
TD3 : AN INTEGER FACTORING ALGORITHM

There is no known polynomial time algorithm to factor integers, not even a probabilistic one.
We present in this text an algorithm which, although exponential time, is more efficient than trial
division.

1. BIRTHDAY PARADOX

Assume there are 40 students in a classroom. The probability that two among them have the
same birthday (assuming none of them was born on February 29th) is

1− (1− 1

365
)(1− 2

365
) · · · (1− 39

365
) > 0.89

This is rather close to 1 although 40 is much less than 365 . . .
We look for a conceptual explanation of this phenomenon.
Assume we have p balls in a bag, each tagged wich a figure from 1 to p. We draw a ball at

random and put it back in the bag. We iterate n > 2 times. We now estimate the probability
P (p, n) for the n drawn balls to be pairwise distinct :

P (p, n) =
∏

16i6n−1

(
1− i

p

)
6

∏
16i6n−1

exp(− i
p
) = exp(−n(n− 1)

2p
) 6 exp(−(n− 1)2

2p
)

So if n is greater than 1 +
√
p the probability that the same ball has been drawn more than

once is at least 1− exp(−1/2) > 0.39.
If the number of draw is proportional to the square root of the number of balls there is a

significant probability to have drawn twice the same ball in the end.

2. RANDOM MAPS FROM A FINITE SET TO ITSELF

Let F be a finite set with p elements. Let A(F ) be the set of maps from F to F . Consider the
uniform probability measure on A(F ). Fix an element O in F .

To every map f : F → F we associate the sequence x0 = O, xi+1 = f(xi) obtained by
iterating f . This is an ultimately periodic sequence : there exist two integers πf > 1 and µf > 0
such that if k > µf then xk+πf = xk. The smallest such πf is called the period and the smallest
such µf is called the preperiod.

The sum ρf = µf + πf is a random variable on A(F ). The probability of the event ρf > n is
P (p, n). Could you explain why?

The expectation of E(ρf ) satisfies
1
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E(ρf ) = 1 +
∑
n>2

P (p, n) 6
∑
n>0

exp(−n
2

2p
) 6 1 +

∫ ∞
0

e−
x2

2p dx

= 1 +
√

2p

∫ ∞
0

e−x
2

dx = 1 +

√
pπ

2

car
∫∞
−∞ e

−x2dx =
√
π.

3. TWO SIMPLE FACTORING ALGORITHMS

Remind there exists a polynomial time algorithm for primality testing. So factoring integers
reduces to the following problem : on input a composite integer N find a non-trivial divisor M
of N .

Indeed, if the factors M and R = N/M are not prime, we rerun the algorithm with M and R.
An algorithm that finds a non-trivial factor to a given composite integer is called a breaking

algorithm. So factoring reduces to iteratively breaking integers.
The simplest factoring algorithm is trial division. To factor N , compute the euclidean division

of N by r = 2, 3, 5, 7, 9, 11, 13, 15 etc.
If N is composite you will find a factor r 6

√
N .

The complexity of trial division is O(N
1
2
+o(1)). This is poorly efficient but useful for small

integers.
Pollard has invented an elegant but heuristic method with a better complexity.
We assume to simplify thatN = pq is the product of two distinct primes. We choose a polyno-

mial f with integer coefficients (one often takes f(X) = X2 + 1) and we consider the sequence
with values in Z/NZ defined by x = x0 any element in Z/NZ and xk+1 = f(xk) mod N .

Since f(X) is a polynomial, the map

fN : Z/NZ // Z/NZ

x mod N � // f(x) mod N

is the set-theoretical product of the two maps

fp : Z/pZ // Z/pZ

x mod p � // f(x) mod p

and
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fq : Z/qZ // Z/qZ

x mod q � // f(x) mod q

More precisely we call γ the Chinese isomorphism

γ : Z/NZ→ Z/pZ× Z/qZ
and we check that γ ◦ fN = (fp × fq) ◦ γ.

Assume now that the maps fp and fq behave like two independent random maps. In other
words assume that fp follows a uniform probability law in the set A(Z/pZ) of maps from Z/pZ
to itself. Assume also that fq follows a uniform probability law and that the random variables fp
and fq are independant.

This is a somewhat crazy assumption since f = x2 + 1 is anything but random . . .
Let yk = xk mod p be the class of xk modulo p. Let zk = xk mod q be the class of xk modulo

q. One checks that yk+1 = fp(yk) and zk+1 = fq(zk). The Chinese isomorphism γ sends xk onto
(yk, zk).

Let πp and µp be the period and preperiod of fp. Let πq and µq be the period and preperiod
of fq. We have good reasons to expect that πp and µp (that are functions of f and p) are O(

√
p).

We also expect that πq and µq are O(
√
q). So we have an iterated sequence in Z/NZ whose

component modulo p (resp. q) has preperiod and period O(
√
p) (resp. O(

√
q)).

If k is large enough we thus expect that

gcd(xk − xk+πp , N) = p

which exhibits a non-trivial factor ofN . This is of little help in this form because we do not know
πp. However for k large enough and a multiple of πp (but not a multiple of πq) we have

gcd(xk − x2k, N) = p.

Pollard’s algorithm computes iteratively xk = f(xk−1) and Xk = x2k = f(f(Xk−1)) and the
above gcd for k = 0, 1, 2, ..., until a non-trivial factor of N shows up.

Heuristically this method finds a non-trivial factor p in time O(p
1
2
+o(1)) that is O(N

1
4
+o(1)).

4. QUESTIONS

(1) Give a cryptographic scheme whose security relies on the difficulty of factoring integers
and try to quantify the effect of Pollard’s algorithm on the security of this protocol. What
would be a reasonable key length to resist such an attack?

(2) Try to justify the computation of the expectation of ρf .

(3) Study the integral
∫∞
−∞ e

−x2dx, either by computing a numerical approximation or by pro-
ving that is is equal to

√
π.

You may want to prove that
(∫∞
−∞ e

−x2dx
)2

= π. To this end write
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(∫ ∞
−∞

e−x
2

dx

)2

=

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy =

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2dxdy

and introduce polar coordinates r =
√
x2 + y2 and the angle θ.

(4) You may try to express the period πN and preperiod µN of fN : Z/NZ → Z/NZ as
functions of πp, µp, πq, µq.

(5) Explain why Pollard’s algorithm is very good at finding small prime divisors of large inte-
gers and illustrate this method with a simple implementation.


