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1. AFFINE CURVES

Let K be a field. The affine plane A2(K) is the set K2 of pairs (u, v) for u, v in K. Such a
pair (u, v) is called an affine point.

Let E(x, y) ∈ K[x, y] be a non-constant polynomial in two indeterminates. The set

C = {(u, v) ∈ K2 |E(u, v) = 0}.

of affine points (u, v) in A2(K) such that E(u, v) = 0 is called the plane affine curve with
equation E.

If L ⊃ K is an extension field of K we write

C(L) = {(u, v) ∈ L2 |E(u, v) = 0}

for the set of L-points on the curve C.
For example if K = R and E(x, y) = x+ y + 1 the set C(K) is a line.
If K = R and E(x, y) = x2 + y2 − 1 the set C(K) is a circle.
If K = R and E(x, y) = x2 + y2 + 1 the set C(R) is empty but C(C) is not.

2. SMOOTH POINT ON A CURVE

Let C be a plane affine curve with equation E(x, y). Let P = (u, v) be a point on C. The
Taylor expansion of E at P starts like

E(x, y) = E(u, v) + ∂E

∂x
(u, v)× (x− u) + ∂E

∂y
(u, v)× (y − v) + higher order terms.
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Since E(u, v) = 0 we deduce that if the partial derivatives ∂E
∂x

(u, v) and ∂E
∂y

(u, v) are not both
zero the first significant term in the Taylor expansion is the equation of a line called the tangent
to C at P . In this situation P is said to be smooth.

For example if E(x, y) = x2 + y2 − 1 and P = (1, 0) the equation of the tangent at P is
x− 1 = 0.

If E(x, y) = y2 − x3 then the point P = (0, 0) is not smooth. One says that P is singular, or
that C is singular at P .

We say that a plane curve C is smooth if and only if C is smooth at every point in C(K̄) where
K̄ is an algebraic closure of K.

3. THE PROJECTIVE PLANE

Let K be a field. Let T be the set of triples (U, V,W ) in K3 such that (U, V,W ) 6= (0, 0, 0).
We define an equivalence relationR on T . We write (U, V,W )R(U ′, V ′,W ′) if and only if there
exists a non-zero λ in K such that U ′ = λU , V ′ = λV ,W ′ = λW . The set of equivalence classes
for R is called the projective plane over K and denoted P2(K). A class in P2(K) is represented
by any triple in it.

We note that if W 6= 0 then (U, V,W )R(u, v, 1) with u = U/W and v = V/W . So P2(K)
contains A2(K). The points (U, V, 0) in P2(K) are called the points at infinity. They correspond
to asymptotic directions in the affine plane. Indeed the limit of (tU, tV, 1) when t tends to infinity
is (U, V, 0) because (tU, tV, 1)R(U, V, 1/t).

4. PROJECTIVE CURVES

Let d > 1 be an integer. Let E(X, Y, Z) ∈ K[X, Y, Z] be a non-zero homogeneous polyno-
mial of degree d. All the non-zero monomials in E have total degree d.

If (U, V,W )R(U ′, V ′,W ′) then there exists a non-zero λ in K such that U ′ = λU , V ′ =
λV , W ′ = λW . So E(U ′, V ′,W ′) = λdE(U, V,W ) so E(U, V,W ) = 0 if and only if
E(U ′, V ′,W ′) = 0. We thus can define the set C of points P = (U, V,W ) in P2(K) such
that E vanishes at P . This set is called the projective plane curve with equation E.

For example if d = 1 and E = X+Y −Z then C is the set of points (U, V,W ) in P2(K) such
that U +V −W = 0. This is the projective line with equation X +Y −Z. In case W is not zero
we have (U, V,W )R(u, v, 1) with u = U/W and v = V/W . And u + v − 1 = 0. So the curve
C(K) contains the affine curve Caff with equations x+ y − 1. If (U, V, 0) is on C then V = −U
and (U, V, 0)R(1,−1, 0). We say that C has a unique point at infinity, namely (1,−1, 0).

Now if d = 2 and E = X2 − Y 2 − Z2 then C is an hyperbola. Its affine part is the curve Caff
with equations x2 − y2 − 1. There are two points at infinity, namely (1, 1, 0) and (1,−1, 0).

An important theorem attributed to Bézout states that if K is algebraically closed and C1 and
C2 are plane projective curves with respective degrees d1 and d2 such that the intersectionC1∩C2
is finite then this intersection consists of d1d2 points provided one counts multiplicities.

5. ELLIPTIC CURVES

Let K be a field with characteristic p different from 2 and 3. A Weierstrass curve is by def-
inition a smooth plane projective curve with equation Y 2Z − X3 − aXZ2 − bZ3 where a and
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b are in K. The smoothness condition is easily seen to be equivalent to 27b2 + 4a3 6= 0. The
quantity −16(27b2 + 4a3) is called the discriminant of the Weierstrass curve. Weierstrass curves
are special cases of elliptic curves.

If C is a Weierstrass curve there is an involution

w : C → C

mapping (U, V,W ) onto (U,−V,W ).
The affine part of C is the affine curve with equation y2−x3− ax− b. There is a unique point

at infinity, namely O = (0, 1, 0). We call it the origin of C.
One can define a commutative group law ⊕ on C(K) such that O is the neutral element, the

opposite 	P of P = (U, V,W ) is w(P ) = (U,−V,W ), and three points P , Q, R on C are
colinear if and only if P ⊕Q⊕R = O.

Assume P = (xP , yP ) and Q = (xQ, yQ) are two affine points on C. Assume xP 6= xQ. We
want to compute P ⊕Q. The line (PQ) has equation

(y − yP ) = λ(x− xP )
where

λ = yQ − yP

xQ − xP

.

We substitute y by yP + λ(x− xP ) in the affine equation −y2 + x3 + ax+ b and find the degree
3 equation in x

x3 − λ2x2 + terms of smaller degree.

This equation has three solutions : xP , xQ and xR where R is the third intersection point in
C∩(PQ). The sum of the roots of a degree d unitary polynomial is the opposite of the coefficient
of xd−1. So

xP + xQ + xR = λ2.

We deduce that
xR = λ2 − xP − xQ

and yR = yP + λ(xR − xP ). And P ⊕Q = 	R = (xR,−yR).
Assume now that xP = xQ. If yP = −yQ then Q = 	P and P ⊕ Q = O. If yP = yQ then

P = Q. We look for some point R such that P ⊕ P ⊕ R = O. There is a line that intersects C
at P with multiplicity two and at R with multiplicity one. This line is the tangent to C at P . Its
equation is

∂E

∂x
(xP , yP )× (x− xP ) + ∂E

∂y
(xP , yP )× (y − yP )

where
E(x, y) = x3 + ax+ b− y2

is the equation of the affine part of C.
We find

∂E

∂x
(xP , yP ) = 3x2

P + a and
∂E

∂y
(xP , yP ) = −2yP .
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The slope of the tangent at P is thus

λ = 3x2
P + a

2yP

.

We substitute y by yP + λ(x− xP ) in the affine equation −y2 + x3 + ax+ b and find the degree
3 equation in x

x3 − λ2x2 + terms of smaller degree.
This equation has three solutions : xP , xP and xR. The sum of the roots of a degree d unitary
polynomial is the opposite of the coefficient of xd−1. So

2xP + xR = λ2.

We deduce that
xR = λ2 − 2xP

and yR = yP + λ(xR − xP ). And P ⊕ P = 	R = (xR,−yR).

6. ELLIPTIC CURVES OVER FINITE FIELDS

Let K be a finite field with cardinality q. Let a and b in K such that 27b2 + 4a3 is not 0.
Let C be the Weierstrass curve with equation Y 2Z − X3 − aXZ2 − bZ3. The set C(K) is a
finite commutative group. According to a famous theorem due to Hasse, the order of this group
belongs to the interval [q+ 1− 2√q, q+ 1 + 2√q]. There exists a deterministic polynomial time
algorithm that on input a and b returns the order of this group. This algorithm is due to René
Schoof.

Exercise 1. Let K be the field Z/5Z. Let C be the affine curve with equation

y2 = x3 − x+ 2
over K.

1. Prove that C is smooth.
2. Compute all the points on C with coordinates in K.
3. Let E be the projective (elliptic) curve with homogeneous equation

Y 2Z = X3 −XZ2 + 2Z3.

Let P ∈ E(K) be the point with coordinates (3 : 1 : 1). Let O = (0 : 1 : 0). Prove that

[3]P = P ⊕ P ⊕ P = O.

4. Compute [10000000001]P .

Exercise 2. Let K be the field Z/5Z. Let C be the affine curve with equation

y2 = x3 + x+ 2
over K.

1. Prove that C is smooth.
2. Compute all the points on C with coordinates in K.
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3. Let C ∪ {O} be the elliptic curve obtained by adding the point O = (0 : 1 : 0) to the
affine curve C. Recall the definition of the group law on C(K)∪ {O}. What is the order
of this group ?

4. LetQ be the point with coordinates xQ = 1 et yQ = 2. Compute [321234567898765432123]Q.

Exercise 3. Let C be the affine curve with equation

y2 = x3 + 2x+ 1
over the field F7

1. Is C a smooth curve ?
2. Give the list of all points in C(F7).
3. Let E be the elliptic curve obtained by adding to C the point O = (0, 1, 0). Let P be the

point with affine coordinates (0, 6). Check that P ∈ E(F7). Compute [2]P .
4. Let Q be the point with affine coordinates (1, 5). Check that Q ∈ E(F7). Compute
P ⊕Q.

5. Which is the structure of the group E(F7) ?

Exercise 4. Let f(x) be the polynomial x2 + x+ 1 in F5[x].

1. Prove that f(x) is irreducible.
2. Let K = F5[x]/f(x). Let α = x mod f(x) ∈ K. Prove that K is a field.
3. What is the cardinality of K ?
4. Let D be the affine curve with equation

y2 = x3 + x+ 1
over K. Prove that D is smooth.

5. We call F be the elliptic curve obtained by adding to D the point O = (0, 1, 0). Check
that P = (4, 3) is in D(K).

6. Compute [2]P .
7. Check that Q = (3α + 1, 4α + 2) is in D(K).

7. THE PROJECTIVE PLANE OVER THE RING Z/nZ

Let n > 2 be an integer. Let T be the set of triples (U, V,W ) in (Z/nZ)3 such that the ideal
(U, V,W ) is Z/nZ. Equivalently the greatest common divisor of n, U , V , and W is 1. We
write (U, V,W )R(U ′, V ′,W ′) if and only if there exists a unit λ in Z/nZ such that U ′ = λU ,
V ′ = λV , W ′ = λW . The set of equivalence classes for R is called the projective plane over
Z/nZ and denoted P2(Z/nZ). A class in P2(Z/nZ) is represented by any triple in it.

Let d > 1 be an integer. Let E(X, Y, Z) ∈ (Z/nZ)[X, Y, Z] be an homogeneous polynomials
of degree d. All the non-zero monomials inE have total degree d. We assume that the coefficients
in E have no common factor.

If (U, V,W )R(U ′, V ′,W ′) then there exists a unit λ in Z/nZ such that U ′ = λU , V ′ =
λV , W ′ = λW . So E(U ′, V ′,W ′) = λdE(U, V,W ). So E(U, V,W ) = 0 if and only if
E(U ′, V ′,W ′) = 0. We thus can define the set C of points P = (U, V,W ) in P2(Z/nZ) such
that E vanishes at P . This set is called the projective plane curve with equation E.
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Assume n is prime to 6. Assume d = 3 and E(X, Y, Z) = Y 2Z −X3 − aXZ2 − bZ3 where
a and b are in Z/nZ and 27b2 + 4a3 is a unit. We denote C(Z/nZ) the set of points (U, V,W ) in
P2(Z/nZ) such that E(U, V,W ) = 0. This is the elliptic curve over Z/nZ with equation E.

It is possible to define a commutative group law on this set. This is theoretically a bite delicate
but in practice we most of the time will simply use the same formulae as in the case of elliptic
curves over fields. This may lead us to divide by an element in Z/nZ that is neither 0 nor
invertible. In such a situation we cannot use the usual addition formulae but we don’t really
mind because we have found a non-trivial factor of n, which is a nice counterpart.

8. ELLIPTIC CURVES AND CHINESE REMAINDER THEOREM

Let n > 2 be an integer. Assume n is prime to 6. Let a and b in Z/nZ such that 27b2 +4a3 is a
unit. Let C(Z/nZ) be the elliptic curve with equation E(X, Y, Z) = Y 2Z−X3−aXZ2− bZ3.

Let m > 2 be a divisor of n. By reducing the coefficients in E(X, Y, Z) modulo m we define
an elliptic curve over Z/mZ which we denote C(Z/mZ).

The reduction map modulo m is compatible with addition on either sides because the sum
P ⊕Q is defined by polynomial expressions in the coordinates of P and Q. We denote

ρm : C(Z/nZ)→ C(Z/mZ)
this group homomorphism.

In case n = n1n2 with gcd(n1, n2) = 1 the map

ρn1 × ρn2 : C(Z/nZ) // C(Z/n1Z)× C(Z/n2Z)

P � // (P mod n1, P mod n2).
is a bijection according to the Chinese remainder theorem.

9. INTRODUCTION TO THE ELLIPTIC CURVE FACTORING METHOD

In view of the Chinese isomorphism above one is lead to adapt Pollard’s p − 1 method to the
context of elliptic curves. This leads to Lenstra’s elliptic curve factoring method. The idea is to
pick a random point P on a random elliptic curve C over Z/nZ then define a sequence of points
by setting P1 = P , P2 = [2]P1, P3 = [3]P2,. . . , Pk+1 = [k + 1]Pk, etc. At some point we hope
that some Pk will be equal to the origin (0, 1, 0) modulo some prime divisor p of n. As in the
Pollard’s p−1 algorithm this should result in a non-trivial gcd between n and the third projective
coordinate of Pk. The condition for this to happen is that the cardinality of C(Z/pZ) be a divisor
of k! In other words the method succeeds when #C(Z/pZ) is smooth. So we don’t need p−1 to
be smooth. We rather need some random integer in the Hasse interval [p+1−2√p, p+1+2√p]
to be smooth. This makes this algorithm a good general purpose factoring algorithm while the
p− 1 method only works when n has a prime divisor p such that p− 1 is smooth.

Assume for example that we want to factor the integer n = 4223. Let P be the point

P = (0, 1, 1) ∈ P2(Z/nZ).



ELLIPTIC CURVES 7

Let C be the plane projective curve with equation

E(X, Y, Z) = Y 2Z −X3 −XZ2 − Z3.

We check that P is a point in C(Z/nZ).
We try to define a sequence (Pk)k>1 by setting P1 = P and Pk+1 = [k + 1]Pk for k > 1.
We find P2 = (1056, 3694, 1), P3 = (4182, 2994, 1), P4 = (3567, 2664, 1), . . .

? n=4223;
? P=[0,1]*Mod(1,n);
? E=ellinit([1,1]*Mod(1,n));
? P1=P
%4 = [Mod(0, 4223), Mod(1, 4223)]
? P2=ellmul(E,P1,2)
%5 = [Mod(1056, 4223), Mod(3694, 4223)]
? P3=ellmul(E,P2,3)
%6 = [Mod(4182, 4223), Mod(2994, 4223)]
? P4=ellmul(E,P3,4)
%7 = [Mod(3567, 4223), Mod(2664, 4223)]
? P5=ellmul(E,P4,5)

*** at top-level: P5=ellmul(E,P4,5)

*** ^--------------

*** ellmul: impossible inverse in Fp_inv: Mod(41, 4223).

*** Break loop: type ’break’ to go back to GP prompt

We fail to compute P5 = [5]P4 because at some point in the calculation we find a non-zero
scalar 41 mod n in Z/nZ which is not invertible. This exhibits a factor p = 41 of n. The cofactor
is q = n/p = 103. We check that p and q are prime.

To understand what is happening we redo the computation modulo p then modulo q.
? p=41;
? P=[0,1]*Mod(1,p);
? E=ellinit([1,1]*Mod(1,p));
? P1=P
%11 = [Mod(0, 41), Mod(1, 41)]
? P2=ellmul(E,P1,2)
%12 = [Mod(31, 41), Mod(4, 41)]
? P3=ellmul(E,P2,3)
%13 = [Mod(0, 41), Mod(1, 41)]
? P4=ellmul(E,P3,4)
%14 = [Mod(0, 41), Mod(40, 41)]
? P5=ellmul(E,P4,5)
%15 = [0]
?
?
? q=103;



8 ELLIPTIC CURVES

? P=[0,1]*Mod(1,q);
? E=ellinit([1,1]*Mod(1,q));
? P1=P
%19 = [Mod(0, 103), Mod(1, 103)]
? P2=ellmul(E,P1,2)
%20 = [Mod(26, 103), Mod(89, 103)]
? P3=ellmul(E,P2,3)
%21 = [Mod(62, 103), Mod(7, 103)]
? P4=ellmul(E,P3,4)
%22 = [Mod(65, 103), Mod(89, 103)]
? P5=ellmul(E,P4,5)
%23 = [Mod(29, 103), Mod(27, 103)]

We see that the point (0, 1) ∈ Z/pZ has order dividing 5! in the group C(Z/pZ). But the point
(0, 1) ∈ Z/qZ has order not dividing 5! in the group C(Z/qZ).

Indeed the group C(Z/pZ) is isomorphic to Z/35Z while the group C(Z/qZ) is isomorphic
to Z/87Z.
? ellgroup(ellinit([1,1]*Mod(1,p)))
%24 = [35]
?
? ellgroup(ellinit([1,1]*Mod(1,q)))
%25 = [87]


