
DISCRETE LOGARITHMS

1. DISCRETE LOGARITHMS IN A CYCLIC GROUP

Let G be a finite commutative group. For g an element of G the set {gk|k ∈ Z} is the smallest
subgroup of G containing g. We call it the subgroup generated by G and denote it < g >. If
< g > is the whole group G one says that g is a generator of G. If a group G admits a generator
we say it is a cyclic group.

For example, let N > 2 be an integer. The group (Z/NZ,+) is generated by 1 mod N . A
residue class x mod N generates Z/NZ if and only if x is prime toN . Indeed if gcd(x,N) = M
then the subgroup generated by x is easily seen to be the subroup MZ/NZ ⊂ Z/NZ.

Let p be a prime integer and set G = (Z/pZ)∗. This is a commutative group and even a
cyclic group. Otherwise G would contain a subgroup isomorphic to (Z/nZ)× (Z/nZ) for some
n > 2. This would imply that the polynomial xn − 1 has at least n2 roots in the field Z/pZ.
A contradiction. Consider the case p = 11 for example. The cardinality of G = (Z/11Z)∗ is
#G = 10. Set g = 2 mod 11. We compute all powers of g and find g2 = 4 mod 11, g3 =
8 mod 11, g4 = 5 mod 11, g5 = 10 mod 11, g6 = 9 mod 11, g7 = 7 mod 11, g8 = 3 mod 11,
g9 = 6 mod 11, g10 = 1 mod 11.

We deduce that g is a generator of G. The map k 7→ gk defines an isomorphism between
Z/#GZ and G. In particular gx is a generator of G if and only if x is prime to #G = 10. The
generators of G are thus g = 2 mod 11, g3 = 8 mod 11, g7 = 7 mod 11, g9 = 6 mod 11. The
number of generators is ϕ(10) = 4. The map k 7→ gk is denoted

expg : Z/#GZ = Z/10Z→ G = (Z/11Z)∗

and called the discrete exponential with base g. Its table is

k ∈ Z/10Z 0 1 2 3 4 5 6 7 8 9

gk = expg(k) ∈ (Z/11Z)∗ 1 2 4 8 5 10 9 7 3 6

The reciprocal map of expg is called the discrete logarithm with base g and denoted

logg : G = (Z/11Z)∗ → Z/eZ = Z/10Z.

1



2 DISCRETE LOGARITHMS

Its table is

h ∈ (Z/11Z)∗ 1 2 3 4 5 6 7 8 9 10

k = logg(h) ∈ Z/10Z 0 1 8 2 4 9 7 3 6 5

Let G be a cyclic group and let n be an integer. The map x 7→ xn defines a group homo-
morphism [n] : G → G. This homomorphism is a bijection if and only if n is prime to #G.
If n is congruent to 1 modulo #G then [n] is the identity. So the group (Z/#GZ)∗ acts on G.
Conversely any automorphism of G sends a generator g to another generator gx for some x that
is prime to #G. So the group of automorphisms of G is Aut(G) = (Z/#GZ)∗.

Discrete exponentials and discrete logarithms have similar properties to their classical coun-
terparts. For k and l in Z/eZ one has

expg(k + l) = gk+l = gkgl = expg(k) expg(l).

For h1 and h2 in G one has

logg(h1h2) = logg(h1) + logg(h2) ∈ Z/#GZ.

If both g and h are generators of G then for any a in G one has

logh(a) = logg(a)/ logg(h).

Using fast exponentiation one can compute expg(k) = gk at the expense of O(log k) opera-
tions in G. It seems that the first occurence of this algorithm is in the Chandah-sûtra, dating back
to 200 B.C. and attributed to the poet Piṅgala. See [DatSin, I,13].

On the other hand, there exists no generic algorithm to efficiently compute discrete logarithms.
See [Sho]. However, discrete logarithm is easy in some specific groups e.g. the additive groups
Z/NZ. The best known proven algorithms to compute discrete logarithms in (Z/NZ)∗ have
complexity exp((logN)1/2+o(1)). These are probabilistic algorithms.

Discrete exponential is thus a good candidate asymmetric function. It is easy to compute and
it is expected to be difficult to invert.

If G is cyclic of order e, we denote by H the set of its generators and by A its automorphism
group. We have seen that A is isomorphic to (Z/eZ)∗. Every automorphism has the form [n] :
G→ G for some invertible exponent n modulo e.

If h is a generator and a ∈ (Z/eZ)∗ then ha is also a generator. So the automorphism group
A acts on H . If h1 and h2 both belong to H there exists un unique a ∈ (Z/eZ)∗ such that
h2 = ha

1 = [a](h1). One says that A acts simply transitively on H .

Exercise. For each of the following groups say if it is cyclic and give the set of its generators
(Z/5Z,+), ((Z/7Z)∗,×), ((Z/35Z)∗,×).

�



DISCRETE LOGARITHMS 3

Exercise. Set p = 31. Prove that G = (Z/pZ)∗ has a unique sub-group of order 2. Call it G1.
Prove that G has a unique sub-group of order 3. Call it G2. Prove that G has a unique sub-group
of order 5. Call it G3. Prove that G is the direct product of G1, G2 and G3.

�

2. IDENTIFICATION

It is possible to build a zero-knowledge identification scheme on the difficulty of computing
discrete logarithms. The following scheme is due to Schnorr.

To initialize the scheme,
• Alice chooses a cyclic group G of large enough order e. Let H be the set of generators

of G and let A = (Z/eZ)∗.
• Alice picks an element h0 ∈ H and a random element aAlice ∈ A.
• Alice computes hAlice = h0

aAlice .
• She publishes G, h0, hAlice.

Alice is the only one to know the logarithm of hAlice in base h0, that is the exponent aAlice ∈ A
such that hAlice = haAlice

0 .
Now if Bob wants to contact Alice, he finds G, h0, hAlice in the phonebook. He contacts Alice

and ask her to prove herself.
• Alice picks a random exponent ar in A with uniform probability.
• Alice computes hr = hAlice

ar = h0
aAlicear and sends hr to Bob.

• Bob picks a random ε ∈ {0, 1} with uniform probability
• if ε = 0 then Bob asks Alice which is the exponent that sends h0 onto hr and Alice

is expected to answer logh0(hr). She knows this logarithm because it is the product
araAlice ∈ (Z/eZ)∗.
• if ε = 1 then Bob asks Alice which is the exponent that sends hAlice onto hr and Alice is

expected to answer ar = loghAlice
(hr).

This protocol is repeated many times. If Eve is trying to impersonate Alice she does not know
aAlice = logh0(hAlice) so she cannot at the same time know logh0(hr) and loghAlice

(hr). She will
fail at each round with probability > 1/2.

3. ELGAMAL ENCRYPTION SCHEME

This is a public key encryption scheme.

Alice generates her secret key and her public key.
(1) Alice chooses a cyclic group G of order e. Let H be the set of generators of G and

A = (Z/eZ)∗ the set of invertible elements modulo e.
(2) Alice chooses some h0 ∈ H and a random aAlice ∈ A. She computes hAlice = h0

aAlice

and she publishes (G, h0, hAlice).

The secret key of Alice is aAlice ∈ A. Her public key is (G, h0, hAlice).
If Bob wants to cipher a message m for Alice.



4 DISCRETE LOGARITHMS

(1) Bob finds Alice’s public key (G, h0, hAlice) in the phonebook.
(2) He chooses a random aBob in A and computes k = h0

aBob .
(3) Bob computes t = hAlice

aBob and c = m⊕ t.
(4) Bob sends (k, c) to Alice.

Alice deciphers Bob’s message (k, c).

(1) Alice computes kaAlice = haBobaAlice
0 = haAliceaBob

0 = haBob
Alice = t.

(2) Alice computes m = c	 t.
Note that the security of Schnorr and ElGamal schemes relies on a slightly weaker problem

than discrete logarithm. This is called the Diffie and Hellman problem : given G, h0, h1 et h2,
find the unique h3 such that h1 = ha1

0 , h2 = ha2
0 , h3 = ha3

0 and a3 = a1a2 ∈ A.

4. FINDING A GENERATOR

In order to implement the above cryptographic schemes one needs to find a large cyclic group
G and a generator of it. Computing discrete logarithms in G should be difficult.

A first possibility is to pick a random large prime p such that p−1 = 2q where q is prime. Pick
a random y in (Z/pZ)∗ and set x = y2. If x 6= 1 mod p then x generates the unique subgroup G
of order q inside (Z/pZ)∗.

A more general method is to pick a random large prime p such that p − 1 = fq where q is
prime and f = ∏

i p
ei
i is a product of small primes. To find such a p we pick random primes p

and factor all small primes out of p− 1. If what remains is a prime we are done.
We now pick a random y in (Z/pZ)∗ and set x = yf . If x 6= 1 mod p then x generates the

unique subgroup G of order q inside (Z/pZ)∗.

5. FIRST ATTACKS ON THE DISCRETE LOGARITHM PROBLEM

The simplest algorithm to compute discrete logarithm is exhaustive search. To find logg h
compute all successive powers of g until you find one equal to h. This algorithm works for any
group but its running time is proportional to the size of the group.

There are groups where computing discrete logarithms is easy. This is the case for the additive
group G = Z/NZ.

5.1. Groups of smooth order. Set p = 211. This is a prime integer. Set G = (Z/pZ)∗. The
order of G is e = #G = p− 1 = 2.3.5.7. We set

a1 = 2, a2 = 3, a3 = 5, a4 = 7.
For 1 6 i 6 4 set bi = ∏

j 6=i ai. So

b1 = 105, b2 = 70, b3 = 42, b4 = 30.
These four integers have no common divisor. We find four integers (ci)16i64 such that∑

16i64
cibi = 1.

For example
c1 = 1, c2 = 1, c3 = −2, c4 = −3.



DISCRETE LOGARITHMS 5

Set di = cibi for 1 6 i 6 4. So

d1 = 105, d2 = 70, d3 = −84, d4 = −90.
Let g = 2 mod 211 ∈ (Z/pZ)∗. We compute

g1 = g105 = 210 mod 211, g2 = g70 = 196 mod 211,
g3 = g42 = 107 mod 211, g4 = g30 = 171 mod 211.

We deduce that g is a generator of (Z/pZ)∗. The group G contains four subgroups G1, G2, G3,
G4 of orders 2, 3, 5, and 7 respectively. And

G = G1 ×G2 ×G3 ×G4.

For each 1 6 i 6 4 the group Gi is generated by gi.
Define the two maps

φ : G // G1 ×G2 ×G3 ×G4

x � // (xb1 , xb2 , xb3 , xb4).

γ : G1 ×G2 ×G3 ×G4 // G

(x1, x2, x3, x4) � // xc1
1 x

c2
2 x

c3
3 x

c4
4 .

We check that φ and γ are bijective and γ is the inverse map of φ.
Now let h = 101 mod 211. We want to compute the logarithm ` = logg(h) ∈ Z/210Z. We

compute h105 = 1 mod 211, h70 = 196 mod 211, h42 = 1 mod 211, and h30 = 171 mod 211.
So

φ(h) = (1 mod 211, 196 mod 211, 1 mod 211, 171 mod 211),
φ(g) = (210 mod 211, 196 mod 211, 107 mod 211, 171 mod 211).

We deduce that ` is congruent to 0 modulo 2, congruent to 1 modulo 3, to 0 modulo 5 and to
1 modulo 7. So

` = 0.d1 + 1.d2 + 0.d3 + 1.d4 = 0.105 + 1.70− 0.84− 1.90 = −20 mod 210.
Indeed g−20 = h.
This method is due to Pohlig and Hellman. It quickly computes discrete logarithms when the

order of the group is smooth meaning it only has small prime factors.

Exercise. Let p = 331. Show that p is a prime integer.
Factor p− 1 as a product of primes.
On checks that 2165 = 330 mod p, 2110 = 299 mod p, 266 = 64 mod p, 230 = 1 mod p,

5165 = 1 mod p, 5110 = 31 mod p, 566 = 64 mod p, 530 = 180 mod p.
Give a generator g of (Z/pZ)∗.
Let h = 329 mod p. One checks that h165 = 1 mod p, h110 = 299 mod p, h66 = 64 mod p,

h30 = 1 mod p.



6 DISCRETE LOGARITHMS

Compute logg(h) using the method of Pohlig-Hellman.

�

Exercise. Let p be the number

171962010545840643348334056831754301958457563589574256043877110505832165523
8562613083979651479555788009994557822024565226932906295208262756822275663694111

Check that p is probably a prime using the test of Miller-Rabin.
Check that p− 1 is a 400-smooth integer.
Write a short code that computes discrete logarithms in (Z/pZ)∗.

�

5.2. Shanks’s method. The best algorithm to compute discrete logarithms in generic groups is
due to Shanks. It is called the baby steps giant steps method.

Assume G is the multiplicative group G = (Z/101Z)∗. One checks that g = 2 mod 101
is a generator. Indeed #G = 100 and the maximum divisors of 100 are 20 = 100/5 and
50 = 100/2. Since 250 = −1 mod 101 and 220 = 95 mod 101 we conclude that g generates G.
Set r = d

√
100e = 10 and γ = gr = 14 mod 101. Let h = 48 mod 101. We want to compute

logg h ∈ Z/100Z. We compute the list of all γk for 0 6 k 6 r − 1

k 0 1 2 3 4 5 6 7 8 9

γk 1 14 95 17 36 100 87 6 84 65

We now compute this list of all hg−l for 0 6 l 6 r − 1

l 0 1 2 3 4 5 6 7 8 9

hg−l 48 24 12 6 3 52 26 13 57 79

These two lists have a unique common element which is 6. It corresponds to the values k = 7
and l = 3. So γ7 = hg−3 so h = g73.

The running time of this method is the time to compute and sort the two lists. The size of
these lists is O(

√
#G). So the running time is (#G)1/2+o(1) using a fast sorting algorithm such

as heapsort.



DISCRETE LOGARITHMS 7

6. SIEVING

Let p be a prime integer. Let G = (Z/pZ)∗. Let g be a generator of G and h any element
in G. We want to compute logg h. We pick a random integer a in [0, p − 2] and compute
ga × h = ra mod p where 1 6 ra 6 p − 1. We hope ra is a smooth integer. This means that ra

has only small prime divisors. More precisely, we have chosen a positive integer B. We say that
an integer is B-smooth if all its prime divisors are 6 B. If ra is B-smooth we write

gah =
∏

q6B, and q prime

qea,q mod p

where ea,q is the q-valuation of ra.
Taking the logarithm in base g on either side we find

a+ logg h =
∑

q6B, and q prime

ea,q logg q mod p− 1.

So for each value of a for which ra is B-smooth we get a linear relation between 1, logg h,
and the (logg q)q6B. Once we have collected enough such relations we compute logg h and the
(logg q)q6B by linear algebra methods in the ring Z/(p− 1)Z.

For example, assume p = 6761. We set g = 765 mod p. We check that p − 1 = 23.5.132

and g(p−1)/2 = −1 mod p and g(p−1)/5 = 3624 mod p and g(p−1)/13 = 328 mod p. So g is a
generator of (Z/pZ)∗.

Let h = 456 mod p. We want to compute the discrete logarithm of h in base g. We pick a
number of random values for a until we find the following congruences :

g1783 × h = 23 × 34 mod p,
g585 × h = 27 × 32 mod p,
g726 × h = 22 × 35 mod p,
g1116 × h = 23 × 33 mod p,
g1393 × h = 22 × 36 mod p.

We deduce the equations

1783 + logg h = 3 logg 2 + 4 logg 3 mod p− 1,
585 + logg h = 7 logg 2 + 2 logg 3 mod p− 1,
726 + logg h = 2 logg 2 + 5 logg 3 mod p− 1,

1116 + logg h = 3 logg 2 + 3 logg 3 mod p− 1,
1393 + logg h = 2 logg 2 + 6 logg 3 mod p− 1.

The lattice of known relations between 1, logg h, logg 2, logg 3 is generared by the columns of
the matrix



8 DISCRETE LOGARITHMS



1783 585 726 1393 6760 0 0 0

1 1 1 1 0 6760 0 0

−3 −7 −2 −2 0 0 6760 0

−4 −2 −5 −6 0 0 0 6760


We compute the Hermite normal form of this matrix. This produces generators for the lattice

of relations in echelon form. 

6760 703 5036 6093

0 1 0 0

0 0 1 0

0 0 0 1


We deduce that logg h = −703 = 6057 mod p− 1. We check that g6057 = h.

REFERENCES

[DatSin] B. Datta and A.N. Singh. History of Hindu Mathematics. Motilal Banarsi Das, Lahore, 1935.
[Gor] D. M. Gordon. A Survey of Fast Exponentiation Methods. J. Algorithms 27(1): 129-146 (1998)
[Sho] V. Shoup Lower bounds for discrete logarithms and related problems. Lecture Notes in Computer Science.

1233. Advances in Cryptology — Eurocrypt 97. Springer-Verlag. pp. 256–266 (1997).


