Exercice 1

Rappel: Soit (A_n) une suite de parties de Ω . On pose

$$\limsup A_n = \bigcap_n \left(\bigcup_{k \ge n} A_k \right) \quad \text{et} \quad \liminf A_n = \bigcup_n \left(\bigcap_{k \ge n} A_k \right).$$

On remarque que $x \in \limsup A_k$ si et seulement si $x \in A_k$ pour une infinité d'indices k et que $x \in \liminf A_k$ si et seulement si x appartient à tous les A_k sauf peut-être un nombre fini.

- 1. Soit Ω un ensemble et (A_n) une suite de parties de Ω . Déterminer $\limsup A_n$ et $\liminf A_n$ dans les cas
 - $-(A_n)$ est monotone (par rapport à l'ordre partiel d'inclusion)
 - $-A_{2n}=B$ et $A_{2n+1}=C$ où $B,\ C$ sont deux parties de Ω .
 - les A_n sont deux à deux disjoints.

Dans la suite de l'exercice on suppose que l'on a $(\Omega, \mathcal{T}, \mu)$ un espace mesuré et que pour tout entier n, $A_n \in \mathcal{T}$.

- 1. Justifier que $\limsup A_n$ et $\liminf A_n$ sont dans \mathcal{T} .
- 2. Montrer que $\mu(\liminf A_n) \leq \liminf \mu(A_n)$ ("propriété de Fatou").
- 3. On suppose de plus qu'il existe B dans \mathcal{T} tel que $\mu(B) < +\infty$ et pour tout entier $n, A_n \subset B$ (donner un exemple de mesure pour laquelle cette condition est toujours vérifié). Montrer que $\limsup \mu(A_n) \leq \mu(\limsup A_n)$.
- 4. Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré, $\mu(\Omega) < +\infty$. On considère une suite $(A_n)_{n \in \mathbb{N}}$ d'éléments de \mathcal{A} telle que $\sum_{n>0} \mu(A_n) < +\infty$. Montrer que $\mu(\limsup A_n) = 0$.

Exercice 2

Soit (Ω, \mathcal{T}) un espace mesurable et (f_n) une suite de fonctions définies sur Ω , à valeurs réelles et mesurables (\mathbb{R} est muni de la tribu borélienne). On note $A = \{x \in \Omega : (f_n(x))_n \text{ converge}\}.$

- 1. Rappeler la définition de suite de Cauchy.
- 2. Exprimer A à l'aide des ensembles $A_{n,p,q} = \{x \in \Omega : |f_n(x) f_{n+p}(x)| < \frac{1}{q}\}.$
- 3. En déduire que A appartient à \mathcal{T} .

Exercice 3

On considère \mathcal{B} la tribu borélienne de \mathbb{R} , et E un ensemble borélien de mesure de Lebesgue finie : $\lambda(E) < \infty$.

- 1. On prend E = [0,1] et g une fonction en escalier sur [0,1], à valeurs dans \mathbb{R} . Montrer que pour tout $\varepsilon > 0$, il existe un compact $K \subset E$ tel que $\lambda(E \setminus K) \le \varepsilon$ et que $g_{|K|}$ soit continue sur K.
- 2. Soit g une fonction mesurable étagée à valeurs réelles définie sur E. Montrer que pour tout $\varepsilon > 0$, il existe un compact $K \subset E$ tel que $\lambda(E \setminus K) \leq \varepsilon$ et que $g|_K$ soit continue sur K.
- 3. Pour cette question on considère le cas particulier où E = [0,1] et on prend pour g la fonction indicatrice de $[0,1] \setminus \mathbb{Q}$. Construire « à la main » un compact $K \subset E$ tel que $\lambda(E \setminus K) \leq \varepsilon$ et tel que la restriction de g à K soit constante égale à 1 (et donc continue). (Indication : en utilisant la dénombrabilité de \mathbb{Q} trouver un ouvert contenant \mathbb{Q} de mesure plus petite que ε .)
- 4. Soit g une fonction mesurable à valeurs réelles définie sur E. En utilisant la question 2. et le théorème d'Egoroff (énoncé ci-dessous), montrer que pour tout $\varepsilon > 0$, il existe un borélien $A \subset E$ tel que $\lambda(A) \leq \varepsilon$ et que $g_{|E \setminus A}$ soit continue sur $E \setminus A$.

Théorème d'Egoroff:

Soit \mathcal{B} la tribu borélienne de \mathbb{R} , soit E un ensemble borélien de mesure de Lebesgue finie, et (f_n) une suite de fonctions définie sur E, mesurables, à valeurs réelles et convergeant en tout point de E vers une fonction f.

Alors pour tout $\alpha > 0$, il existe un borélien $A \subset E$, de mesure $\lambda(A) \leq \alpha$, tel que la suite (f_n) converge uniformément vers f sur $E \setminus A$.

Exercice 4

On rappelle que pour une fonction continue et positive l'intégrale de Riemann généralisée et l'intégrale de Lebesgue coincident.

- 1. Donner un exemple de fonction positive, continue et intégrable sur \mathbb{R} et telle que f(x) ne tend pas vers 0 lorsque x tend vers $+\infty$.
- 2. Soit f une fonction définie sur \mathbb{R} , à valeurs positives, continue et intégrable. Soit (λ_n) une suite de réels strictement positifs tels que $\sum_{0}^{\infty} \frac{1}{\lambda_n} < \infty$. Montrer que la fonction $x \mapsto \sum_{0}^{\infty} f(\lambda_n x)$ est intégrable sur \mathbb{R} .
- 3. En déduire que pour presque tout réel x, $\lim_{n\to +\infty} f(\lambda_n x) = 0$.