Exercice 1:

Let C be the affine curve with equation

$$y^2 = x^3 + 2x + 1$$

over the field \mathbb{F}_7 .

Is C a smooth curve?

Give the list of all points in $C(\mathbb{F}_7)$.

We call E be the elliptic curve obtained by adding to C the point at infinity.

Let P be the point with affine coordinates (0,6). Check that $P \in E(\mathbb{F}_7)$. Compute 2P.

Let Q be the point with affine coordinates (1,5). Check that $Q \in E(\mathbb{F}_7)$. Compute P+Q.

Which is the structure of the group $E(\mathbb{F}_7)$?

Exercice 2:

Let f(x) be the polynomial $x^2 + x + 1$ in $\mathbb{F}_5[x]$.

Prove that f(x) is irreducible.

Let $\mathbf{K} = \mathbb{F}_5[x]/f(x)$. Let $\alpha = x \mod f(x) \in \mathbf{K}$.

Prove that \mathbf{K} is a field.

What is the cardinality of \mathbf{K} ?

Let D be the affine curve with equation

$$y^2 = x^3 + x + 1$$

over \mathbf{K} .

Prove that D is smooth.

We call F be the elliptic curve obtained by adding to D the point at infinity.

Check that P = (4,3) is in $D(\mathbf{K})$.

Compute 2P.

Check that $Q = (3\alpha + 1, 4\alpha + 2)$ is in $D(\mathbf{K})$.

Compute P+Q.

Exercice 3:

We want to factor the integer n=4223. Let $R=\mathbb{Z}/n\mathbb{Z}$. Let P be the affine point $P=(0,1)\in R^2$. Let

$$C(R) = \{(x, y) \in R^2 | y^2 = x^3 + x + 1 \}$$

be the affine curve over R with equation $Y^2 = X^3 + X + 1$.

Check that P is a point in C(R).

We try to define a sequence $(P_k)_{k\geqslant 1}$ by setting $P_1=P$ and $P_{k+1}=[k+1]P_k$ for $k\geqslant 0$. We find $P_2=(1056,3694),\ P_3=(4182,2994),\ P_4=(3567,2664),\ldots$

```
? n=4223;
```

- ? P=[0,1]*Mod(1,n);
- ? E=ellinit([1,1]*Mod(1,n));
- ? P1=P

%4 = [Mod(0, 4223), Mod(1, 4223)]

? P2=ellmul(E,P1,2)

```
%5 = [Mod(1056, 4223), Mod(3694, 4223)]
? P3=ellmul(E,P2,3)
%6 = [Mod(4182, 4223), Mod(2994, 4223)]
? P4=ellmul(E,P3,4)
%7 = [Mod(3567, 4223), Mod(2664, 4223)]
? P5=ellmul(E,P4,5)
   *** at top-level: P5=ellmul(E,P4,5)
   *** ellmul: impossible inverse in Fp_inv: Mod(41, 4223).
   *** Break loop: type 'break' to go back to GP prompt
```

We fail to compute $P_5 = [5]P_4$ because at some point in the calculation we find a non-zero scalar 41 mod n in R which is not invertible. This exhibits a factor p = 41 of n. The cofactor is q = n/p = 103. We check that p and q are prime.

To understand what is happening we redo the computation modulo p then modulo q.

```
? p=41;
? P=[0,1]*Mod(1,p);
? E=ellinit([1,1]*Mod(1,p));
? P1=P
%11 = [Mod(0, 41), Mod(1, 41)]
? P2=ellmul(E,P1,2)
%12 = [Mod(31, 41), Mod(4, 41)]
? P3=ellmul(E,P2,3)
%13 = [Mod(0, 41), Mod(1, 41)]
? P4=ellmul(E,P3,4)
%14 = [Mod(0, 41), Mod(40, 41)]
? P5=ellmul(E,P4,5)
%15 = [0]
?
?
? q=103;
? P=[0,1]*Mod(1,q);
? E=ellinit([1,1]*Mod(1,q));
? P1=P
%19 = [Mod(0, 103), Mod(1, 103)]
? P2=ellmul(E,P1,2)
%20 = [Mod(26, 103), Mod(89, 103)]
? P3=ellmul(E,P2,3)
%21 = [Mod(62, 103), Mod(7, 103)]
? P4=ellmul(E,P3,4)
%22 = [Mod(65, 103), Mod(89, 103)]
? P5=ellmul(E,P4,5)
%23 = [Mod(29, 103), Mod(27, 103)]
```

We see that the point $(0,1) \in \mathbb{Z}/p\mathbb{Z}$ has order dividing 5! in the group $E_p = C(\mathbb{Z}/p\mathbb{Z}) \cup O_p$. But the point $(0,1) \in \mathbb{Z}/q\mathbb{Z}$ has order not dividing 5! in the group $E_q = C(\mathbb{Z}/q\mathbb{Z}) \cup O_q$. Indeed the group $E_p = C(\mathbb{Z}/p\mathbb{Z}) \cup O_p$ is isomorphic to $\mathbb{Z}/35\mathbb{Z}$ while the group $E_q = C(\mathbb{Z}/q\mathbb{Z}) \cup O_q$ is isomorphic to $\mathbb{Z}/87\mathbb{Z}$.

```
? ellgroup(ellinit([1,1]*Mod(1,p)))
%24 = [35]
?
? ellgroup(ellinit([1,1]*Mod(1,q)))
%25 = [87]
```

Design and implement an integer factoring algorithm based on these observations and following the principles of Pollard's p-1 method.

Propose a heuristic estimate of the running time of this algorithm.