
INTEGER FACTORING

The problem of distinguishing prime integers from composite ones is reasonably well un-
derstood. Agrawal, Kayal and Saxena have presented in [1] a deterministic polynomial time
algorithm for this. The probabilistic test of Miller [4] and Rabin [5] is very convenient for prac-
tical purposes. On the other hand there is no known polynomial time algorithm for factoring
integers with a deterministic Turing machine nor with a probabilistic one. Peter Shor [7] has
proposed a polynomial time algorithm for factoring integers with a quantum computer if ever
such a computer exists. For example if n = pq where p and q are two distinct large primes, it is
easy to multiply p and q to compute n. But recovering p and q from n is a challenge. This obser-
vation provides a candidate asymmetric function. There is a competition called RSA-challenge
for factoring such composite numbers
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
The largest integer factored in this list has 232 digits. Its factorization was achieved by a team

of computer scientists led by Kleinjung [3]. It used many hundreds of machines and took almost
two years. “On a single core 2.2 GHz AMD Opteron processor with 2 GB RAM, sieving would
have taken about fifteen hundred years.”

We will revew a few algorithms of various nature for factoring integers. Some are very el-
ementary and some are more sophisticated. Understanding the theoretical complexity and the
practical efficiency of these algorithms is crucial to the security of many cryptographic schemes,
the most famous beeing RSA.

1. THE RSA SCHEME

This is a public key encryption scheme invented by Rivest, Shamir and Adleman [6] in 1978
and a few years before by Cocks who did not disclose it because he was working for a British
intelligence agency. The security of this cryptosystem relies on the difficulty of computing e-
th roots modulo a composite number n when the factorization of n is not known. RSA is a
generalization of a cryptosystem invented by Rabin that relied on the difficulty of computing
square roots.

Let p and q be two distinct large primes and set n = pq. Let λ = ppcm(p−1, q−1). According
to Chinese theorem, the group ((Z/nZ)∗,×) is isomorphic to

((Z/pZ)∗ × (Z/qZ)∗,×) ∼ ((Z/(p− 1)Z)× (Z/(q − 1)Z),+)

so it has exponent λ. In words λ is the smallest positive integer such that for every x in (Z/nZ)∗

one has xλ = 1 mod n.
We describe RSA on a toy example. The primes involved in this example are not large enough

to ensure security. We just want to illustrate the method.
Alice first generates her keys. She chooses two large enough prime integers p and q at

random.
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gp >p=nextprime(random(2^20))
%1 = 761669
gp >q=nextprime(random(2^20))
%2 = 341729

Alice now computes the product n = pq and the exponent λ = ppcm(p− 1, q − 1).
gp > n=p*q
%3 = 260284385701
gp > L=lcm(p-1,q-1)
%4 = 65070820576

She chooses an integer e in [2, λ] such that e is prime to λ. It is safer to pick a random e with
uniform probability. Alice may prefer to select a small e to accelerate ciphering. We assume that
she takes e = 3 this time :
gp > e=3
%5 = 3
gp > gcd(e,L)
%6 = 1

Alice computes the inverse f of e mod λ
gp > f=(1/e)% L
%7 = 43380547051

Alice publishes (n, e) in the phone-book for example. This is called the ciphering key or the
public key. Alice keeps f secret. This is called the unciphering key or the secret key.

Assume now that Bob wants to send a message to Alice. The clear text of this message is
m = 1234567.

Bob finds Alice’s public key in the phonebook : n = 260284385701 and e = 3. He computes
the cipher-text c = me mod n
gp > m=1234567
%1 = 1234567
gp > n=260284385701
%2 = 260284385701
gp > e=3
%3 = 3
gp > c=Mod(m,n)^e
%4 = Mod(214733022870, 260284385701)

He sends c = 214733022870 to Alice.
Alice receives the cipher-text c from Bob. She computes cf mod n using the secret key f

gp > c=214733022870
%1 = 214733022870
gp > f=43380547051
%2 = 43380547051
gp > n=260284385701
%3 = 260284385701
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gp > Mod(c,n)^f
%4 = Mod(1234567, 260284385701)

The security of the RSA crypto-system relies on the difficulty of computing e-th roots modulo
n without knowing the factorization of n. Practical implementations of RSA are not so simple
and require at least the addition of a random suffix to the clear-text before enciphering. The com-
plexity of enciphering is O((log n)3) using ordinary arithmetic if the exponent e is any integer
between 1 and λ.

2. TRIAL DIVISION

A simple minded method to factor an integer n is to first check that n is not a prime and then
compute the euclidean divisions (quotient and remainder) of n by 2, 3, 5, 7, 9, 11, 13, 15, . . . It is
possible to accelerate a little bit using a sieve or a table of small primes. The first found factor is
a prime divisor p of n. We then rerun the algorithm with n replaced by n/p. The complexity is
n1/2+o(1) which is very bad unless n is small.

3. THE METHOD p− 1 OF POLLARD

This method is efficient only when the integer n to be factored has a very specific form. How-
ever the ideas underlying this method will be useful in a wider context and deserve to be pre-
sented.

Assume n is the product of two primes p and q and that p− 1 is a smooth integer. This means
that p−1 has only small prime factors. For example consider the case n = 713 = pq with p = 31
and q = 23. Then p− 1 = 2× 3× 5 is y-smooth with y = 5.

We pick a random residue a modulo n. For example set a = 2 mod n. We define a sequence
a1 = a, a2 = a2

1 mod n, a3 = a3
2 mod n, a4 = a4

3 mod n, a5 = a5
4 mod n, . . . So ak+1 is the

k + 1 power of ak modulo n. So ak = ak!. For every k one computes the gcd of ak − 1 and n. If
p− 1 is smooth then most likely p− 1 divides k! for some small k and we will find a non trivial
gcd(ak − 1, n). Indeed ap−1 = 1 mod p so ak = xk! = 1 mod p and there is no reason why xk!

should be 1 modulo q.

k 1 2 3 4 5 6 7

ak = ak! mod n 2 4 64 326 311 32 280

gcd(ak − 1, n) 1 1 1 1 31 31 31

This method is very interesting if n has a small prime factor p because p− 1 is much likely to
be smooth in that case.

There exists a variant to the p − 1 method of Pollard, called the large prime variation. It
succeeds whenever p− 1 is the product of a y1-smooth number by a single prime in the interval
]y1, y2]. Such an integer is said to be (y1, y2)-smooth. One starts as before and computes ak+1 =
ak+1
k mod n for 1 6 k 6 y1 − 1. We set b0 = ay1 . We then compute b1 = bl10 mod n, b2 =
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bl20 mod n, b3 = bl30 mod n, b4 = bl40 mod n, . . . , where the li are the successive primes in the
interval ]y1, y2]. The trick is that in order to compute b2 we do not need to exponentiate. Indeed

b2 = bl20 = b
l1+(l2−l1)
0 = b1b

l2−l1
0 mod n.

Since the difference between two consecutive primes is expected to be very small, we precompute
the first powers of b0 and set cj = bj0. We then compute

bk+1 = bkclk+1−lk mod n
at the expense of a single multiplication.

For example, if n = 2721749 = pq where p = 2671 and q = 1019 then p−1 = 2×3×5×89
is (y1, y2)-smooth with y1 = 7 and y2 = 100.

We compute a1 = 2, a2 = a2
1 = 4, a3 = 64, a4 = 446722, a5 = 1416863, a6 = 715291,

a7 = 795854.
We set b0 = a7. We then raise b0 to the powers li for li a prime in [11, 97]. The difference

between two consecutive primes in this interval is at most 8.
We precompute c1 = b0 = 795854, c2 = (b0)2 = 2657777, c3 = (b0)3 = 664706, c4 =

1628037, c5 = 2034144, c6 = 1664270, c7 = 1281471, c8 = (b0)8 = 2696942.
We now compute b1 = (b0)11 = 1715449, b2 = (b0)13 = b1c2 = 216252, b3 = (b0)17 = b2c4 =

2580676, . . . , b20 = (b0)89 = b19c6 = 1279410.
We find gcd(b20 − 1, n) = 2671.

4. FERMAT’S METHOD

Fermat noticed that if one manages to write an integer n as a difference of two squares then
one gets a chance to factor n. Indeed if n = x2 − y2 then n = (x− y)(x+ y).

Assume for example that we want to factor n = 1524157896661027288525081. We add to n
the succcessive squares 1, 4, 9, . . . and we check if the sum is a square :
gp > n=1524157896661027288525081
%1 = 1524157896661027288525081
gp > for(k=1,20,if(issquare(n+k^2),print([k,sqrt(n+k^2)])))
[12, 1234567898765.000000000000000]

So n = −122 + 12345678987652 = 1234567898753× 1234567898777.
This method only works if one of the squares is small. In that case, the other square will be

close to
√
n. So we may compute the smallest integer r bigger than

√
n and check if r2 − n is a

square also.
gp > round(sqrt(n))^2-n
%2 = 144

If we manage to write a multiple of n as a difference of two squares then again we can hope
to factor n. Indeed, if x2 = y2 mod n we may hope that the gcd of n and x− y is non-trivial. So
we can apply the computation above to the first multiples of n. This method only succeeds for
very special values of n. It is sometimes efficient for small n.

For general values of n, the best known method to produce a congruence

x2 − y2 = 0 mod n
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is to collect many congruences between a square and a smooth number that is∏
i

pi = x2 mod n

where x is any integer and the pi are prime integers smaller than or equal to a given bound
B. Once collected enough such congruences we can, using linear algebra, find a multiplicative
combination of these congruences with a square on the right hand side also. The next two sections
present two simple algorithms based on this idea.

5. DIXON LINEAR SIEVE

Pick a random a modulo n and let b be the unique integer congruent to a2 modulo n in the
interval [−(n − 1)/2, (n − 1)/2]. We thus have a2 = b mod n. We hope that b is B-smooth.
If this is the case we obtain a congruence between a square and a B-smooth integer. We collect
enough such relations and we combine them to obtain a congruence between two squares.

Assume for example that we want to factor n = 7081. We choose B = 3. The B-smooth
integers are of the form ±2a3b.

After a few random trials we find

44862 = −2.3 mod n,
18572 = 2 mod n,
26452 = −3 mod n.

We collect the valuations of the right hand sides in a 3× 3 matrix M

−1 2 3

4486 1 1 1

1857 0 1 0

2645 1 0 1

If we reduce M modulo 2 we obtain a matrix with coefficients in the field with two elements.
We then look for the kernel of this matrix M modulo 2. We check that the line r = [1, 1, 1] ∈ F3

2
verifies rM = [0, 0, 0]. We deduce the congruence

(4486.1857.2645)2 = (−2.3)2 mod n.
The gcd of n and 4486.1857.2645 + 6 is 73. We have found a non-trivial factor of n.

6. THE QUADRATIC SIEVE

This algorithm is due to Carl Pomerance. We illutrate it on an example. Let

n = 21311 = 101.211
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be the number to be factored. We find an integer m close to the square root of n

m = bn1/2e = 146.

We produce lots of congruences modulo n by observing that for any integer a,

(m+ a)2 ≡ (m2 − n) + a2 + 2am (mod n) = 5 + a2 + 292a (mod 21311),

where m2 − n has order of magnitude
√
n.

We choose a smoothness bound B = 13 and look for small integers a such that 5 + a2 + 292a
is B-smooth. For example for a between −60 and 60 we find

a 5 + 292a+ a2

−27 −2.52.11.13

−5 −2.5.11.13

−1 −2.11.13

0 5

60 53.132

We report the parity of the valuations in a matrix with coefficients in Z/2Z :

−1 2 5 11 13

−27 1 1 0 1 1

−5 1 1 1 1 1

−1 1 1 0 1 1

0 0 0 1 0 0

60 0 0 1 0 0

Each row in the kernel of this matrix produces a congruence modulo n between two squares.
The kernel here has dimension three and a basis for it consists of the three rows below
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−27 −5 −1 0 60

1 0 1 0 0

1 1 0 1 0

1 1 0 0 1
The first row produces the congruence

(2.5.11.13)2 ≡ (146− 27)2.(146− 1)2 (mod 21311).
We compute the gcd of 2.5.11.13 − (146 − 27).(146 − 1) = −15825 and 21311. We find the
non-trivial factor p = 211 of n = 21311 and its cofactor q = 101. A primality test shows that p
and q are prime integers.

Which is the advantage of this algorithm compared to Dixon’s linear sieve ? The only dif-
ference concerns the way we produce congruences modulo n. In Dixon’s sieve the residue x2

modulo n is an integer in the range [−(n−1)/2, (n−1)/2]. We hope that this interger is smooth.
In the quadratic sieve the number that we hope to be smooth has order of magnitude

√
n. The

probability of success is higher.

7. DENSITY OF SMOOTH INTEGERS

The efficiency of sieving algorithms relies on the expectation that the proportion of smooth
integers is not too small. We state a theorem of Canfield, Erdös, Pomerance about this and
sketch a proof of it.

Let Z∗ be the set of non-zero integers. We consider the function t : Z∗ → R defined by

t(n) = log(|n|).
We say that t(n) is the size of n. The size a product of non-zero integers is the sum of their sizes.

We say that an integer n is y-smooth if it is a product of integers 6 y. Equivalently all prime
divisors of b are 6 y. For example 330 = 2× 3× 5× 11 is 13-smooth and even 11-smooth.

Let x > 2 and y > 2 be two integers. We want to estimate the proportion of y-smooth integers
among all integers 6 x. We give a simplistic argument.

Let
` = bt(x)/t(y)c = blog(x)/ log(y)c

be the biggest integer lower than or equal to the quotient t(x)/t(y) of the sizes of x and y.
Pick ` positive prime integers a1, a2,..., a`, all 6 y.
The product a1a2 . . . a` is 6 x and it is y-smooth.
We want to count the number of y-smooth integers we have constructed this way. According

to the prime numbers theorem the proportion of prime integers among the positive integers 6 y
is

1
log(y)(1 + ε(y))
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where ε is a function in the class o(1). We even know that this proportion is

>
1

log(y)
as soon as y > 52. See [8, Chapitre I.1]. So the number of `-uples (a1, ..., a`) is

>
y`

(log y)` >
x

y
× 1

(log(y))` > x1− 1
` × 1

(log(y))` ,

as soon as y > 52.
Since multiplication is commutative, all the permutations of a given `-uple (a1, . . . , a`) give

rise to the same product. In fact two `-uples have the same product if and only if they are equal
up to permutation of their coordinates. This is the fundamental theorem of arithmetic. So we
have at most `! different `-uples that give rise to the same product. So we have constructed at
least

x

`!x 1
` (log(y))`

y-smooth elements in the interval [1, x]. The proportion of y-smooth integers in [1, x] is thus at
least

1
`!x 1

` (log(y))`

The most significant factor in the denominator is the `!. A careful study [2] proves the following
theorem.

Theorem 7.1 (Canfield, Erdös, Pomerance). Let Ψ(x, y) be the number of y-smooth integers in
the interval [1, x]. Set u = lnx

ln y . Let ε ∈]0, 1[ be fixed. There exists a function µ in the o(1) class
such that

Ψ(x, y) = xu−u(1+µ(u))

whenever (ln x)ε < u < (ln x)1−ε.

In the typical case when log y = A.
√

log(x)log log(x) for some positive constant A, we find

u = 1
A

√
log x

log logx and −u log u = −1+o(1)
2A

√
log(x)log log(x).

Theorem 7.2. Let A be a positive real number. Let x be a large enough integer and set

y = exp
(
A.
√

log(x)log log(x)
)
.

The proportion of y-smooth integers in the interval [1, x] is at least

exp
(
−1 + o(1)

2A
√

log(x)log log(x)
)
.

The proportion of y-smooth integers in the interval [1, x] is neither too large nor too small.
There are many more smooth integers than squares for example. But much less than primes.
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8. COMPLEXITY ANALYSIS OF THE LINEAR SIEVE

We first study the complexity of Dixon’s linear sieve. In this algorithm we consider random
integers in the range [1, n] and we hope to find enough B-smooth ones. Assume

B = exp(A.
√

log(n)log log(n))
for some positive real constant A. Then the probability that an integer in the range [1, n] is
B-smooth is

P = exp
(
−1 + o(1)

2A
√

log(n)log log(n)
)
.

The time needed to find one congruence between a square and a B-smooth integer is thus

1
P

= exp
(

1 + o(1)
2A

√
log(n)log log(n)

)
.

We need to find as many such congruences as the number π(B) of prime integers in the range
[1, B]. So the total running time of the algorithm is

π(B)
P
∼ B

P
= exp

(
(A+ 1

2A + o(1))
√

log(n)log log(n)
)
.

The minimum of A+ 1
2A is reached for A = 1/

√
2. We thus take

B = exp
(

1√
2
.
√

log(n)log log(n)
)

and find a time complexity

T = exp
(

(
√

2 + o(1))
√

log(n)log log(n)
)
.

9. COMPLEXITY ANALYSIS OF THE QUADRATIC SIEVE

We now study the complexity of the quadratic sieve. In this algorithm we consider integers
(m2 − n) + a2 + 2am of size

√
n and we hope to find enough B-smooth ones. Assume

B = exp(A.
√

log(n)log log(n))
for some positive real constant A. Then the probability that an integer of size

√
n is B-smooth is

P = exp(−(1 + o(1))u log u) with

u = (log
√
n)/ logB = 1

2A

√√√√ log(n)
log log(n) .

So

P = exp
(
−1 + o(1)

4A
√

log(n)log log(n)
)
.

The time needed to find one congruence between a square and a B-smooth integer is thus

1
P

= exp
(

1 + o(1)
4A

√
log(n)log log(n)

)
.
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We need to find as many such congruences as the number π(B) of prime integers in the range
[1, B]. So the total running time of the algorithm is

π(B)
P
∼ B

P
= exp

(
(A+ 1

4A + o(1))
√

log(n)log log(n)
)
.

The minimum of A+ 1
4A is reached for A = 1/2. We thus take

B = exp
(1

2 .
√

log(n)log log(n)
)

and find a time complexity

T = exp
(

(1 + o(1))
√

log(n)log log(n)
)
.
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10. EXERCISE : AN EXAMPLE OF QUADRATIC SIEVE

We want to factor the integer n = 32399 using the quadratic sieve.
1 . We notice that

√
n ' 179.9. Write a congruence modulo n of the type

(a+m)2 ≡ a2 + u1a+ u0 mod n
depending on an integer parameter a. Here m, u0, u1 are well chosen integer constants.

2 . Find values of a in the interval [−40, 40] that produce a congruence between a square and a
smooth number (in a sense to be made precise) modulo n. You may use the following data.
for(a=-40,40,print([a,factor(a^2+2*a*180+1)]))
[-40, [-1, 1; 12799, 1]]
[-39, [-1, 1; 2, 1; 11, 1; 569, 1]]
[-38, [-1, 1; 5, 1; 2447, 1]]
[-37, [-1, 1; 2, 1; 5, 2; 239, 1]]
[-36, [-1, 1; 107, 1; 109, 1]]
[-35, [-1, 1; 2, 1; 11, 2; 47, 1]]
[-34, [-1, 1; 11083, 1]]
[-33, [-1, 1; 2, 1; 5, 1; 13, 1; 83, 1]]
[-32, [-1, 1; 5, 1; 2099, 1]]
[-31, [-1, 1; 2, 1; 5099, 1]]
[-30, [-1, 1; 19, 1; 521, 1]]
[-29, [-1, 1; 2, 1; 4799, 1]]
[-28, [-1, 1; 5, 1; 11, 1; 13, 2]]
[-27, [-1, 1; 2, 1; 5, 1; 29, 1; 31, 1]]
[-26, [-1, 1; 19, 1; 457, 1]]
[-25, [-1, 1; 2, 1; 53, 1; 79, 1]]
[-24, [-1, 1; 11, 1; 733, 1]]
[-23, [-1, 1; 2, 1; 5, 3; 31, 1]]
[-22, [-1, 1; 5, 1; 1487, 1]]
[-21, [-1, 1; 2, 1; 3559, 1]]
[-20, [-1, 1; 13, 1; 523, 1]]
[-19, [-1, 1; 2, 1; 41, 1; 79, 1]]
[-18, [-1, 1; 5, 1; 1231, 1]]
[-17, [-1, 1; 2, 1; 5, 1; 11, 1; 53, 1]]
[-16, [-1, 1; 5503, 1]]
[-15, [-1, 1; 2, 1; 13, 1; 199, 1]]
[-14, [-1, 1; 29, 1; 167, 1]]
[-13, [-1, 1; 2, 1; 5, 1; 11, 1; 41, 1]]
[-12, [-1, 1; 5, 2; 167, 1]]
[-11, [-1, 1; 2, 1; 19, 1; 101, 1]]
[-10, [-1, 1; 3499, 1]]
[-9, [-1, 1; 2, 1; 1579, 1]]
[-8, [-1, 1; 5, 1; 563, 1]]
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[-7, [-1, 1; 2, 1; 5, 1; 13, 1; 19, 1]]
[-6, [-1, 1; 11, 1; 193, 1]]
[-5, [-1, 1; 2, 1; 887, 1]]
[-4, [-1, 1; 1423, 1]]
[-3, [-1, 1; 2, 1; 5, 1; 107, 1]]
[-2, [-1, 1; 5, 1; 11, 1; 13, 1]]
[-1, [-1, 1; 2, 1; 179, 1]]
[0, matrix(0,2)]
[1, [2, 1; 181, 1]]
[2, [5, 2; 29, 1]]
[3, [2, 1; 5, 1; 109, 1]]
[4, [31, 1; 47, 1]]
[5, [2, 1; 11, 1; 83, 1]]
[6, Mat([13, 3])]
[7, [2, 1; 5, 1; 257, 1]]
[8, [5, 1; 19, 1; 31, 1]]
[9, [2, 1; 11, 1; 151, 1]]
[10, Mat([3701, 1])]
[11, [2, 1; 13, 1; 157, 1]]
[12, [5, 1; 19, 1; 47, 1]]
[13, [2, 1; 5, 2; 97, 1]]
[14, Mat([5237, 1])]
[15, [2, 1; 29, 1; 97, 1]]
[16, [11, 1; 547, 1]]
[17, [2, 1; 5, 1; 641, 1]]
[18, [5, 1; 1361, 1]]
[19, [2, 1; 13, 1; 277, 1]]
[20, [11, 1; 691, 1]]
[21, [2, 1; 4001, 1]]
[22, [5, 1; 41, 2]]
[23, [2, 1; 5, 1; 881, 1]]
[24, [13, 1; 709, 1]]
[25, [2, 1; 4813, 1]]
[26, Mat([10037, 1])]
[27, [2, 1; 5, 2; 11, 1; 19, 1]]
[28, [5, 1; 41, 1; 53, 1]]
[29, [2, 1; 5641, 1]]
[30, Mat([11701, 1])]
[31, [2, 1; 11, 1; 19, 1; 29, 1]]
[32, [5, 1; 13, 1; 193, 1]]
[33, [2, 1; 5, 1; 1297, 1]]
[34, Mat([13397, 1])]
[35, [2, 1; 31, 1; 223, 1]]



INTEGER FACTORING 13

[36, [53, 1; 269, 1]]
[37, [2, 1; 5, 1; 13, 1; 113, 1]]
[38, [5, 3; 11, 2]]
[39, [2, 1; 31, 1; 251, 1]]
[40, Mat([16001, 1])]

3 . Write down all the congruences you have found. Report the signs and valuations in a matrix
M with integer coefficients.

4 . Compute (a basis of) the kernel of the reduction modulo 2 of the matrix M .

5 . For each vector in this basis write a congruence between two squares modulo n. Deduce a
factorization of n.

11. EXERCISE : AN EXAMPLE OF QUADRATIC SIEVE

We want to factor n = 7747 using the quadratic sieve.

1 . Note that
√
n ' 88.01704. Write a congruence modulo n of the type

(a+m)2 ≡ a2 + u1a+ u0 mod n
depending on an integer parameter a. Here m, u0, u1 are well chosen integer constants.

2 . Find values of a between −3 and 6 that provide a congruence between a square and a 29-
smooth integer n.

3 . Write down all the interesting congruences thus obtained. Collect signs and valuations in a
matrix M with integer coefficients.

4 . Compute the kernel of the reduction modulo 2 of the matrix M . Give a basis of this kernel.

5 . For each vector in this basis find a congruence between two squares modulo n. Deduce a
(possibly trivial) factorization of n.

12. EXERCISE : ANOTHER EXAMPLE OF QUADRATIC SIEVE

We want to factor the integer N = 20737 using the quadratic sieve.
1 . We notice that

√
N ' 144.0035. We set m = 144. Write a congruence modulo N of the type

(a+m)2 ≡ a2 + u1a+ u0 mod N
depending on an integer parameter a. Here u0, u1 are well chosen integer constants.

2 . Find values of a in the interval [−20, 20] that produce a congruence between a square and a
smooth number (in a sense to be made precise) modulo N . You may use the following data.
? for(a=-20,20,print([a,factor(a^2+a*288-1)]))
[-20, [-1, 1; 3, 1; 1787, 1]]
[-19, [-1, 1; 2, 3; 3, 2; 71, 1]]
[-18, [-1, 1; 4861, 1]]
[-17, [-1, 1; 2, 9; 3, 2]]
[-16, [-1, 1; 3, 1; 1451, 1]]
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[-15, [-1, 1; 2, 12]]
[-14, [-1, 1; 3, 1; 1279, 1]]
[-13, [-1, 1; 2, 3; 3, 1; 149, 1]]
[-12, [-1, 1; 3313, 1]]
[-11, [-1, 1; 2, 3; 3, 1; 127, 1]]
[-10, [-1, 1; 3, 3; 103, 1]]
[-9, [-1, 1; 2, 4; 157, 1]]
[-8, [-1, 1; 3, 3; 83, 1]]
[-7, [-1, 1; 2, 4; 3, 1; 41, 1]]
[-6, [-1, 1; 1693, 1]]
[-5, [-1, 1; 2, 3; 3, 1; 59, 1]]
[-4, [-1, 1; 3, 1; 379, 1]]
[-3, [-1, 1; 2, 3; 107, 1]]
[-2, [-1, 1; 3, 1; 191, 1]]
[-1, [-1, 1; 2, 5; 3, 2]]
[0, Mat([-1, 1])]
[1, [2, 5; 3, 2]]
[2, [3, 1; 193, 1]]
[3, [2, 3; 109, 1]]
[4, [3, 1; 389, 1]]
[5, [2, 3; 3, 1; 61, 1]]
[6, [41, 1; 43, 1]]
[7, [2, 4; 3, 1; 43, 1]]
[8, [3, 2; 263, 1]]
[9, [2, 4; 167, 1]]
[10, [3, 2; 331, 1]]
[11, [2, 3; 3, 1; 137, 1]]
[12, [59, 1; 61, 1]]
[13, [2, 3; 3, 1; 163, 1]]
[14, [3, 1; 1409, 1]]
[15, [2, 6; 71, 1]]
[16, [3, 1; 1621, 1]]
[17, [2, 6; 3, 4]]
[18, Mat([5507, 1])]
[19, [2, 3; 3, 6]]
[20, [3, 1; 2053, 1]]

3 . Write down all the congruences you have found. Report the signs and valuations in a matrix
M with integer coefficients.

4 . Compute (a basis of) the kernel of the reduction modulo 2 of the matrix M .

5 . For each vector in this basis write a congruence between two squares modulo N . Deduce a
factorization of N .
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