Elementary complexity theory

September 11, 2024

1 Languages, automata

A standard reference is the book by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman
[3]. A survey by J.-E. Pin is available on the web [5].

Let X be an alphabet i.e. a finite set of symbols. The set of words on X is denoted ¥*. A
language is a subset of ¥*.

For a language L C ¥* the decision problem is as follows. On input a word w € ¥* we
want to decide if w belongs to L or not. Examples : even integers, prime integers, etc.

For a function f : ¥* — ¥*, the functional problem is as follows. On input a word w € ¥*
we want to evaluate f(w). Examples : multiplying, factoring, etc.

There are three regular operations on languages: the union L; U Ls, the concatenation
L1 Ly, and the transitive closure L* or Kleene star.

We denote € the empty word, () the empty language, {€} the language consisting of the
single empty word, and {a} the language consisting of the single word a with length 1. We
call {a}, {€}, and @) the elementary languages.

Applying iteratively the regular operations to these elementary languages we obtain regular
languages. A regular language is described by a reqular expression.

Question 1 Give a regular expression for the language in {0,1}* consisting of all words
ending with 00.
Same question for the language consisting of all words containing three consecutive 1.
Same question for the language consisting of all words whose seventh letter is a 0.

A (finite deterministic) automaton is a 5-uple M = (Q, %, d, qo, F') where @ is a finite set
of states, ¥ is an alphabet, ¢ : QQ x ¥ — @ is the transition function, qg the initial state and
F the set of final states. We extend § to a function ¢ : Q x ©* — Q. The accepted language
is L = {w|d(qo, w) € F}.

Question 2 Find an automaton that accepts words in {0,1}* with even length.
Find an automaton that accepts words in {0,1}* terminating with a 1.
Find an automaton that accepts words in {0,1}* with even length, terminating with a 1.

A central and non trivail result : The languages accepted by finite deterministic automata
are exactly the regular languages.

Question 3 Is the intersection of two reqular languages a regular language ?

Non-deterministic automata are a generalization. There are several possible transitions at
every step. A word is accepted if there is a sequence of possible transitions that leads to a final
state. Formally the transition function is now § : Q x ¥ — 2¢. We define 6 QxX* —2¢
by (g, €) = {q} and

6(q, wa) = U o(r,a).

rES(q,w)
The accepted language is the set of all words w such that) (go,w) contains a final state.

Question 4 Prove that non-deterministic automata accept the same languages as determin-
istic automata.

Non-deterministic automata with e-transitions are a further generalization of non-deter-
ministic automata. This time, there exist transitions for free: one can follow these e-arrows
without spending a letter. Formally the transition function is now ¢ : Q x (X U {e}) — 29.
If R C Q is a set of states, we define the e-closure of R to be the set of states that can
be reached from R using e-transitions only. This closure is denoted e~ CLOSURE(R). We
define 6 : Q x £* — 29 by §(¢,€) = e~CLOSURE({q}) and

A~

d(q,wa) = e—CLOSURE (Ureg(q’wﬁ(r, a)) .

The accepted language is the inverse image by 5 of the set of all subsets of () containing a
final state

Question 5 Prove that non-deterministic automata with e-transitions accept the same lan-
guages as deterministic automata.

Question 6 Prove that any regular language is accepted by an automaton.

Question 7 Prove that if L is a regular language, there exists an integer m such that for
every word w in L with length |w| > n one can write w = abc with

1. |ab] < n,
2. 16 > 1,
3. abfc belongs to L for every integer k > 0.

Question 8 Let L C {0,1}* be the set of words having has many zeros as ones. Is L a
regular language ?

Question 9 Give an automaton with e-transitions that accepts 10 4+ (0 + 11)0*1.
Same question for 01((10)* 4+ 111)* + 11.

Question 10 Give a deterministic automaton that accepts (0 + 1)*110(0 + 1)*.

2 Complexity

We refer the reader to Papadimitriou’s book [4] for a complete treatment of these matters.
A first natural approach is to count elementary operations. The complexity of addition of
two integers given in decimal representation is linear in the size of the input. The complex-
ity of the naive multiplication algorithm for multiplication of two integers given in decimal
representation is quadratic in the size of the input. Same remarks hold true for polynomials.

The memory space is the number of bits used by the algorithm and the running time is
the number of elementary logic or arithmetic bit operations done by the processor. In this
model, memory access is assumed to require constant time. The time (resp. space) complezity
of a given algorithm is a function from N to N that to any instance x associates an upper
bound f(|x|) for the running time (resp. used memory space) of the algorithm. This upper
bound should only depend on the size |z| of x.

The complexity is therefore not well defined as a function unless one restricts to a given
simple family of natural functions, in which case one can define the complexity as the smaller
function in the family bounding the running time (resp. memory space).

2.1 Sorting

Let L = (Lq,Lo,...,Ly,) be a list (vector) of integers. One looks for an ordered list M =
(Ml,Ml, ...,Mn) ie. M7 < M, < ...< M, such that {Ll, 7Ln} = {Ml, ...,Mn}.

The principle of bubble sort is to scan the list from left to right and permute any too
unordered succesive elements. One loops until the list is sorted (the last scan results in no
permutation). One can easily prove that this algorithm finishes. We measure its complexity
as the maximum number of memory accesses or comparisons that may be necessary to sort
any list with n elements.

Question 11 Show that this number is bounded by a constant times n?.

Thus if the complexity is to be chosen among all functions n — An® for A and « any two
real numbers, one may choose a = 2. We do not ask about A. We say that bubble sort has
quadratic time complexity.

The intrinsic complexity of a problem may be defined to be the complexity of the asymp-
totically fastest algorithm that solves this problem. This means that one restricts to a family
of complexity functions that is well adapted to the problem.

Another way of sorting consists in selecting the largest element by successive pairwise
eliminations like in a tournament. One forms pairs of elements and select the larger one
in each pair. The winners of this first round then compete again by pairs and so on until
on reaches the top of the pyramide. This process only finds out the largest element. To
deduce a sorting algorithm one imagines a binary tree-like hierarchic organization. The top
(root) of the tree corresponds to the chairman’s position. The chairman has too deputy
chairmen and each deputy chairman has two subordinates and so on. At the beginning of
the algorithm all positions are assumed to be vacant excepted the lowest ones (the leaves
of the tree) that are filled with the elements to be sorted. In every pair of sister leaves one
chooses the larger value and on promotes it to the second hierarchic level. The entries in this
second level are then compared by pairs and the best is promoted again to the third level
and so on. However one is very careful when promoting to fill backward recursively all vacant
positions (except possibly the lowest ones) with the better among the two subordinates of the

last promoted. This selection process is continued until a chairman’s position has been filled
(with the largest value in the list). One then assumes that this chairman retires and one fills
the chairman’s position with the better among the two deputy chairmen. One then fills the
vacant deputy chairman’s position with the better among the two subordinates of the former
deputy chairman. And so on. One then assumes that every successive chairman retires and
iteratively promote again and again until all the values in the initial list have been removed
after reaching (in decreasing order) the root of the tree.

Question 12 Show that this algorithm sorts a list of size n with less than Anlogn elementary
operations for a given real number A that we do not try to make explicit. In view of that,
what can be said on the complexity of sorting?

It may be difficult to find out the exact intrinsic complexity of a problem. Any algo-
rithm provides an upper bound. Lower bounds often come from naive considerations from
information theory and they are very rough.

Concerning the sorting problem, inefficient algorithms like bubble sort are said to be
quadratic while efficient ones like selection sort are said to be quasi-linear. Although this
difference of efficiency may be spectacular for large values of n (think about the Chinese
social system) both algorithms are polynomial time in the size n of the problem.

2.2 Graphs

We consider the problem of finding a path in a graph. We are given a graph by its finite
set, of vertices V and E C V x V the set of edges. We are given two vertices A and B and
we look for a path from A to B (if there is some). Such a path should be output as a list
of vertices vg = A, v1, ..., vy = B such that for any ¢, there is an edge between v; et v;y1.
A silly algorithm would enumerate all pathes starting from A and would have exponential
complexity in the number n = |V of vertices in the graph.

Question 13 What is the size of the input in that case ¢ Give a polynomial time algorithm
that finds a path (if there is some) between two vertices in a graph.

3 Turing machines

Turing machines are a theoretical model for computers. They are finite automata (they have
finitely many inner states), but they can write or read on an infinite tape with a tape head.
A Turing machine can be defined by a transition table. For a given inner state and current
character read by the head, the transition table provides the next inner state, which character
to write on the tape in place of the current one, and how the head should move on the tape
(one step left, one step right, or no move at all).

More formally, a Turing machine is a 4-uple M = (K, X, J, s) where K is the finite set of
states, s € K is the initial state, ¥ is a finite set of symbols (the alphabet). One assumes
that ¥ contains two special symbols LI and >, the spacing and the starting symbol. And the
transition function is

0: K x¥— (KU{h,7yes”,"no"}) x ¥ x {«,—,—}.

The state h is the end state, "yes” is the accepting state, and "no” is the rejecting state.
The moving instructions are < to move one step on the left, — to move one step on the right,
and — not to move.

The transition function § associates to the current state ¢ € K and to the read symbol
o € X, the triple (p, p, D) where p is the next state, p is the symbol to be written in place of
o, and D indicates how the head should move.

The head initially stands at the beginning of the tape, and the symbol > is written there.
The input of the algorithme is written just after the symbol . The transition function must
satisfy the following condition : if the symbol 1> is read, moving to the left is prohibited. And
the symbol > cannot be erased. This ensures that the head never leaves the tape on the left.

This model is called one tape Turing machine. One may also consider Turing machines
with several tapes, and one head on each tape.

Question 14 How fast can a one tape Turing machine copy the input on its right ¢
How fast can a two tape Turing machine copy the input on its right ¢
What about sorting ¢ How fast can a multitape Turing machine merge two sorted lists ?

More on Turing machines can be found in Chapter 2 of [4].

Remind that a decision problem is a question that must be answered by yes or no: for
example, deciding whether an integer is prime. The answer to a functional problem is a more
general function of the question. For example, factoring an integer is a functional problem. If
we want to solve a functional problem with a Turing machine, we write the input on the tape,
we run the Turing machine, and we wait until it stops. We then read the output on the tape.
If the machine always stops and returns the correct answer, we say that it solves the problem
in question. The time complezity is the number of steps before the Turing machine has solved
a given problem. Such a Turing machine is said to be deterministic because its behavior only
depends on the input. The size of the input is the number of bits required to encode it. This
is the space used on the tape to write this input. For example, the size of an integer is the
number of bits in its binary expansion. A problem is said to be deterministic polynomial
time if there exists a deterministic Turing machine that solves it in time polynomial in the
size of the input. The class of all functional problems that can be solved in deterministic
polynomial time is denoted FP or FPTIME. The class of deterministic polynomial time
decision problems is denoted P or PTIME.

Question 15 Is every language L C {0,1}* accepted by a Turing machine ¢

We saw that there exist various models for complexity theory. All the reasonable models
lead to equivalent definitions of the polynomial complexity classes. An algorithm can be given
a sequence of elementary operations and instructions. Any algorithm can be turned into a
Turing machine, but this is fastidious and rather useless since the conceptual description of
the algorithm suffices to evaluate the complexity.

For example, we saw that if we want to multiply two positive integers N1 and No given
by their decimal representations, then the size of the input (N7, Na) is the number of digits
in N1 and Ny, and this is

[log1o(N1 + 1)] + [logyo(N2 +1)].

The number of elementary operations required by the elementary school algorithm for multi-
plication is © X [logo(N1 + 1)] % [log;o(N2 + 1)|. There exists a multitape Turing machine
that computes the sum of two integers in that amount of time.

Question 16 Recall the extended Euclidean algorithm. Give an example. Prove that it com-
putes coefficients in Bézout’s identity in deterministic polynomial time.

So addition, subtraction, multiplication, and inversion in the ring Z/NZ can be performed in
time polynomial in log N. The class a mod N in Z/NZ is represented by its smallest non-
negative element. We denote it a%N. This is the remainder in the Euclidean division of a
by N.

4 Exponentiation

A very important problem is exponentiation: given a mod N with a in [0, N[and an integer
e > 1, compute a® mod N.

Computing a® then reducing modulo NV is not a good idea because a® might be very large.
Another option would be to set a; = a and compute ar = (ax_1 X a) %N for 2 < k < e. This
requires e — 1 multiplications and e — 1 Euclidean divisions. And we never deal with integers
bigger than N2. The complexity of this method is thus © x e x (log N)? using elementary
school algorithms. It is well known, however, that we can do much better. We write the
expansion of e in base 2,

e = Z eka,

0<k<K

and we set bg = a and by, = bi_l%N for 1 <k < K. We then notice that

af = H by* mod N.
0<k<K

So we can compute (a®)%N at the expense of O x log e multiplications and Euclidean divisions
between integers < N2. The total number of elementary operations is thus © x log e x (log IV)?
with this method. So exponentiation in Z/NZ lies in FPTIME. This is an elementary but
decisive result in algorithmic number theory. The algorithm above is called fast exponentiation
and it makes sense in any group. We shall use it many times and in many different contexts.
Fast exponentiation admits many variants and improvements [2]. Its first known occurrence
dates back to Pingala’s Chandah-sttra (before -200). See [I], 1,13].

A first interesting consequence is that for p an odd prime and a an integer such that
1<a<p-1, we can compute the Legendre symbol

a/ —_
<> = a7 mod p
p

at the expense of © x (log p)® elementary operations. So testing quadratic residues is achieved
in polynomial deterministic time.

5 Probabilistic classes

Assume now that we are interested in the following problem:

Given an odd prime integer p, find an integer a such that 1 <a <p—1 and
a is not a square modulo p. (%)

This looks like a very easy problem because half of the nonzero residues modulo p are

not squares. So we may just pick a random integer a between 1 and p — 1 and compute the
a

Legendre symbol (5) — "7, If the symbol is —1 we output a. Otherwise we output FAIL.

The probability of success is 1/2 and failing is not a big problem because we can rerun the
algorithm: we just pick another random integer a.

This is a typical example of a randomized Las Vegas algorithm. The behavior of the
algorithm depends on the input, of course, but also on the result of some random choices.
One has to flip coins. A nice model for such an algorithm would be a Turing machine that
receives besides the input, a long enough (say infinite) one-dimensional array R consisting
of 0s and 1s. Whenever the machine needs to flip a coin, it looks at the next entry in the
array R. So the Turing machine does not need to flip coins: we provide enough random data
at the beginning. We assume that the running time of the algorithm is bounded from above
in terms of the size of the input only (this upper bound should not depend on the random
data R). For each input, we ask that the probability (on R) that the Turing machine returns
the correct answer is > 1/2. The random data R takes values in {0,1}". The measure on
this latter set is the limit of the uniform measures on {0,1}* when k tends to infinity. If the
Turing machine fails to return the correct answer, it should return FAIL instead.

We have just proved that finding a nonquadratic residue modulo p can be done in Las Vegas
probabilistic polynomial time. At present (September 2011) there is no known algorithm that
can be proved to solve this problem in deterministic polynomial time. The class of Las Vegas
probabilistic polynomial time decision problems is denoted ZPP.

Question 17 How can we pick a random integer in [1,p — 1] with uniform probability, using
a coin ¢

Let E be the set of pairs (x,y) such that x,y € Z/pZ and y* = 2® + 1. How can we pick
a random element in E with uniform probability, using a coin ?

We now consider another slightly more difficult problem:

Given an odd prime integer p, find a generating set (g;)i1<i<r for the cyclic
group (Z/pZ)*. (%)
We have a simple probabilistic algorithm for this problem. We compute an integer I such
that
logy(3logy(p — 1)) < I <logy(3logy(p — 1)) + 2

and we pick I random integers (a;)1<i<r in the interval [1,p —1]. The a; are uniformly
distributed and pairwise independent. We set g; = a; mod p, and we show that the (g;)1<i<r
generate the group (Z/pZ)* with probability > 2/3. Indeed, if they don’t, they must all lie
in a maximal subgroup of (Z/pZ)*. The maximal subgroups of (Z/pZ)* correspond to prime
divisors of p — 1. Let ¢ be such a prime divisor. The probability that the (g;)1<i<s all lie in
the subgroup of index ¢ is bounded from above by

1 1
q7]§§7

so the probability that the (g;)1<i<; don’t generate (Z/pZ)* is bounded from above by 271
times the number of prime divisors of ¢ — 1. Since the latter is < logs(p — 1), the probability

of failure is
< loga(p —1)
— 2[M

7

and this < 1/3 by definition of I.

Note that here we have a new kind of probabilistic algorithm: the answer is correct
with probability > 2/3 but when the algorithm fails, it may return a false answer. Such an
algorithm (a Turing machine) is called Monte Carlo probabilistic. This is weaker than a Las
Vegas algorithm. We just proved that problem (xx) can be solved in Monte Carlo probabilistic
polynomial time. We don’t know of any Las Vegas probabilistic polynomial time algorithm
for this problem. The class of Monte Carlo probabilistic polynomial time decision problems
is denoted BPP.

In general, a Monte Carlo algorithm can be turned into a Las Vegas one provided the
answer can be checked efficiently, because we then can force the algorithm to admit that it
has failed. Note also that if we set

I = f + [logy(logy(p — 1)1,

where f is a positive integer; then the probability of failure in the algorithm above is bounded
from above by 2=/. So we can make this probability arbitrarily small at almost no cost.

References

[1] B. Datta and A.N. Singh. History of Hindu Mathematics. Motilal Banarsi Das, Lahore,
1935.

[2] Daniel M. Gordon. A survey of fast exponentiation methods. J. Algorithms, 27(1):129-146,
1998. https://www.dmgordon.org/papers/jalg.pdf.

[3] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation - international edition (2. ed). Addison-Wesley, 2003.

[4] Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.

[5] Jean-Eric Pin. Automates finis. https://www.irif.fr/~jep/PDF/MPRI/MPRI . pdf.

https://www.dmgordon.org/papers/jalg.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf

	Languages, automata
	Complexity
	Sorting
	Graphs

	Turing machines
	Exponentiation
	Probabilistic classes

