
THE RING Z AND ITS QUOTIENTS

1. THE RING OF INTEGERS

The set Z with the two composition laws + and × is a commutative ring. We a have a
euclidean division in Z. For a and b in Z, assuming b 6= 0, there exists a unique pair of integers
(q, r) such that a = bq+r and 0 6 r < b. The integer q is the quotient. And r is the remainder.

Recall that an ideal of Z is a subset I ⊂ Z that is a subgroup for the + law and such that for
any x ∈ Z and i ∈ I the product xi belongs to I .

Using the euclidean division one proves that any ideal I of Z is of the form

I = aZ = {ax|x ∈ Z}

where a is an integer called a generator of I . One says that Z is a principal ring. If I is not the
zero ideal {0} then it has a unique positive generator. We call it the generator of I .

A unit in Z is an invertible element. Only 1 and −1 are units. A prime integer is a non-zero
integer which is not a unit and has no positive divisor but 1 and itself. Any positive integer can
be decomposed as a product of positive primes (with possible multiplicities) in a unique way, up
to permutation of the factors. One says that Z is a factorial ring.

Call P the set of all positive primes.
IfM = ±∏

p∈P p
ep one says that ep is the p-valuation ofM . On sometimes write ep = vp(M).

The 2-valuation of 12 = 22.3 is 2 and its 3 valuation is 1.
The greatest common divisor of M = ∏

p∈P p
ep and N = ∏

p∈P p
fp is

gcd(M,N) =
∏
p∈P

pmin(ep,fp).

The ideal generated by M and N is the smallest ideal containing M and N . It is the set
{λM + µN |λ, µ ∈ Z}. It is equal to gcd(M,N)Z. In particular there exists a pair of integers
(λ, µ) such that λM + µN = gcd(M,N). The triple (gcd(M,N), λ, µ) can be computed from
M and N using the extended euclidean algorithm.

The lowest common multiple of M = ∏
p∈P p

ep and N = ∏
p∈P p

fp is

lcm(M,N) =
∏
p∈P

pmax(ep,fp).

The intersection of MZ and NZ is an ideal of Z. It is the ideal lcm(M,N)Z.
It is evident that

gcd(M,N)× lcm(M,N) = MN.
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2. THE RING Z/NZ

Let N > 2 be an integer. The quotient of Z by NZ is a ring. The class x + NZ is often
denoted x mod N . The quotient ring Z/NZ is finite. We denote (Z/NZ)∗ the group of units
(invertible elements) in Z/NZ. Recall x mod N is invertible if and only if gcd(x,N) = 1. If
this is the case we have two integers λ and µ such that λx+µN = 1 and λ mod N is the inverse
of x mod N in (Z/NZ)∗.

Computing the addition and subtraction of two classes x mod N and y mod N in Z/NZ takes
time 6 K logN for K a constant.

Computing the multiplication of two classes x mod N and y mod N in Z/NZ takes time
6 K(logN)2 for K a constant using grade-school algorithm. Using fast arithmetic (based on
Fourier transform) one can multiply in time (logN)1+o(1).

The complexity of inverting modulo N is 6 K(logN)2 for K a constant using grade-school
algorithms and (logN)1+o(1) using advanced algorithms.

The complexity of computing (a mod N)e is log e × (logN)1+o(1) using fast arithmetic and
fast exponentiation. Since e is usually of the same order of magnitude as N this complexity is
essentially quadratic in logN .

The group of units (Z/NZ)∗ is cyclic when N is a prime, because this group is a finite group
of roots of unity in a field.

2.1. Chinese remainders. Assume M > 2 and N > 2 are coprime integers. We define a map
f : Z/MNZ→ (Z/MZ)× (Z/NZ) by f(x mod MN) = (x mod M,x mod N). It is easy to
check that f is well defined and injective. To prove that f is surjective we consider the Bezout
coefficients λ and µ such that λM + µN = 1 and we notice that λM is congruent to 0 modulo
M and to 1 modulo N . And µN is congruent to 1 modulo M and to 0 modulo N . Given any
pair c = (x mod M, y mod N) we check that f(xµN + yλM) = c. So the map f is surjective.

We have a ring isomorphism between Z/MNZ and (Z/MZ)× (Z/NZ).

2.2. Euler’s function. For N > 2 we denote ϕ(N) the order of the group (Z/NZ)∗ of units in
Z/NZ. A consequence of Chinese remainder theorem is that

ϕ(MN) = ϕ(M)ϕ(N)
when gcd(M,N) = 1.

One checks that ϕ(pk) = pk−1(p− 1) for every prime p and integer k > 1.
Alltogether if N = ∏

p∈P p
ep then ϕ(N) = ∏

p∈P p
ep−1(p− 1).

2.3. Lagrange’s theorem. Assume G is a finite group and H ⊂ G a subgroup. We define a
relationR on G by setting xRy for x and y in G if and only if y−1x ∈ H . This is an equivalence
relation. The equivalent class of x is xH = {xh|h ∈ H}. So every equivalence class has order
|H|. And the equivalence classes form a partition of G. So the cardinality of G is the product of
|H| times the number of classes.

We deduce that every subgroup of a finite group G has order dividing |G|.
Consider now an element g in G. The smallest subgroup of G containing g is denoted by

< g >. It is the set of all powers (positive or negative) of g. This is the set {1, g, g2, . . . , go−1}
where o is the smallest positive integer such that go = 1.
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Indeed the map E : Z → G that sends n onto gn is a group homomorphism. Its image is
< g >. Its kernel is a non trivial ideal of Z. We denote by o the positive generator of this kernel.
This is called the order of g.

Because < g > is a subgroup of G its order o divides |G|. So |G| = oq for some integer q and
g|G| = goq = (go)q = 1. We have proved the following theorem.

Theorem 1 (Lagrange). If G is a finite group and g an element in G then g|G| = 1.

2.4. Fermat’s and Euler’s theorems. Assume N > 2 is a positive integer. The group of units
(Z/NZ)∗ has order ϕ(N) so for every integer x that is prime to N the class x mod N is in
(Z/NZ)∗ and according to Lagrange’s theorem its power ϕ(N) is 1.

Theorem 2 (Euler). Let N > 2 be an integer. Let N = ∏
p∈P p

ep be the prime decomposition of
N and set ϕ(N) = ∏

p∈P p
ep(p− 1). Let x be a prime to N integer. Then xϕ(N) = 1 mod N .

In case N is prime we obtain Fermat’s theorem.

Theorem 3 (Fermat). Let N > 2 be a prime integer. Let x be a prime to N integer. Then
xN−1 = 1 mod N .

We deduce from Fermat’s theorem a method to prove that an integer is not prime. If we exhibit
some integer x that is prime to N and such that xN−1 6≡ 1 mod N , then N is composite. For
example

gp > N=2^(2^8)+1
%1 = 1157920892373161954235709850086879078532699846656405640394
57584007913129639937
gp > Mod(3,N)^(N-1)
%2 = Mod(113080593127052224644745291961064595403241347689552251
078258028018246279223993, 1157920892373161954235709850086879078
53269984665640564039457584007913129639937)

shows that 228 + 1 is not a prime.
It is important to notice that, using fast exponentiation, Fermat’s congruence can be checked

in time (logN)2+o(1).
Notice also that it may happen that a composite number satisfies the Fermat property. Indeed

gp > N=3*11*17
%1 = 561
> for(k=1,N-1,if(gcd(N,k)==1,print(Mod(k,N)^(N-1))))
Mod(1, 561)
Mod(1, 561)
...
Mod(1, 561)

So we must refine on Fermat’s theorem if we wan to make it usefull to distinguish prime
integers from composite ones.
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2.5. The Miller-Rabin test. Since Fermat’s theorem is not strong enough to distinguish primes
from composite numbers one tries to refine on it.

Assume N is an odd prime integer. Set

N − 1 = 2km

with k > 1 and m odd. Take some x in (Z/NZ)∗. According to Fermat’s theorem

xN−1 − 1 = 0.
So

xm2k − 1 = (xm2k−1 − 1)(xm2k−1 + 1) = 0.
Since Z/NZ is a field, one has

xm2k−1 − 1 = 0 or xm2k−1 + 1 = 0.
In the first case, assuming k > 2 we can go on factoring

xm2k−1 − 1 = (xm2k−2 − 1)(xm2k−2 + 1) = 0,
so

xm2k−2 − 1 = 0 or xm2k−2 + 1 = 0,
and so on.

At the end we have proven that if N is an odd prime and x is prime to N then

xm = 1 or xm2i = −1 for some 0 6 i 6 k − 1.
If this is the case we say that MR(N, x) holds true. If there exists an integer x prime to N

such that MR(N, x) does not hold true then N is composite.
We call MR(N, x) the Miller-Rabin condition for N and x.
For example assume N = 29. Then k = 2 and m = 7. Choose x = 2, and check that

214 = −1 mod 29. So MR(29, 2) is true.
Note that even if N is composite, there might exist some x such that MR(N, x) is true. How-

ever, Monier has proved that if N > 15 is odd and composite then at most one fourth of the units
in Z/NZ satisfy the Miller-Rabin condition MR(N, x). These are called the false witnesses.

So in order to test whether and odd integerN is prime we pick random elements x in (Z/NZ)∗
and check the Miller-Rabin condition MR(N, x). Since three fourth of the units fail to satisfy
this condition the probability of missing a composite is 6 1/4.

After a few dozens such tests we can either prove that N is composite or convinve ourselves
that it is prime.

The condition MR(N, x) can be tested at the expense of (logN)2+o(1) elementary operations
using fast arithmetic and fast exponentiation.

The class RP consists of all languages such that there exists a polynomial time Turing machine
M that takes as input a wordw and some auxiliary seed s. Whenw is not inL the machine always
rejects it whatever s could be. When w is in L the machine will accept if for at least one half of
the values of s. It may reject if for the remaining values of s.

The class co−RP consists of all languages whose complementary language belongs to RP.
It is easily checked that the intersection of RP and co−RP is ZPP.
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The existence of Miller-Rabin condition proves that the language PRIME consisting of all
prime integers is in co−RP.

Agrawal, Kayal and Saxena have proved that PRIME is in P.

3. DENSITY OF PRIME INTEGERS

Remind the size of a positive integer may be defined as the number of digits in its decimal
representation, that is dlog10(a+ 1)e.

It is known since antiquity that there exist infinitely many prime integers. On may ask how
many primes can be found in the interval [1, A]. We note π(A) this number. Hadamard and de la
Vallée-Poussin have proven that

π(A) = A

logA(1 + o(1)).

This is confirmed by experiments.

A 10 100 1000 10000 100000
π(A) 4 25 168 1229 9592
A/π(A) 2.5 4 5.95 8.14 10.4
logA 2.3 4.6 6.9 9.2 11.5

So a random integer in the interval [A, 2A] is prime with probability close to 1/ log(A).
A good way of finding a random prime of a given size is to pick random elements in [A, 2A]

and test them for the Miller-Rabin condition. Since the complexity of such a test is (logA)2+o(1)

and the probability of success is (logA)−1+o(1) the total time of this search is (logA)3+o(1) using
fast arithmetic, and (logA)4+o(1) using grade-school algorithms.
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