a single channel

6.1 Newtonian-Newtonian case

The �rst numerical test concerns the �ow in a straight channel shown in Figure
11. The domain dimensions are Lx and Ly and the channel diameter is Lc.

The characteristic length is Lc while Uc = Q
Lc

is the characteristic velocity. The

capillary number is, Ca = Ucη1
γ with η1 the dynamic viscosity of the �uid 1

and γ the coe�cient of surface tension. The Cox angle θa is �xed according
to experiments. Indeed, if this angle is set to a too large value, the contact line
cannot move, the limit case is θa = 180o that corresponds to the no-slip boundary
condition. The �rst test case is the simulation of a two-phase �ow with two

Ωs

Ωf

Lc

∂Ωe

∂Ωs

∂Ωg ∂Ωd

x

y

Ly

Lx

Figure 11: Geometry of the domain for the two-phase �ow simulation in a chan-
nel.
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Newtonian �uids. The mesh has 96× 288 cells and the physical parameters are:
Lx = 30µm, Ly = 90µm, Lc = 20µm,

η1 = 1.34× 10−3Pa · s, η2 = 1× 10−3Pa · s,
Ca = 1× 10−3, θa = 140o.

Following experimental results presented in [5], the parameter L/ls in the Cox
law (9) is set to 104. The evolution of the interface and the global velocity �eld
are shown in Figure 12. The solid line in the �uid zone, corresponds to the
interface. The interface is initialized inside the channel. At t = 0.0879, the
contact angle has not exceeded the critical value θa, thus the triple point is not
allowed to move. At t = 0.5977, the triple point has moved since θd > θa and
the meniscus shows a circular shape.

(a) t = 0 (b) t = 0.0879 (c) t = 0.5977 (d) t = 1.1075

Figure 12: Numerical simulation of the two-phase �ow in a channel with two
Newtonian �uids. The pictures show the evolution of the interface.

In Figure 13 the relative velocity is shown. The streamlines highlight the recircu-
lation phenomena that are not visible in the global reference. These recirculations
show that the relative velocity is tangent to the interface.
The time evolution of the contact angle, is represented in Figure 14. The oscil-
lations of the angle at the beginning of the simulation are caused by the straight
initialization of the interface, which generates big velocities near the triple point
and therefore some deformations of the interface. At time t = 0.2, the triple
point begins to move according to the increase of the angle θd, that reaches a
stable value around 148o. In Figure 15 a zoom of the �ow near the triple point
is shown. On the left, the triple point is not allowed to move (θd < θa), on the
right, (θd > θa) the triple point slides along the solid wall with the velocity Vcox,
which is imposed in the vicinity of the triple point.
Experimentally, it has been demonstrated that for low capillary numbers, the

interface has a circular shape [23]. This is con�rmed by our simulations as the
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Figure 13: Flow in the vicinity of the interface with the relative velocity vectors.
The solid lines are some streamlines.
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Figure 14: Time evolution of the contact angle of the triple points.

curvature of the interface is constant. Here, the meniscus is superimposed to a
circle of radius R = 0.56 as shown in the Figure 16(a). Besides, the time evo-
lution of the radius reaches very quickly the constant value R = 0.56 (Figure
16(b)).
To be con�dent in the results above, a grid convergence using four grids is

performed. The meshes considered are 24×72, 48×144, 96×288 and 192×576.
They have been chosen in order to have respectively 15, 30, 60 and 120 cells in
the horizontal direction inside the channel. The CPU times for these four cases
were 18 min 48 s, 3 h 20 min, 35 h 18 min and 374 h 24 min. The simulations
were carried out using 8 processors on a Dell Precision Workstation T7610 with
Intel Xeon CPU E5 − 2630, 2.6 Hz, 32 GB RAM. The results correspond to a
dimensionless time equal to 2.01. Unfortunately, the CPU times are quite high
as there is a poor parallelism of the computational code. The interface position
is presented in the Figure 17(a) and the contact angle evolution is shown in the
Figure 17(b). We notice that the interface position obtained by the mesh 24×72,
is very di�erent compared to the position obtained by the other three meshes.
In addition, the stable value reached by the contact angle is smaller than the
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(a) θd < θa (b) θd > θa

Figure 15: Velocity �eld near the triple point. (a) The contact angle has not
reached its critical value 140o. (b) The contact angle has exceeded its critical
value.
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Figure 16: (a) Comparison between the meniscus shape (black line) and a circle
of radius R = 0.56 (dark grey line). (b) Time evolution of the meniscus radius.

value reached by the other meshes. The results obtained with the grids 96× 288
and 192× 576 are almost identical. So, the grid convergence is reached with 60
cells inside the channel. It can be noticed also that the mesh 48 × 144 provides
satisfactory results. Thus, to make a good compromise between precision and
computational cost, the simulations in a micro-channels network are performed
with 30 cells inside each channel.
This convergence test is only valid for the range of capillary numbers we are
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Figure 17: Grid convergence: (a) position of the interface at t = 2.01 and (b)
contact angle evolution.

interested in, i.e. Ca ∈
[
1× 10−3, 4× 10−3

]
. For this reason, the convergence

test is provided for the smallest Ca value in this range, which requires a �ner
mesh than that used for the largest one.
Finally, the last study of this section concerns the meniscus shape with respect
to the capillary number and the accuracy of the numerical contact angle method.
Six di�erent simulations are performed with Ca ∈

[
1× 10−3, 4× 10−3

]
to com-

pare the behavior of the contact angle and the meniscus shape. This is the range
of values that is generally used to evaluate the contact angle and the meniscus
shape [5, 23, 44, 46].
The mesh is 96× 288 and the physical parameters are:

Lx = 30µm, Ly = 90µm, Lc = 20µm,

η1 = 1.34× 10−3Pa · s, η2 = 1× 10−3Pa · s,
θa = 140o.

For capillary numbers between 1×10−3 and 3×10−3, the meniscus has a circular
shape (see Figure 18). We also note that the radius of the meniscus increases
when the capillary number decreases. Moreover, when the shape of the meniscus
is circular, the radius reaches very quickly its �nal value (see Figure 19(a)). The
time evolution of the contact angle is shown in the Figure 19(b). The qualitative
behavior expected is obtained as the contact angle decreases with the capillary
number.
We study in Figure 20 the accuracy of the numerical contact angle method.

Figure 20 shows the asympthotic values of θd as a function of ln(Ca). The
continuous line was obtained by using the Cox law given by equation (9). The
relative error is 2%. This error is attributed to the �rst-order approximation of
the penalization term. To improve the accuracy of the penalization method, a
second-order approximation of the penalization term could be envisaged [38].

In conclusion, results obtained from the simulations of two Newtonian �uids
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(a) Ca = 4× 10−3

R=0.493

(b) Ca = 3× 10−3

R=0.510

(c) Ca = 2.5× 10−3

R=0.528

(d) Ca = 2× 10−3

R=0.544

(e) Ca = 1.5× 10−3

R=0.561

(f) Ca = 1× 10−3

Figure 18: Two-phase Newtonian �ows with di�erent capillary numbers: menis-
cus shape at the end of the simulation.
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Figure 19: Two phase-�ow of Newtonian �uids with di�erent capillary numbers:
(a) time evolution of the meniscus radius and (b) time evolution of the dynamic
contact angle.

in a channel are satisfactory from a qualitative point of view: the interface con-
verges very rapidly to a stationary shape. Therefore, the meniscus radius and
the dynamic contact angle reach very quickly a stable value. These results agree
well with experimental results presented in [23].

6.2 Newtonian-Viscoelastic case

We consider the simulation of a two-phase Newtonian-viscoelastic �ow in a chan-
nel. In this case, a Newtonian �uid is pushed by a viscoelastic one. A grid
convergence using three grids is performed. The geometry domain is presented
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Figure 20: Accuracy of the numerical contact angle method, comparison with the
analytical Cox law. The triple line velocity is imposed by �rst order penalization
method.

in the Figure 11 and the physical parameters for simulating the �ow are:
Lx = 30µm, Ly = 90µm, Lc = 20µm,

η1 = 1.34× 10−3Pa · s, η2 = 1× 10−3Pa · s,
ηp2 = 9× 10−3Pa · s, λ2 = 12

Ca = 1× 10−3, θa = 140o.

The meshes considered are 24× 72, 48× 144 and 96× 288. The CPU times
for these three cases were 25 min 5 s, 4 h 7 min and 52 h 19 min. The interface
position at dimensionless time t = 1.5 is presented in Figure 21 and it shows
that we get exactly the same behavior than for the Newtonian-Newtonian case.
Thus, to make a good compromise between precision and computational cost,
the simulations in a micro-channels network are performed with 30 cells inside
each channel.

24  x 72
 48  x 144
 96  x 288 

 

Figure 21: Grid convergence: position of the interface at t = 1.5
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7 Simulations in a micro-channels network

7.1 Symmetry test

In order to validate the detection and the modelization of many triple points
in a micro-channels network, the simulation of a two-phase Newtonian �ow is
performed in a symmetric network. The geometry is shown in the Figure 22.
This network is symmetrical with respect to the vertical axis that passes through
the middle of the domain and all the channels have the same diameter Lc. The

∂Ωe

∂Ωg ∂Ωd

∂Ωs

Lx

Ly

   Lc

Ωs

Ωf

x

y

Figure 22: Geometry of the domain for a symmetrical micro-channels network.

physical parameters are:
Lx = 75µm, Ly = 100µm, Lc = 10µm,

η1 = 1.34× 10−3Pa · s, η2 = 1× 10−3Pa · s,
Ca = 2.5× 10−3, θa = 140o.

The mesh has 270×360 cells, it has been chosen in order to have at least 30 points
in each channel to get relevant qualitative results. Indeed, the computational
code should be better parallelized to get lower simulation times and to allow
�ner grids. The evolution of the interface and the velocity �eld at di�erent
instants are shown in the Figure 23. The interface is initialized in the vertical
lower channel. At the beginning of the simulation, two triple points are detected
on the left and right walls in this lower channel (see Figure 23(a)). Then, the
interface turns on the left and the right channels and two new triple points are
detected on the horizontal walls (cf. Figure 23(b)). At instants t = 3.4375,
t = 6.875 and t = 10.625 the dynamic of six di�erent triple points must be taken
into account in the modelisation of the �ow.
In the Figure 23(f) there are ten triple points as some �uid 1 is trapped in the
corners. Modeling the triple points near the corners is very special: even if the
dynamic angle θd is bigger than the critical value θa, these triple points must
remain �x, because the incompressible �uid 1 in the corner does not move. From
this simulation, we can verify that the established methodology for the simulation
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of triple points is satisfactory: in a symmetrical micro-channels network, the �ow
is symmetric and over estimated velocities are not observed near the triple points.

7.2 Simulation in an heterogeneous network

Now, we consider the simulation of a two-phase Newtonian-viscoelastic �ow in a
non symmetrical micro-channels network. The geometry domain is presented in
the Figure 24 and the physical parameters are:

Lx = 75µm, Ly = 100µm, Lc = 10µm,

η1 = 1.34× 10−3Pa · s, η2 = 1× 10−3Pa · s, ηp2 = 9× 10−3Pa · s,
Ca = 4.5× 10−3, θa = 135o.

The mesh has 270×360 cells. The evolution of the interface and the streamlines
of the �ow are shown in the Figure 25. The interface position for three relaxation
times (λ2 = 0.1, 5.0, 12.0) at two di�erent instants is shown in the Figure 26. We
consider that the �uid with λ2 = 0.1 is a Newtonian �uid. At t = 4.68, there are
no signi�cant di�erences with respect to the position of the interface. At t = 16.87
we notice that the Newtonian �uid enters more easily in the central channel while
the �uid with λ2 = 12 occupies better the bigger channel. The comparison of the
vorticity of relative velocity at the instant t = 14.06 is presented in the Figure 27.
The most notable di�erences can be seen in the zone occupied by the viscoelastic
�uid. As the relaxation time increases, recirculations in the viscoelastic zone
become more important.
From these simulations, it seems that when the relaxation time increases, the
viscoelastic �uid tends to better occupy the channels of the network. In order to
con�rm this result, it is necessary to perform simulations in another geometry
and consider �uids with bigger relaxation times than those considered until now.
However, numerical instabilities appear when the dimensionless λ2 relaxation
time is bigger than 40. To remedy this problem, a di�usion term is added to
the equation of the conformation tensor [47]. The conformation tensor equation
from the system of equations (33) becomes:

τ − I

λ(φ)
+
∂τ

∂t
+ (U · ∇)τ − (∇U)τ − τ (∇U)t − ε∆τ +

τ − τ s
K

= 0, (52)

where ε is a coe�cient to be chosen. In this work, we take ε = 10−3 to restrict
the in�uence of the di�usion term in the equations. Indeed, in [47] the authors
have demonstrated that for ε = 10−3, the di�usion term does not in�uence the
�uid �ow. The new geometry is presented in the Figure 28. The parameters of
the simulation are:

Lx = 75µm, Ly = 100µm, Lc = 10µm,

η1 = 1.34× 10−3Pa · s, η2 = 1× 10−3Pa · s, ηp2 = 9× 10−3Pa · s,
Ca = 3× 10−3, θa = 135o.

The mesh has 180× 240 cells and the relaxation times are λ2 = 0.1 and λ2 = 50.
The Figure 29 shows the position of the interface at di�erent instants, for two
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dimensionless relaxation times. At instant t = 7.70 we can notice that the
Newtonian �uid takes advantage in the central channel (see Figure 29(a)) and the
viscoelastic �uid goes more easily into the right channel (see Figure 29(b)). This
result is con�rmed at instant t = 17.50 where the position of the interface is very
di�erent depending on the relaxation time. It can be seen that the viscoelastic
�uid tends to better occupy all the network channels (see Figure 29). Because of
conservation when the Newtonian �uid goes directly in one direction, it goes less
in the others. So the Newtonian �uid goes out quicker than the viscoelastic �uid
that better explores the others channels. In the present work no modelisation of
the merging of interface lines is performed and so the computation of that case
cannot been run a longer time.

8 Conclusions

In summary, we have proposed a technique for simulating a two-phase Newtonian-
viscoelastic �ow in a micro-channels network. This technique involves a level-set
approach for tracking the interface between the two �uids, a penalization method
for dealing with the geometry, a numerical contact angle model based on the Cox's
relation and the Oldroyd-B model for modeling the viscoelastic �uid.
The numerical resolution of problems involving a moving interface, requires the
implementation of su�ciently high order numerical schemes. For this, a WENO-
5 scheme is used in the spatial discretization of the transport equation of the
level-set function. In addition, to locate the triple points more precisely, this
discretization is performed on a twice �ner grid in each direction than the mesh
used for solving the �ow equations.
The �rst numerical simulations are performed in a two-dimensional straight chan-
nel to evaluate the interface shape and the contact angle behavior. At low capil-
lary numbers, the interface converges very quickly to a stationary circular shape.
In consequence, the dynamic contact angle also reaches a stable value. Besides,
from a qualitative point of view our results are satisfactory as the contact angle
decreases with the capillary number.
Then, the proposed methodology for modeling triple points has been evaluated
in a symmetrical network. We �nd that the symmetry of the �ow is respected
and no over estimated velocities are observed near the triple points. Finally,
simulations of two-phase Newtonian-viscoelastic �ows are carried out in hetero-
geneous micro-channels networks. They show that viscoelastic �uids tend to
better occupy all the channels of the network as observed in the experiments.
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(a) t = 1.25 (b) t = 2.1875

(c) t = 3.4375 (d) t = 6.875

(e) t = 10.625 (f) t = 14.062

Figure 23: Simulation of a two-phase Newtonian �ow in a symmetrical network.
Evolution of the interface and velocity �eld at di�erent instants.
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Figure 24: Geometry of the domain for a non symmetrical network.
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(a) t = 0.3 (b) t = 3.5

(c) t = 8.2 (d) t = 14.4

(e) t = 18.75

Figure 25: Two-phase Newtonian-viscoelastic �ow: streamlines and interface evo-
lution.
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(a) t=4.68
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(b) t=16.87

Figure 26: Comparison of the interface position for di�erent relaxation times.

(a) λ2 = 0.1 (b) λ2 = 1.0

(c) λ2 = 5.0 (d) λ2 = 12

Figure 27: Vorticity of the relative velocity at t = 14.06.
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Figure 28: Geometry of the domain for a non symmetrical network with connex-
ions between the channels.

(a) λ2 = 0.1 (b) λ2 = 50

(c) λ2 = 0.1 (d) λ2 = 50

Figure 29: Comparison of the interface position at instant t = 7.70 (top) and
t = 17.50 (bottom).
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