THE RING \mathbb{Z} AND ITS QUOTIENTS

1. THE RING OF INTEGERS

The set \mathbb{Z} with the two composition laws + and \times is a **commutative ring**. We a have a **euclidean division** in \mathbb{Z} . For a and b in \mathbb{Z} , assuming $b \neq 0$, there exists a unique pair of integers (q, r) such that a = bq + r and $0 \leq r < b$. The integer q is the **quotient**. And r is the **remainder**. Recall that an ideal of \mathbb{Z} is a subset $I \subset \mathbb{Z}$ that is a subgroup for the + law and such that for any $x \in \mathbb{Z}$ and $i \in I$ the product xi belongs to I.

Using the euclidean division one proves that any ideal *I* of \mathbb{Z} is of the form

$$I = a\mathbb{Z} = \{ax | x \in \mathbb{Z}\}$$

where a is an integer called a generator of I. One says that \mathbb{Z} is a **principal** ring. If I is not the zero ideal $\{0\}$ then it has a unique positive generator. We call it the **generator** of I.

A unit in \mathbb{Z} is an invertible element. Only 1 and -1 are units. A **prime** integer is a non-zero integer which is not a unit and has no positive divisor but 1 and itself. Any positive integer can be decomposed as a product of positive primes (with possible multiplicities) in a unique way, up to permutation of the factors. One says that \mathbb{Z} is a factorial ring.

Call P the set of all positive primes.

If $M = \pm \prod_{p \in \mathbf{P}} p^{e_p}$ one says that e_p is the *p*-valuation of *M*. On sometimes write $e_p = v_p(M)$. The 2-valuation of $12 = 2^2 \cdot 3$ is 2 and its 3 valuation is 1.

The greatest common divisor of $M = \prod_{p \in \mathbf{P}} p^{e_p}$ and $N = \prod_{p \in \mathbf{P}} p^{f_p}$ is

$$gcd(M, N) = \prod_{p \in \mathbf{P}} p^{\min(e_p, f_p)}$$

The ideal generated by M and N is the smallest ideal containing M and N. It is the set $\{\lambda M + \mu N | \lambda, \mu \in \mathbb{Z}\}$. It is equal to $gcd(M, N)\mathbb{Z}$. In particular there exists a pair of integers (λ, μ) such that $\lambda M + \mu N = gcd(M, N)$. The triple $(gcd(M, N), \lambda, \mu)$ can be computed from M and N using the **extended euclidean algorithm**.

The lowest common multiple of $M = \prod_{p \in \mathbf{P}} p^{e_p}$ and $N = \prod_{p \in \mathbf{P}} p^{f_p}$ is

$$\operatorname{lcm}(M,N) = \prod_{p \in \mathbf{P}} p^{\max(e_p,f_p)}$$

The intersection of $M\mathbb{Z}$ and $N\mathbb{Z}$ is an ideal of \mathbb{Z} . It is the ideal $lcm(M, N)\mathbb{Z}$.

It is evident that

$$gcd(M, N) \times lcm(M, N) = MN.$$

THE RING $\ensuremath{\mathbb{Z}}$ and its quotients

2. The Ring $\mathbb{Z}/N\mathbb{Z}$

Let $N \ge 2$ be an integer. The quotient of \mathbb{Z} by $N\mathbb{Z}$ is a ring. The class $x + N\mathbb{Z}$ is often denoted $x \mod N$. The quotient ring $\mathbb{Z}/N\mathbb{Z}$ is finite. We denote $(\mathbb{Z}/N\mathbb{Z})^*$ the group of units (invertible elements) in $\mathbb{Z}/N\mathbb{Z}$. Recall $x \mod N$ is invertible if and only if gcd(x, N) = 1. If this is the case we have two integers λ and μ such that $\lambda x + \mu N = 1$ and $\lambda \mod N$ is the inverse of $x \mod N$ in $(\mathbb{Z}/N\mathbb{Z})^*$.

Computing the addition and subtraction of two classes $x \mod N$ and $y \mod N$ in $\mathbb{Z}/N\mathbb{Z}$ takes time $\leq K \log N$ for K a constant.

Computing the multiplication of two classes $x \mod N$ and $y \mod N$ in $\mathbb{Z}/N\mathbb{Z}$ takes time $\leq K(\log N)^2$ for K a constant using grade-school algorithm. Using fast arithmetic (based on Fourier transform) one can multiply in time $(\log N)^{1+o(1)}$.

The complexity of inverting modulo N is $\leq K(\log N)^2$ for K a constant using grade-school algorithms and $(\log N)^{1+o(1)}$ using advanced algorithms.

The complexity of computing $(a \mod N)^e$ is $\log e \times (\log N)^{1+o(1)}$ using fast arithmetic and fast exponentiation. Since e is usually of the same order of magnitude as N this complexity is essentially quadratic in $\log N$.

The group of units $(\mathbb{Z}/N\mathbb{Z})^*$ is cyclic when N is a prime, because this group is a finite group of roots of unity in a field.

2.1. Chinese remainders. Assume $M \ge 2$ and $N \ge 2$ are coprime integers. We define a map $f : \mathbb{Z}/MN\mathbb{Z} \to (\mathbb{Z}/M\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$ by $f(x \mod MN) = (x \mod M, x \mod N)$. It is easy to check that f is well defined and injective. To prove that f is surjective we consider the Bezout coefficients λ and μ such that $\lambda M + \mu N = 1$ and we notice that λM is congruent to 0 modulo M and to 1 modulo N. And μN is congruent to 1 modulo M and to 0 modulo N. Given any pair $c = (x \mod M, y \mod N)$ we check that $f(x\mu N + y\lambda M) = c$. So the map f is surjective. We have a ring isomorphism between $\mathbb{Z}/MN\mathbb{Z}$ and $(\mathbb{Z}/M\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$.

2.2. Euler's function. For $N \ge 2$ we denote $\varphi(N)$ the order of the group $(\mathbb{Z}/N\mathbb{Z})^*$ of units in $\mathbb{Z}/N\mathbb{Z}$. A consequence of Chinese remainder theorem is that

$$\varphi(MN) = \varphi(M)\varphi(N)$$

when gcd(M, N) = 1.

One checks that $\varphi(p^k) = p^{k-1}(p-1)$ for every prime p and integer $k \ge 1$. Alltogether if $N = \prod_{p \in \mathbf{P}} p^{e_p}$ then $\varphi(N) = \prod_{p \in \mathbf{P}} p^{e_p-1}(p-1)$.

2.3. Lagrange's theorem. Assume G is a finite group and $H \subset G$ a subgroup. We define a relation \mathcal{R} on G by setting $x\mathcal{R}y$ for x and y in G if and only if $y^{-1}x \in H$. This is an equivalence relation. The equivalent class of x is $xH = \{xh | h \in H\}$. So every equivalence class has order |H|. And the equivalence classes form a partition of G. So the cardinality of G is the product of |H| times the number of classes.

We deduce that every subgroup of a finite group G has order dividing |G|.

Consider now an element g in G. The smallest subgroup of G containing g is denoted by $\langle g \rangle$. It is the set of all powers (positive or negative) of g. This is the set $\{1, g, g^2, \ldots, g^{o-1}\}$ where o is the smallest positive integer such that $g^o = 1$.

Indeed the map $E : \mathbb{Z} \to G$ that sends n onto g^n is a group homomorphism. Its image is $\langle g \rangle$. Its kernel is a non trivial ideal of \mathbb{Z} . We denote by o the positive generator of this kernel. This is called the **order** of g.

Because $\langle g \rangle$ is a subgroup of G its order o divides |G|. So |G| = oq for some integer q and $g^{|G|} = g^{oq} = (g^o)^q = 1$. We have proved the following theorem.

Theorem 1 (Lagrange). If G is a finite group and g an element in G then $g^{|G|} = 1$.

2.4. Fermat's and Euler's theorems. Assume $N \ge 2$ is a positive integer. The group of units $(\mathbb{Z}/N\mathbb{Z})^*$ has order $\varphi(N)$ so for every integer x that is prime to N the class $x \mod N$ is in $(\mathbb{Z}/N\mathbb{Z})^*$ and according to Lagrange's theorem its power $\varphi(N)$ is 1.

Theorem 2 (Euler). Let $N \ge 2$ be an integer. Let $N = \prod_{p \in \mathbf{P}} p^{e_p}$ be the prime decomposition of N and set $\varphi(N) = \prod_{p \in \mathbf{P}} p^{e_p}(p-1)$. Let x be a prime to N integer. Then $x^{\varphi(N)} = 1 \mod N$.

In case N is prime we obtain Fermat's theorem.

Theorem 3 (Fermat). Let $N \ge 2$ be a prime integer. Let x be a prime to N integer. Then $x^{N-1} = 1 \mod N$.

We deduce from Fermat's theorem a method to prove that an integer is not prime. If we exhibit some integer x that is prime to N and such that $x^{N-1} \not\equiv 1 \mod N$, then N is composite. For example

```
gp > N=2^(2^8)+1
%1 = 1157920892373161954235709850086879078532699846656405640394
57584007913129639937
gp > Mod(3,N)^(N-1)
%2 = Mod(113080593127052224644745291961064595403241347689552251
078258028018246279223993, 1157920892373161954235709850086879078
53269984665640564039457584007913129639937)
```

shows that $2^{2^8} + 1$ is not a prime.

It is important to notice that, using fast exponentiation, Fermat's congruence can be checked in time $(\log N)^{2+o(1)}$.

Notice also that it may happen that a composite number satisfies the Fermat property. Indeed

```
gp > N=3*11*17
%1 = 561
> for(k=1,N-1,if(gcd(N,k)==1,print(Mod(k,N)^(N-1))))
Mod(1, 561)
Mod(1, 561)
...
Mod(1, 561)
```

So we must refine on Fermat's theorem if we wan to make it usefull to distinguish prime integers from composite ones.

2.5. **The Miller-Rabin test.** Since Fermat's theorem is not strong enough to distinguish primes from composite numbers one tries to refine on it.

Assume N is an odd prime integer. Set

$$N-1 = 2^k m$$

with $k \ge 1$ and m odd. Take some x in $(\mathbb{Z}/N\mathbb{Z})^*$. According to Fermat's theorem

$$x^{N-1} - 1 = 0$$

So

$$x^{m2^{k}} - 1 = (x^{m2^{k-1}} - 1)(x^{m2^{k-1}} + 1) = 0$$

Since $\mathbb{Z}/N\mathbb{Z}$ is a field, one has

$$x^{m2^{k-1}} - 1 = 0$$
 or $x^{m2^{k-1}} + 1 = 0$.

In the first case, assuming $k \ge 2$ we can go on factoring

$$x^{m2^{k-1}} - 1 = (x^{m2^{k-2}} - 1)(x^{m2^{k-2}} + 1) = 0,$$

so

$$x^{m2^{k-2}} - 1 = 0$$
 or $x^{m2^{k-2}} + 1 = 0$,

and so on.

At the end we have proven that if N is an odd prime and x is prime to N then

$$x^m = 1$$
 or $x^{m2^i} = -1$ for some $0 \le i \le k - 1$.

If this is the case we say that MR(N, x) holds true. If there exists an integer x prime to N such that MR(N, x) does not hold true then N is composite.

We call MR(N, x) the Miller-Rabin condition for N and x.

For example assume N = 29. Then k = 2 and m = 7. Choose x = 2, and check that $2^{14} = -1 \mod 29$. So MR(29, 2) is true.

Note that even if N is composite, there might exist some x such that MR(N, x) is true. However, Monier has proved that if $N \ge 15$ is odd and composite then at most one fourth of the units in $\mathbb{Z}/N\mathbb{Z}$ satisfy the Miller-Rabin condition MR(N, x). These are called the false witnesses.

So in order to test whether and odd integer N is prime we pick random elements x in $(\mathbb{Z}/N\mathbb{Z})^*$ and check the Miller-Rabin condition MR(N, x). Since three fourth of the units fail to satisfy this condition the probability of missing a composite is $\leq 1/4$.

After a few dozens such tests we can either prove that N is composite or convinve ourselves that it is prime.

The condition MR(N, x) can be tested at the expense of $(\log N)^{2+o(1)}$ elementary operations using fast arithmetic and fast exponentiation.

The class **RP** consists of all languages such that there exists a polynomial time Turing machine M that takes as input a word w and some auxiliary seed s. When w is not in L the machine always rejects it whatever s could be. When w is in L the machine will accept if for at least one half of the values of s. It may reject if for the remaining values of s.

The class co - RP consists of all languages whose complementary language belongs to RP. It is easily checked that the intersection of RP and co - RP is ZPP.

The existence of Miller-Rabin condition proves that the language PRIME consisting of all prime integers is in co - RP.

Agrawal, Kayal and Saxena have proved that PRIME is in P.

3. DENSITY OF PRIME INTEGERS

Remind the size of a positive integer may be defined as the number of digits in its decimal representation, that is $\lceil \log_{10}(a+1) \rceil$.

It is known since antiquity that there exist infinitely many prime integers. On may ask how many primes can be found in the interval [1, A]. We note $\pi(A)$ this number. Hadamard and de la Vallée-Poussin have proven that

$$\pi(A) = \frac{A}{\log A}(1+o(1)).$$

This is confirmed by experiments.

A	10	100	1000	10000	100000
$\pi(A)$	4	25	168	1229	9592
$A/\pi(A)$	2.5	4	5.95	8.14	10.4
$\log A$	2.3	4.6	6.9	9.2	11.5

So a random integer in the interval [A, 2A] is prime with probability close to $1/\log(A)$.

A good way of finding a random prime of a given size is to pick random elements in [A, 2A] and test them for the Miller-Rabin condition. Since the complexity of such a test is $(\log A)^{2+o(1)}$ and the probability of success is $(\log A)^{-1+o(1)}$ the total time of this search is $(\log A)^{3+o(1)}$ using fast arithmetic, and $(\log A)^{4+o(1)}$ using grade-school algorithms.

REFERENCES

[Ten] Gérald Tenenbaum. *Introduction à la théorie analytique et probabiliste des nombres*. Société mathématique de France, 1995.

[[]Gra] Andrew Granville. *Smooth numbers: computational number theory and beyond*. Algorithmic Number Theory, MSRI Publications, Volume 44, 2008.