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This lecture is concerned with the regularity theory for (quasilinear) elliptic
equations (or systems). We handle two different situations:

(1) the case of quasilinear elliptic equations

−∇ · A(x, u)∇u = 0, x ∈ Ω, (0.1)

where the nonlinearity is gentle,

(2) the case of linear elliptic equations with highly oscillating coefficients

−∇ · A(x/ε)∇uε = 0, x ∈ Ω. (0.2)

We focus on interior regularity, away from boundaries. The issue of regularity for
elliptic equations is local. It is based on estimates which prove that the solution gets
flatter and flatter, when zooming in to the smaller scales. We address the issue of
regularity via compactness methods. There are two key points. The starting point is
always an improvement of flatness estimate. The second point consists in iterating
this estimate down to smaller scales.

As for the improvement of flatness, the two situations highlight different phenom-
ena. In the first case of the nonlinear equation (0.1), the idea is roughly speaking
that the more you zoom in the closest you get to an equation with constant coef-
ficients (thus linear). In the second case (0.2), when ε goes to zero, i.e. when you
zoom out, homogenization takes place, and one gets closer to the situation with
constant homogenized coefficients. In the end, regularity for the elliptic equations
with non constant coefficients follows from the regularity theory for equations with
constant coefficients.

The main assumptions on A = (Aαβ(x, u)) are:

(A1) A is elliptic, i.e. there exists λ > 0, such that for all ξ ∈ Rd, for all x ∈ Rd,
u ∈ R,

λ|ξ|2 ≤ A(x, u)ξ · ξ, (0.3)
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(A2) A is bounded measurable, i.e. there exists L > 0 such that

‖A‖L∞(Rd×R) ≤ L. (0.4)

Denote by A(λ, L) the set of A satisfying (0.3) and (0.4). Since we only consider
interior regularity, no (smoothness) assumption is made on the domain Ω ⊂ Rd.

1 Caccioppoli’s inequality
The setup of the regularity results is like this: consider a family of H1(Ω) weak
solutions u to (0.1) or uε to (0.2) bounded in L2(Ω). This L2(Ω) bound yields
compactness of the family of solutions, in particular via the Caccioppoli inequality,
which is the starting point of the regularity theory for elliptic equations.

Proposition 1 (Caccioppoli’s inequality). Assume that A ∈ A(λ, L). Let u ∈
H1
loc(Ω) be a weak solution to (0.1), i.e. for all ϕ ∈ C∞c (Ω),ˆ

Ω

A(x, u)∇u · ∇ϕ = 0. (1.1)

Then there exists C = C(d, λ, L) such that for all x0 ∈ Ω, for all 0 < ρ < R <
dist(x0, ∂Ω), for all m ∈ R, the following estimate holdsˆ

B(0,ρ)

|∇u|2 ≤ C

(R− ρ)2

ˆ
B(0,R)\B(0,ρ)

|u−m|2.

Proof. Let x0 ∈ Ω and R < dist(x0, ∂Ω).
(1) We first choose a cut-off function η ∈ C∞c (B(x0, R)) such that

0 ≤ η ≤ 1, η ≡ 1 on B(x0, R), |∇η| . 1

R− ρ
.

Existence of such an η is standard.
(2) Let m ∈ R. Without loss of generality, we may assume m = 0. Indeed if u is

a weak solution to (0.1), then u−m is a weak solution to

−∇ · Am(x, u)∇(u−m) = 0, x ∈ Ω,

where Am(x, u) := A(x, u + m) is elliptic with constant λ and bounded by L. We
now test the equation against η2u ∈ H1

0 (Ω). It is clearly an admissible test function,
because the class of test functions in (1.1) can be extended by density to H1

0 (Ω).
We get

0 =

ˆ
Ω

A(x, u)∇u · ∇(η2u) =

ˆ
Ω

A(x, u)∇u ·
(
2η∇ηu+ η2∇u

)
,

hence with Cauchy-Schwarz’s and Young’s inequalities

λ

ˆ
Ω

η2|∇u|2 ≤
ˆ

Ω

η2A(x, u)∇u · ∇u = −
ˆ

Ω

2ηA(x, u)∇u · (∇η)u

≤ 2‖A‖L∞

(ˆ
Ω

η2|∇u|2
)1/2 (ˆ

Ω

|∇η|2|u|2
)1/2

≤ λ

2

ˆ
Ω

η2|∇u|2 +
2

λ

(
2‖A‖L∞

)2
ˆ

Ω

|∇η|2|u|2.
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Eventually, ˆ
B(0,ρ)

|∇u|2 ≤
ˆ

Ω

η2|∇u|2 ≤ C

(R− ρ)2

ˆ
B(0,R)\B(0,ρ)

|u|2,

with C = C(d, λ, L), which ends the proof.

Caccioppoli’s inequality also clearly holds for the H1(Ω) solutions uε to (0.2),
with a constant C uniform in ε, since the only properties of A which are involved
are the ellipticity and the boundedness. If A is constant, one can of course reite-
rate Caccioppoli’s inequality and get estimates on higher-order derivatives. Though
simple, this inequality is the essence of the regularity theory for elliptic equations of
the type considered here. In the end, the regularity results considered in this lecture
boil down to Caccioppoli’s inequality.

Corollary 2. Let u ∈ H1
loc(Ω) be a weak solution to

−∇ ·B∇u = 0, x ∈ Ω.

Assume that B is constant (independent of x and u) and belongs to A(λ, L). Then,
for all x0 ∈ Ω, for all 0 < 2ρ ≤ R < dist(x0, ∂Ω),

−
ˆ
B(x0,ρ)

|u|2 ≤ C−
ˆ
B(x0,R)

|u|2 (1.2)

−
ˆ
B(x0,ρ)

|u− (ū)x0,ρ|2 ≤ C
( ρ
R

)2

−
ˆ
B(x0,R)

|u− (ū)x0,R|2, (1.3)

where
(ū)x0,ρ := −

ˆ
B(0,ρ)

u

and C = C(d, λ, L).

Proof. For all x0 ∈ Ω, for all 0 < 4ρ/3 ≤ R < dist(x0, ∂Ω), for m > d/2,

−
ˆ
B(x0,ρ)

|u|2 ≤ C‖u‖L∞(B(x0,ρ)) ≤ C‖u‖L∞(B(x0,3R/4)) ≤ C‖u‖Hm(B(x0,3R/4)) ≤ C−
ˆ
B(x0,R)

|u|2

by (in this order) Sobolev’s imbedding Hm(B(x0, ρ)) into L∞(B(x0, ρ)) and reit-
erated Caccioppoli’s inequality. Hence (1.2). For (1.3), it is enough to notice
that ∇u is a weak solution to the equation. Therefore, for all x0 ∈ Ω, for all
0 < 2ρ ≤ R < dist(x0, ∂Ω),

−
ˆ
B(x0,ρ)

|∇u|2 ≤ C−
ˆ
B(x0,5R/6)

|∇u|2,

because ρ ≤ R
2
≤ 3

4
5
6
R. Applying Poincaré’s inequality on the left and Caccioppoli’s

inequality on the right

−
ˆ
B(x0,ρ)

|u− (ū)x0,ρ|2 ≤ Cρ2−
ˆ
B(x0,ρ)

|∇u|2

≤ Cρ2−
ˆ
B(x0,5R/6)

|∇u|2 ≤ C
( ρ
R

)2

−
ˆ
B(x0,R)

|u− (ū)x0,R|2

yields the result. All constants above only depend on d, λ and L.
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Remark 1 (For what purpose do we use Caccioppoli’s inequality?). Besides regular-
ity for equations with constant coefficients as in Corollary 2, we use Caccioppoli’s
inequality to upgrade weak convergence in L2(B(0, 1)) into strong convergence in
L2(B(0, 1/2)). Indeed, if a sequence of solutions is bounded in L2(B(0, 1)), by Cac-
cioppoli’s inequality, it is bounded in H1(B(0, 1/2)). Rellich’s compact injection
theorem yields the conclusion.

2 Measures of regularity
With state here a characterization of Hölder continuity in terms of oscillation mea-
sured in L2 norm. For details and proofs, we refer to [Gia83, Chapter III.1].

Let Ω be a open domain in Rd. We define the Campanato spaces for p = 2. By
L2,α(Ω) we denote the space of functions u ∈ L2(Ω) such that

[u]22,α := sup
x0∈Ω, ρ>0

ρ−α−
ˆ
B(x0,ρ)∩Ω

|u(x)− (ū)x0,ρ|2 <∞.

Theorem 3 (Theorem 1.2, Chapter III.1 in [Gia83]). Let Ω be a Lipschitz domain
and 0 < α < 2. Then,

L2,α(Ω) ' C0,α
2 (Ω).

In particular the semi-norm [·]2,α of L2,α(Ω) is equivalent to [·]α
2
of C0,α

2 (Ω).

3 Hölder regularity for quasilinear elliptic equations
This part of the lecture is inspired by [Gia83, Chapter IV.1] and [Eva90, Chapter
3.D]

Lemma 4. Let An = (Aαβn (x)) be a family (indexed by n) of A(λ, L). Let vn = vn(x)
be a family of weak solutions in H1

loc(B(0, 1))∩L2(B(0, 1)), i.e. for all ϕ ∈ C∞c (Rd),ˆ
B(0,1)

An(x)∇vn · ∇ϕ = 0.

Assume that

(1) the matrix

Aαβn (x) converges almost everywhere to Aαβ(x) ∈ A(λ, L),

(2) the sequence
vn ⇀ v weakly in L2(B(0, 1)).

Then, v ∈ H1
loc(B(0, 1)) and for all 0 < ρ < 1,

vn → v strongly in L2(B(0, ρ)),

∇vn ⇀ ∇v weakly in L2(B(0, ρ)),

and for all ϕ ∈ C∞c (B(0, 1)), ˆ
B(0,1)

A(x)∇v · ∇ϕ = 0.
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Proof. Since the sequence vn is bounded uniformly in L2(B(0, 1)), it follows from
Caccioppoli’s inequality that for all 0 < ρ < 1, vn is bounded uniformly inH1(B(0, ρ)),
so that

vn → v strongly in L2(B(0, ρ)),

∇vn ⇀ ∇v weakly in L2(B(0, ρ)).

Now, let us prove that v is a weak solution. Let ϕ ∈ C∞c (B(0, 1)). We have,
ˆ
B(0,1)

An(x)∇vn · ∇ϕ−
ˆ
B(0,1)

A(x)∇v · ∇ϕ =

ˆ
B(0,1)

(An(x)− A(x))∇vn · ∇ϕ

+

ˆ
B(0,1)

A(x)∇(vn − v) · ∇ϕ.

The convergence to zero of the second term in the right hand side is easy to handle
thanks to the weak convergence of ∇vn. For the first term, we have
ˆ
B(0,1)

(An(x)− A(x))∇vn · ∇ϕ

≤ ‖∇ϕ‖L∞(B(0,1))

(ˆ
B(0,1)

|An(x)− A(x)|2
)1/2 (ˆ

Supp(ϕ)

|∇vn|2
)1/2

.

Now, ∇vn is bounded uniformly in n in L2(Supp(ϕ)) and the L2(B(0, 1)) norm of
An − A goes to zero by dominated convergence.

Denote by A(λ, L, ν) the class of matrices A ∈ A(λ, L) such that in addition A
is Hölder continuous with exponent ν and [A]ν ≤ L.

Theorem 5. Let A ∈ A(λ, L, ν). Let u ∈ H1
loc(Ω)loc be a weak solution to the

quasilinear elliptic equation 0.1, i.e. for all ϕ ∈ C∞c (Ω),
ˆ

Ω

A(x, u)∇u · ∇ϕ = 0.

Then, there exists an open set Ω0 ⊂ Ω such that u is Hölder continuous in Ω0,
u ∈ C0,µ(Ω0) for all 0 < µ < 1, and

|Ω \ Ω0| = 0.

Remark 2. Notice that the set Ω0 is independent of the exponent µ of the class of
Hölder functions. The set Ω0 only depends on d, λ and L.

In the following two lemmas, we state that if the excess function

−
ˆ
B(x0,R)

|u− (ū)x0,R|2dx

is sufficiently small for a given ball B(x0, R), then

−
ˆ
B(x0,ρ)

|u− (ū)x0,ρ|2dx

decays as a power of ρ. The proof is in two steps:
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(1) a first step based on the idea that if the excess function is small enough the
blow-up profiles are close to solving a linear equation with constant coefficients,
for which improved regularity is known,

(2) a second step which consists in iteration the estimate obtained in the first step
down to smaller scales.

Lemma 6 (Improvement). Let L > 0 and λ > 0 be fixed. There exists a constant
C > 0, for all 0 < θ < 1/2, there exists η0 > 0 and R0 > 0 such that for all
A ∈ A(λ, L, ν), A is continuous, for all weak solution u ∈ H1

loc(Ω) to the quasilinear
elliptic equation (0.1), for all x0 ∈ Ω, for all 0 < R < inf(R0, dist(x0, ∂Ω)), the
bound

−
ˆ
B(x0,R)

|u− (ū)x0,R|2dx < η2
0

implies

−
ˆ
B(x0,θR)

|u− (ū)x0,θR|2dx ≤ Cθ2−
ˆ
B(x0,R)

|u− (ū)x0,R|2dx.

The following lemma is an iteration of the estimate in the first lemma.

Lemma 7 (Iteration). Let L > 0 and λ > 0 be fixed. Then for all 0 < µ < 1, there
exists 0 < θ < 1/2 such that for all A ∈ A(λ, L, ν), A is continuous, for all weak
solution u ∈ H1

loc(Ω) to the quasilinear elliptic equation (0.1), for all x0 ∈ Ω, for all
0 < R < inf(R0, dist(x0, ∂Ω)), for all integer k ≥ 1, the bound

−
ˆ
B(x0,R)

|u− (ū)x0,R|2dx < η2
0

implies

−
ˆ
B(x0,θkR)

|u− (ū)x0,θkR|
2dx ≤ θ2kµ−

ˆ
B(x0,R)

|u− (ū)x0,R|2dx.

Proof of Lemma 6. The proof is by contradiction. Let C0 = C0(d, λ, L) be the
constant in Corollary 2. Assume now, by contradiction, that there exists 0 < θ <
1/2, there exist sequences

ηn → 0, xn ∈ Ω, 0 < Rn < dist(xn, ∂Ω), Rn → 0,

An = An(x, u) a family of A(λ, L, ν),

un ∈ H1(Ω) a family of weak solutions to −∇ · An(x, u)∇un = 0, x ∈ Ω,

so that
−
ˆ
B(xn,Rn)

|un − (un)xn,Rn|2dx = η2
n (3.1)

and

−
ˆ
B(xn,θRn)

|un − (un)xn,θRn|2dx > 2C0θ
2−
ˆ
B(xn,Rn)

|un − (un)xn,Rn|2dx. (3.2)

Let us rescale un: for z ∈ B(0, 1),

vn(z) :=
un(xn +Rnz)− (un)xn,Rn

ηn
.
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Then, vn ∈ H1(B(0, 1)),

−
ˆ
B(0,1)

vn = 0,

and by assumption (3.1),

−
ˆ
B(0,1)

|vn(z)|2dz = 1.

Moreover by (3.2),

−
ˆ
B(0,θ)

|vn(z)− (vn)0,θ|2dz > 2C0θ
2, (3.3)

and and for all ϕ ∈ C∞c (B(0, 1)),ˆ
B(0,1)

An (xn +Rnz, ηnvn(z) + (un)xn,Rn)∇vn∇ϕ = 0.

Now, the uniform L2(B(0, 1)) bound on vn implies that

ηnvn → 0 strongly in L2(B(0, 1)),

thus, up to a subsequence (still denoted the same),

ηnvn → 0 almost everywhere in B(0, 1).

Moreover, up to a subsequence (still denoted the same),

vn ⇀ v weakly in L2(B(0, 1)),

and
−
ˆ
B(0,1)

|v|2 ≤ −
ˆ
B(0,1)

|vn|2 = 1.

The sequence of matrices An (xn, (un)xn,Rn) is bounded by L, so that a subsequence
(still denoted the same) converges to a constant matrix B ∈ A(λ, L):

An (xn, (un)xn,Rn)
n→∞−→ B.

Now, the uniform equi-continuity of An implies

An (xn +Rnz, ηnvn(z) + (un)xn,Rn)
n→∞−→ B almost everywhere in B(0, 1).

One can therefore rely on Lemma 4 and conclude that the limit v is a weak solution
to a constant coefficient elliptic equation, i.e. for all ϕ ∈ C∞c (B(0, 1)),ˆ

Ω

B∇u · ∇ϕ = 0.

We have on the one hand by (1.3),

−
ˆ
B(0,θ)

|v − (v̄)0,θ|2 ≤ C0θ
2−
ˆ
B(0,1)

|v|2 ≤ C0θ
2,

and on the other hand passing to the limit in (3.3)

−
ˆ
B(0,θ)

|v − (v̄)0,θ|2 ≥ 2C0θ
2−
ˆ
B(0,1)

|v|2 = 2C0θ
2,

which is a contradiction. Hence the lemma with C = 2C0.
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Proof of Lemma 7. Let the C0 = C0(d, λ, L) be the constant in Corollary 2. Let
0 < µ < 1. We choose 0 < θ < 1/2 so that

2C0θ
2 = θ2µ.

This θ being fixed, we have η0 > 0 and R0 > 0 given by Lemma 6. The proof is by
iteration on the integer k. For k = 1, the estimate is exactly the one of Lemma 6. Let
k ≥ 1 be an integer and assume the lemma is true at rank k. Let A ∈ A(λ, L, ν), let
u ∈ H1

loc(Ω) be a weak solution to the quasilinear elliptic equation (0.1), let x0 ∈ Ω,
0 < R < inf(R0, dist(x0, ∂Ω)). Assume that

−
ˆ
B(x0,R)

|u− (ū)x0,R|2dx < η2
0.

Then, by iteration hypothesis

−
ˆ
B(x0,θkR)

|u− (ū)x0,θkR|
2dx ≤ θ2kµ−

ˆ
B(x0,R)

|u− (ū)x0,R|2dx. (3.4)

Consider the properly rescaled function

U(z) :=
u(x0 + θkz)− (ū)x0,θkR

θkµ
.

Then, estimate (3.4) implies

−
ˆ
B(0,R)

|U − (Ū)0,R|2dx ≤ −
ˆ
B(x0,R)

|u− (ū)x0,R|2dx < η2
0.

Therefore, we can apply Lemma 6 to U and get

1

θ2kµ
−
ˆ
B(x0,θk+1R)

|u− (ū)x0,θk+1R|2dx = −
ˆ
B(0,θR)

|U − (Ū)0,θR|2dx

≤ θ2µ−
ˆ
B(0,R)

|U − (Ū)0,R|2dx = θ2µ−
ˆ
B(x0,R)

|u− (ū)x0,R|2dx,

hence the lemma.

End of the Proof of Theorem 5. (1) First of all, for any 0 < 2ρ ≤ θR, there exists a
positive integer k such that

θk+1R < 2ρ ≤ θkR,

therefore it is easy to infer from Lemma 7 that

−
ˆ
B(x0,R)

|u− (ū)x0,R|2dx ≤ η2
0

implies via estimate (1.3) of Corollary (2)

−
ˆ
B(x0,ρ)

|u− (ū)x0,ρ|2dx ≤ C
( ρ
R

)2kµ

−
ˆ
B(x0,R)

|u− (ū)x0,R|2dx,

EDMI Bordeaux 2016 8



Weak and strong convergence for PDEs Lecture 6

with C = C(d, λ, L, θ).
(2) By dominated convergence, one can see that for any u ∈ L2

loc(Rd), for R > 0,
fixed,

−
ˆ
B(x,R)

∣∣∣∣u−−ˆ
B(x,R)

u

∣∣∣∣2 = −
ˆ
B(x,R)

|u|2 −
(
−
ˆ
B(x,R)

u

)1/2

,

is a continuous function of x ∈ Rd. Therefore, the set Ω0 ⊂ Ω such that

−
ˆ
B(x0,R)

∣∣∣∣u−−ˆ
B(x0,R)

u

∣∣∣∣2 < η2
0

for x ∈ Ω0, is open.
(3) By Lebesgue’s differentiation theorem, for almost every x0 ∈ Ω,

−
ˆ
B(x0,R)

∣∣∣∣u−−ˆ
B(x0,R)

u

∣∣∣∣2 R→0−→ 0.

Thus Ω \ Ω0 is of measure 0.

4 Improved Lipschitz regularity in homogenization
In this part of the lecture, we investigate the possibility of getting Hölder and Lip-
schitz estimates for

−∇ · A(x/ε)∇uε = 0, x ∈ B(0, 1),

uniform in ε. This is an other instance where the compactness method is effective,
though here the improvement of flatness does not come from zooming in to the small
scale, but rather from zooming out to the large scales, i.e. letting ε→ 0. The results
are based on the pioneering work by Avellaneda and Lin [AL87].

In addition to the ellipticity (0.3) and to the boundedness (0.4), we assume that

A = A(y) is Zd − periodic.

The class of such matrices is denoted by Aper(λ, L). We have seen (cf. Lecture
1 and Lecture 4 in particular) that under this assumption homogenization holds.
Homogenization is enough to get the following Hölder estimate down to the scale ε.

Proposition 8 (Hölder regularity). Let λ > 0 and L > 0 be fixed. For all 0 < µ < 1,
there exists a constant C > 0, such that for all A ∈ Aper(λ, L), for all families of
weak solutions uε ∈ H1(B(0, 1)) to

−∇ · A(x/ε)∇uε = 0, x ∈ B(0, 1),

the bound
−
ˆ
B(0,1)

|uε − (uε)0,1|2 ≤ 1,

implies for all 0 < ε < 1/2, ε < r < 1/2,

−
ˆ
B(0,r)

|uε − (uε)0,r|2 ≤ Cr2µ.
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Remark 3. This estimate can be read as a Hölder estimate for the large scales
ε < r < 1/2. On these scales, uε inherits the regularity of the limit equation with
constant (homogenized) coefficients. On the smaller scales, 0 < r ≤ ε, the regularity
is the classical regularity of the equation with non highly oscillating coefficients. For
scalar equations, A ∈ L∞ is enough for the classical Hölder regularity, with some
exponent 0 < µ < 1 to hold (De Giorgi, Nash, Moser estimate). For systems,
classical Hölder regularity holds for all 0 < µ < 1 as long as A ∈ C0,µ′ , with some
µ′ > 0.

Homogenization is enough for Proposition 8 to hold. In order to establish Lips-
chitz estimates, we will need the existence of bounded cell correctors χ. The proof
will be written for periodic structures, but everything carries over mutatis mutandis
to quasiperiodic structures with the diophantine condition.

Proposition 9 (Lipschitz regularity). Let λ > 0 and L > 0 be fixed. There exists a
constant C > 0, such that for all A ∈ Aper(λ, L), for all families of weak solutions
uε ∈ H1(B(0, 1)) to

−∇ · A(x/ε)∇uε = 0, x ∈ B(0, 1),

the bound
−
ˆ
B(0,1)

|uε − (uε)0,1|2 ≤ 1,

implies for all 0 < ε < 1/2, ε < r < 1/2,

−
ˆ
B(0,r)

|∇uε − (∇uε)0,r|2 ≤ C.

Lemma 10 (Improvement). Let L > 0 and λ > 0 be fixed. For all 0 < µ < 1,
there exists 0 < θ < 1/4, there exists ε0 > 0 such that for all A ∈ Aper(λ, L), for all
family of weak solutions uε ∈ H1(Ω) to

−∇ · A(x/ε)∇uε = 0, x ∈ B(0, 1),

the bound
−
ˆ
B(0,1)

|uε − (uε)0,1|2 ≤ 1,

implies for all 0 < ε < ε0,

−
ˆ
B(0,θ)

|uε − (uε)0,θ − (∇uε)0,θ · (x+ εχ(x/ε))|2 ≤ θ2+2µ.

Lemma 11 (Iteration). Let L > 0 and λ > 0 be fixed. Let also µ > 0, θ > 0
and ε0 > 0 be given by Lemma 10. For all A ∈ Aper(λ, L), for all family of weak
solutions uε ∈ H1(Ω) to

−∇ · A(x/ε)∇uε = 0, x ∈ B(0, 1),

the bound
−
ˆ
B(0,1)

|uε − (uε)0,1|2 ≤ 1,
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implies for all positive integer k, for all 0 < ε < θk−1ε0, there exists

aεk ∈ Rd, |aεk| ≤ C(1 + θ + . . . θk−1),

with C = C(d, λ, L, µ) such that

−
ˆ
B(0,θk)

|uε − (uε)0,θk − aεk · (x+ εχ(x/ε))|2 ≤ θ2k(1+µ).

Remark 4. The condition 0 < ε < θk−1ε0 gives a lower bound

ε

ε0

< θk−1

on the scales one can reach uniformly in ε.

Proof of Lemma 10. Let λ > 0, L > 0 and 0 < µ < 1 be fixed. Let B = (Bαβ) a
constant matrix belonging to A(λ, L). Let u ∈ H1(B(0, 1/2)) be a weak solution to

−∇ ·B∇u = 0, x ∈ B(0, 1/2).

such that

−
ˆ
B(0,1/2)

|u− (ū)0,1/2|2 ≤ C−
ˆ
B(0,1/2)

|∇u|2 ≤ C0−
ˆ
B(0,1)

|u− (ū)0,1|2 ≤ C0. (4.1)

Then, ∇u is also a weak solution. Therefore, estimate (1.3) of Corollary 2 implies
that

−
ˆ
B(0,θ)

|∇u− (∇u)0,θ|2 ≤ Cθ2−
ˆ
B(0,1/4)

|∇u− (∇u)0,1/4|2,

so that by Poincaré’s and Caccioppoli’s inequalities,

−
ˆ
B(0,θ)

|u− (u)0,θ − (∇u)0,θ · x|2 ≤ Cθ2−
ˆ
B(0,θ)

|∇u− (∇u)0,θ|2

≤ Cθ4−
ˆ
B(0,1/4)

|∇u− (∇u)0,1/4|2 = Cθ4−
ˆ
B(0,1/4)

|∇(u− (∇u)0,1/4 · x)|2

≤ C1θ
4−
ˆ
B(0,1/2)

|u− (ū)0,1/2|2 ≤ C0C1θ
4, (4.2)

where C0 = C0(d, λ, L) is the constant in (4.1) and C1 = C1(d, λ, L). We choose for
the rest of the proof 0 < θ < 1/4 such that

C0C1θ
4 < θ2+2µ.

The proof is by contradiction. Assume that there exists sequences

εn → 0, An ∈ Aper(λ, L) and uεnn ∈ H1(B(0, 1)),

weak solution to
−∇ · An(x/εn)∇uεnn = 0, x ∈ B(0, 1),
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such that
−
ˆ
B(0,1)

|uεnn − (uεnn )0,1|2 = 1,

and
−
ˆ
B(0,θ)

|uεnn − (uεnn )0,θ − (∇uεnn )0,θ · (x+ εnχn(x/εn))|2 > θ2+2µ. (4.3)

Without loss of generality, we can assume

(uεnn )0,1 = 0.

Then, up to a subsequence,

uεnn → u strongly in L2(B(0, 1/2)),

∇uεnn ⇀ ∇u weakly in L2(B(0, 1/2)),

and (ū)0,1. By the homogenization theorem, there exists a constant matrix B ∈
A(λ, L) such that

−∇ ·B∇u = 0, x ∈ B(0, 1/2).

Moreover,

−
ˆ
B(0,1/2)

|u− (ū)0,1/2|2 ≤ lim inf
n
−
ˆ
B(0,1/2)

|uεnn − (uεnn )0,1/2|2

≤ C0 lim inf
n
−
ˆ
B(0,1)

|uεnn − (uεnn )0,1|2 ≤ C0,

where C0 = C0(d, λ, L) is the constant in (4.1). Now, we can pass to the limit in
(4.3) and get

−
ˆ
B(0,θ)

|u− (ū)0,θ − (∇u)0,θ · x|2 > θ2+2µ,

which contradicts (4.2).

Proof of Lemma 11. The proof is by iteration on the integer k. The estimate for
k = 1 is exactly the one of Lemma 10. Let k ≥ 1. Let A ∈ Aper(λ, L), and
uε ∈ H1(Ω) such that

−∇ · A(x/ε)∇uε = 0, x ∈ B(0, 1),

and
−
ˆ
B(0,1)

|uε − (uε)0,1|2 ≤ 1.

Assume that for 0 < ε < θk−1ε0, there exists

aεk ∈ Rd, |aεk| ≤ C(1 + θ + . . . θk−1),

with C = C(d, λ, L, µ) such that

−
ˆ
B(0,θk)

|uε − (uε)0,θk − aεk · (x+ εχ(x/ε))|2 ≤ θ2k(1+µ). (4.4)
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Then, consider the rescaled function

U ε(z) :=
1

θ2k(1+µ)

{
uε(θkz)− (uε)0,θk − aεk · (θkz + εχ(θkz/ε))

}
.

We have

(U ε)0,1 = −
ˆ
B(0,θk)

{
uε(x)− (uε)0,θk − aεk · (x+ εχ(x/ε)

}
dx = 0,

and U ε ∈ H1(B(0, 1)) is a weak solution to

−∇ · A(θkx/ε)∇U ε = 0, x ∈ B(0, 1).

Moreover by (4.4),

−
ˆ
B(0,1)

|U ε(z)|2 ≤ 1.

Therefore, by Lemma 10, for ε/θk < ε0,

−
ˆ
B(0,θ)

|U ε − (U ε)0,θ − (∇U ε)0,θ · (x+ ε/θkχ(θkx/ε))|2 ≤ θ2+2µ.

After rescaling, this yields exactly the estimate at rank k + 1.
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