
SQUARES IN Z/NZ

We study squares in the ring Z/NZ from a theoretical and computational point of view. We
present two related cryptographic schemes.

1. SQUARES IN Z/pZ

Consider for example the prime p = 13. Write the liste of squares in (Z/pZ)∗. How many of
them ? Why ?

Let p be an odd prime. For any integer x one defines the Legendre symbol
(
x
p

)
in the

following way :

•
(
x
p

)
= 0 if p divides x,

•
(
x
p

)
= 1 if x is a non-zero square modulo p,

•
(
x
p

)
= −1 if x is not a square modulo p.

The map x 7→
(
x
p

)
induces a group homomorphism from F∗

p onto {1,−1}. It is a character.

Actually
(
x
p

)
= x

p−1
2 mod p. This provides a first method to compute this symbol efficiently.

The famous quadratic reciprocity law states that

Theorem 1.1. If p and q are odd (positive) prime integers then(
p
q

)(
q
p

)
= (−1)

(p−1)(q−1)
4 .

One can check this theorem on a few small examples e.g. p = 5 and q = 7 or p = 5 and q = 3.

2. COMPUTING SQUARE ROOTS IN Z/pZ

Assume p = 103 and x = 46. One checks that 4651 ≡ 1 mod 103 so 46 is a square modulo
103. We observe that p is congruent to 3 modulo 4. So p−1

2 = 51 is odd. The inverse of 2 modulo
51 is 26. Indeed

26× 2 = 1 + 51.
Set y = x26 mod 103. One has y2 = x1+51 = x so y is a square root of x. Computing y = x26

is easy using fast exponentiation. On finds y = 46 mod 103. We thus have a very efficient
method to compute square roots modulo a prime integer congruent to 3 modulo 4.
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2 SQUARES IN Z/NZ

Assume now that p = 101 and x = 13 mod 101. One checks that x50 ≡ 1 mod 101 so x is
a square modulo 101. The order of x in the group (Z/101Z)∗ divides de 50. The largest odd
divisor of 50 is 25 but x25 ≡ −1 mod 101. So the order of x is even. We cannot compute a
square root of x as in the first example.

To overcome this difficulty we assume that we know a non-quadratic residue z modulo 101.
There are many of them since half of the non-zero residues are not squares. We pick a random
integer z between 2 and p− 1 and we compute z50 mod 101. With probability 1

2 the result is −1
and we are done. For example z = 46 is fine since z50 = −1 mod 101.

Let us multiply x by z2 = 96 mod 101. We get X = xz2 = 36 mod 101. And this time
X25 = x25z50 = 1 mod 101 so X has odd order. One easily computes a square root of X by
inverting 2 modulo 25. Indeed 2×13 = 1+25 soX13 is a square root ofX . Set now y = X13z−1.
One checks that y is a square root of x.

Attention : this is a probabilistic method. One does not know a general deterministic polyno-
mial time algorithm to compute square roots modulo a prime.

3. SQUARES IN Z/NZ

Let N > 2 be an integer with prime decomposition N = ∏
i p

ei
i . From Chinese remainder

theorem we know that an integer x is a square modulo N if and only if it is a square modulo
every pei

i . One can compute a square root of x by first computing square roots module every pei
i

then glue these square roots thanks to Chinese remainder theorem. This is efficient if we know
the factorization of N .

In case N = 11× 13 and x = 3 we find four square roots in this way. In general, if N is odd
and has I prime factors one finds 2k square roots for each x in (Z/NZ)∗.

Conversely, if we have a black box that returns a square root for any residue modulo N then
we can find non trivial factors of N . Why ?

We say that there is a probabilistic reduction of the problem of factoring integers to the prob-
lem of computing square roots modulo integers. There is also a probabilistic reduction of the
problem of computing square roots modulo integers to the problem of factoring integers. So
these two problems have similar complexity (at least in the probabilistic world).

4. THE JACOBI SYMBOL

Assume N > 3 is an odd integer and les N = ∏
i p

ei
i be its prime decomposition. One defines

the Jacobi symbol as (
x
N

)
=
∏

i

(
x
pi

)ei

.

The symbol
(
x
N

)
only depends on the class of xmoduloN . It has many evident multiplica-

tive properties inherited from the Legendre symbol. For example
(
a
b

)
= 0 if and only if a and

b are not coprime. The quadratic reciprocity law can be extended to Jacobi symbols.
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Theorem 4.1 (Gauss). Let M > 3 and N > 3 be odd coprime integers. One has(
−1
M

)
= (−1)

M−1
2 and

(
2
M

)
= (−1)

M2−1
8 and

(
M
N

)(
N
M

)
= (−1)

(M−1)(N−1)
4 .

Using this theorem one can quickly compute Jacobi symbols. The algorithm is very similar to
Euclidean algorithm.

When N is not a prime, the Jacobi symbol does not suffice to distinguish quadratic residues
from non-quadratic residues. For example if N = pq is a product of two distinct odd primes and

x is prime to N then
(
x
N

)
= 1 if and only if x is either a square modulo p and modulo q or x

is neither a square modulo p nore modulo q. In this last case one says that x is a false square. It
is considered to be difficult to distinguish true and false squares.

5. A ZERO-KNOWLEDGE IDENTIFICATION PROTOCOL

Identification is a crucial need to secure communications. One needs to check the identity of
one’s contacts. Assume Carole belongs to a secret organization. She needs to contact James.
She never met him. In order to avoid any infiltration of the organization, each of them must be
able to check that he his dealing with the other. Here is a possible protocol. James gets close to
Carole and tells her “BELOTE”. Carole answers “REBELOTE”. If everything goes well Carole
and James know that they are in contact with the right person. We assume of course that the
two passwords (BELOTE and REBELOTE) have been provided by the organization to each of
them. These passwords should be used only once. Otherwise some enemy may intercept and
re-use them. Another concern is the man-in-the-middle attack. A false Carole (say Karole) may
contact James. James would give her the password BELOTE to prove himself. Then Karole
would quickly contact Carole and send her the password BELOTE. Carole would accept this
password and answer REBELOTE to Karole. Now Karole would be able to convince James that
she is Carole.

All these difficulties are consequences of the following two self contradictory principles
(1) The identity is defined by the knowledge of some information (e.g. a password) that must

be kept secret.
(2) Proving oneself is achieved by unveiling this information (e.g. sending the password).

Biometric identification techniques (fingerprints, iris recognition, voice identification, . . . )
may be a solution, but this is not the scope of this text.

The following identification scheme is due to Feige, Fiat and Shamir. It is a Zero-Knowledge
identification scheme. James can prove that he knows a secret without unveiling it.

To start with, each member X of the organization chooses two large prime integers pX and
qX and computes their product NX = pXqX . Then X chooses a random quadratic residue rX

modulo NX with uniform probability and a square root fX of rX . So f 2
X = rX mod NX . Indeed

it is simpler to choose fX first.
The collection of all triples (X,NX , rX) is published in the phonebook of the organization.

The prime factors pX and qX and the square root fX are only known to X . It is the knowledge
of fX that distinguishes X .
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Before contacting James, Carole looks for the triple (J,NJ , rJ) in the phonebook. She contacts
the alleged James and try to make sure that he knows a square root of rJ moduloN . They interact
as follows.

(1) James picks a random quadratic residue z = u2 mod NJ (with uniform probability) and
computes t = zrJ mod NJ . He sends t to Carole.

(2) Carole chooses a random element ε (with uniform probability) in {1,−1} and send it to
James.

(3) If ε = 1 James sends u to Carole. Otherwise he sends a square root s of t modulo NJ

(he knows such a square root s = ufJ because he knows a square root of rJ and a square
root of z.)

(4) If ε = 1, Carole computes z = t/rJ mod NJ and checks that z = u2 mod NJ .
(5) If ε = 0, Carole checks that s2 = t mod NJ .

This protocol runs in time polynomial in logNJ . It can and should be repeated many (e.g.
1000) times. Carole accepts if the condition checked at the last step has been always satisfied.
Otherwise she rejects.

If James wants to prove himself, he can answer Carole’s questions. And Carole learns nothing
about James’ secret because she only gets a series of random quadratic residues modulo NJ . She
could produce such a series herself without the support of James. So she receives no information
from him.

Assume an enemy (say Octopus) claims to be James. He doesn’t know any square root of rJ .
So he cannot know at the same time an s and a u such that s2 = t and u2 = z. So he fails
to answer correctly with probability > 1

2 . When the protocol is iterated n times the probability
for Octopus to cheat Carole is 6 1/2n. The security of the scheme relies on the difficulty of
computing square roots modulo a composite integer. This is a hard problem as long as factoring
integers is hard.

6. FLIPPING COINS WITH A TELEPHONE

Alice and Bob want to flip a coin to decide who is going to dust-sweep tomorrow. However
they are not in the same room and they only can interact with a telephone or by mail. They need
to pick a random element in {heads, tails} with uniform probability. None of them should be
able to influence on the result.

The following protocol provides a solution under the assumption that false squares cannot be
distinguished from true ones efficiently.

(1) Bob chooses two large numbers p and q. He computes the product N = pq and sends
it to Alice (he does not send p and q). Bob chooses a residue x modulo N such that(
x
N

)
= 1 (with uniform distribution)) and he sends x to Alice.

(2) Alice receives N and x but she doesn’t know p ans q. So she doesn’t know if x is a true
or a false square. She pick a random element ε (with uniform distribution) in {1,−1}
and she sends it to Bob.
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(3) Bob compares ε and
(
x
p

)
. If they are equal then the result of the protocol is heads and

if they are different the result is tails. Bob sends his conclusion to Alice. He justifies it
by transmitting p and q.

(4) Alice checks that p and q are prime integers and N = pq. She computes the Legendre

symbols
(
x
p

)
and

(
x
q

)
and checks Bob’s claim.

This protocol runs in time polynomial in logN . The probability distribution on the output is
uniform as soon as one of the players is honest (meaning he executes the protocol correctly).

If Bob cheats but Alice is honest then the distribution is uniform because the group composi-
tion of two random variables, one of which is uniform, is uniform too.

If Alice wants to influence on the result she must guess some information about whether x is
a true or a false square. One assume that it is impossible to get any information about this in
polynomial time.


