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Abstract

Cette thèse porte sur la thématique de la modélisation de la croissance tumorale. L’objectif

n’est pas d’étudier des nouveaux modèles mais plutôt de comprendre si on peut cali-

brer les modèles en telle sorte qu’ils arrivent à reproduire l’évolution de la pathologie

dans un patient spécifique. La nature des modèles considérés est phénoménologique car

une modélisation basée sur des principes premiers n’est pas faisable. Les modèles sont

paramétriques et les paramètres, ainsi que les conditions initiales et les conditions au

bords en général ne sont pas connu a priori. Comme ils doivent être déterminés et on

peut pas les mesurer, on cherche à les identifier en utilisant des problèmes inverses, dont

la source d’information est l’imagerie médicale.

Dans la première partie de ce travail on s’occupe de la numérique associée aux problèmes

inverses. Une technique classique de sensibilité est étudiée. Afin de reduire le coût compu-

tationnel une technique réduite est décrite, basée sur la Proper Orthogonal Decomposition.

Ces deux approches ont été validées par des cas test artificiels et ensuite appliquées à des

cas cliniques, étudiés en collaboration avec l’Institut Bergonié (un institut d’oncologie sur

Bordeaux).

Des nécessitées à niveau d’imagerie médicale ont fait en sorte qu’on s’intéresse au

transport optimale et ce problème fait l’objet de la deuxième partie de la thèse. En par-

ticulier on s’intéresse à la numérique du problème de Monge-Kantorovich L2. Une famille

des méthodes lagrangiennes est définie. Des applications et une perspective concernant

la reduction de modèle concluent cette partie.

Mots-clefs modélisation de la croissance tumorale, assimilation des données, problèmes

inverses, sensibilité, modèles réduits, analyse des composantes principales, transport op-

timal, problème de Monge-Kantorovich.



Abstract

This thesis deals with tumor growth modeling and it may be divided in two parts. The

objective is not to set up novel models but, instead, to understand if a general framework

may be set up to calibrate existing models to a specific ongoing pathology. The models

nature is phenomenological, since a first principle based modeling is not affordable. As

consequence, all the models are parametrical and parameters (as well as initial and bound-

ary conditions) are not known a priori. In order to simulate a specific tumor growth all

these unknown elements have to be found. They can not be measured directly, instead,

they are identified by means of inverse problems, the data coming from medical imagery.

In the first part of this work the numerics about inverse problems is investigated. A

sensitivity technique is studied first. In order to decrease its cost a reduced order approach

is devised based on Proper Orthogonal Decomposition. Both the approaches are validated

through artificial numerical tests and then applied to some realistic clinical cases, studied

in collaboration with Institut Bergonié, (oncology institute in Bordeaux).

When dealing with medical images several practical needs emerge concerning the pre-

processing of the images. This pushed us to be interested in Optimal Transport and an

independent study on this topic is presented in the second part of this work. The numerics

about the L2 Monge-Kantorovich problem is studied. A family of lagrangian methods is

proposed. Several applications and a perspective on model reduction conclude the work.

Keywords tumor growth modeling, data assimilation, inverse problems, sensitivity

techniques, reduced order modeling, proper ortogonal decomposition, optimal transport,

Monge-Kantorovich problem
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j’ai eu la chance de travailler aussi dans d’autres occasions.

Je remercie tout le groupe MC2 pour l’ambiance extraordinaire, qui m’a permis de

travailler dans les meilleures conditions. Merci à Michel, Clair, Lisl, Heloise, Thomas,
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1.1 Motivation

Le cancer a été étudié dans un cadre multidisciplinaire, ainsi que d’autres phénomènes bi-

ologiques, notamment la dynamique de l’ADN et des protéines ou l’évolution d’ écosystèmes.

Les majeurs contributions proviennent de la physique, de mathématiques et de l’informatique,

qui cherchent à établir un cadre théorique pour donner une description de ces phénomènes

complexes. Le terme in silico a été inventé pour définir les expériences numériques capables

de simuler le comportement des systèmes biologiques, et qui représentent une nouveauté

par rapport aux méthodes traditionnellement utilisées en biologie, les expériences in vitro

et in vivo.

Ce travail porte sur la modélisation de la croissance tumorale. En particulier l’objectif

n’est pas de mettre au point de nouveaux modèles mais, plutôt, d’étudier si et comment

il est possible de les utiliser dans des applications réalistes. On cherche un cadre général

tel que l’on peut appliquer à différents modèles qui décrivent des contextes variés comme

par exemple différents types de cancer.

Concrètement, le but est d’être capable d’utiliser une série d’images médicales afin

de comprendre et déduire les caractéristiques les plus importantes de la pathologie, du

point de vue quantitatif. Etant données les images prises au cours d’une série d’examens

d’un patient, on cherche à définir un instrument qui extrait les informations et donne une

prognose. La difficulté principale est d’être capable de travailler en n’utilisant que les

informations qui sont disponibles dans la pratique médicale courante.

En ce qui concerne la modélisation, un tel instrument permettrait de valider et de

comparer différents modèles en utilisant des données expérimentales (in vitro ainsi que

in vivo), permettant de comprendre lesquels arrivent à donner une meilleure description

des différentes pathologies ou aspects de la croissance tumorale. Le but est de décrire la

propagation in vivo, pour commencer à appliquer les modèles dans un contexte clinique.

Plusieurs perspectives ont motivé cette étude. Par exemple, un outil numérique pour-

rait être utilisé afin de définir un filtre fusionné avec les techniques d’imagerie médicale.

Améliorer les techniques d’imagerie permettrait de limiter les cas de faux positifs et faux

négatifs. Une autre application est le design (et la planification) des protocoles cliniques

et l’évaluation de l’efficacité du traitement. Par exemple, dans les cas où la tumeur

grossie très lentement, une prédiction de la croissance pourrait corroborer la décision

d’attendre sans commencer des traitements spécifiques ou, au contraire, aider dans la

décision d’utiliser un traitement par radiofréquence ou une thérapie moléculaire.

Une possible application serait aussi la simulation de l’effet placebo. Dans les tests

cliniques deux groupes des patients (auxquels le même cancer a été diagnostiqué) sont
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traités, un avec un médicament (chimiothérapie) et l’autre avec un placebo. Du moment

que plusieurs examens sont disponibles avant de commencer le traitement, le groupe

placebo peut être simulé numériquement (ce serait en quelque sorte un groupe de test

virtuel).

Pour ce qui concerne l’efficacité du traitement, on pourrait déterminer si le patient est

en train de réagir positivement au traitement ou si la tumeur a réussi à developper une

résistance au médicament et a commencé à envahir à nouveau les organes. Un modèle cal-

ibré sur l’évolution de la maladie avant le commencement du traitement pourrait simuler

comment la tumeur grossirait en l’absence de traitement. L’évolution de la maladie serait

donc comparée avec la simulation. Le contrôle de la thérapie n’est pas traité dans ce

travail et sera l’objet de travaux ulterieurs.

Des études statistiques et un cadre probabiliste sont utiles afin de comprendre s’il

y a des corrélations entre des caractéristiques distinctives de la pathologie et certains

paramètres physiologiques associés aux patients ainsi que pour étudier de façon quantita-

tive la fiabilité des outils numériques proposés. Cependant l’intérêt est d’être capable de

calibrer les modèles sur une évolution spécifique et pas de chercher des distributions ou

des valeurs moyennes des paramètres sur une population d’individus.

Dans ce travail, après avoir validé les méthodes par des expériences numériques sur

des données fictives, on commencera à tester les outils sur des cas réalistes. En collabora-

tion avec l’Institut Bergonié (Institut d’oncologie sur Bordeaux), différents cas cliniques

concernant l’évolution de métastases pulmonaires ont été étudiés. Ce type de métastases

représente un défi du point de vue de la diagnose car certains évoluent très rapidement

alors que d’autres ont un comportement quasi stationnaire. Pour ceux qui sont très agres-

sives un traitement doit être envisagé (par exemple par chimiothérapie), pour ceux qui ne

grossissent pas un contrôle, sans traitement spécifique, pourrait être suffisant.

Les cas d’évolutions lentes présentent un intérêt du point de vue de la techniques parce

que plus de données sont disponibles avant de commencer le traitement et a permettent

d’étudier le comportement de l’outil numérique sur une échelle temporelle plus longue.

1.2 Contribution de ce travail

Trois éléments sont nécessaires afin de définir un outil qui ait toute les caractéristiques

souhaitées, (i.e. qui permettrait de construire un modèle personnalisé):

• Un modèle de croissance tumorale,
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Figure 1.1: Schema conceptuel de problème inverse: deux images sont disponibles, aux

temps t=0 et t=1; l’évolution est décrite par un modèle qui doit être calibré de façon à

minimiser l’erreur de fitting.

• Un ensemble de données concernant un patient,

• Un problème inverse qui calibre le modèle.

Dans cette section les différents aspects et étapes de ce travail sont mentionnés et

décrits de façon synthétique. Une description détaillée sera faite dans les chapitres suiv-

ants.

Le premier point important est un modèle capable de décrire l’évolution des tissus et en

particulier les phénomènes associés à la croissance tumorale. Touts les modèles proposés

dans la littérature se basent sur des considérations d’ordre phénoménologique, car une

modélisation basée sur des principes premiers n’est pas faisable. Par conséquence, les

paramètres qui apparaissent dans tous ces modèles n’ont pas une signification biologique

ou physique bien précise et même s’ils l’avaient, on pourrait très rarement les mesurer de

façon non-invasive sur un patient spécifique.

Afin de calibrer le modèle en telle sorte que la pathologie du patient soit décrite au

mieux, les paramètres doivent être identifiés. Pour cela, on utilise les données qui sont

disponibles grâce à l’imagerie médicale et on identifie les paramètres en résolvant des

problèmes inverses. Un point très important qui s’impose lors que l’on veut résoudre des

problèmes inverses en partant des mesures réalistes est la définition du rapport entre ce

que l’on modélise et ce que l’on mesure. Ce rapport n’est pas facile à trouver pour des

systèmes décrits par des principes phénoménologiques.

Des stratégies variées ont été proposées dans la littérature afin d’analyser et de résoudre

des problèmes inverses ([92, 21]). Comme on ne cherchent pas à retrouver des distributions

statistiques on ce place dans un cadre déterministe. Des considérations probabilistes

deviennent nécessaires lors que l’on souhaite analyser la fiabilité des instruments proposés.
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On décrit en détail le contexte mathématique pour le fitting d’un ensemble des données,

la dynamique du système étant décrite par un système d’équation sous la forme:

Ẋ = f(X, Y, πj), j = 0, ..., Np, (1.1)

Ẏ = g(X, Y, πj), j = 0, ..., Np, (1.2)

où X est la variable d’état et πj le j-ème paramètre. Y est le vecteur des quantités

mesurées (on l’appellera l’observable dans la suite). L’observable ne cöıncide pas en

général avec la variable d’état, et sa dynamique est déterminée par une fonction non-

linéaire de l’observable elle-même, de la variable d’état et des paramètres. Une telle

équation décrit l’évolution de ce qui est mesuré. Afin de fermer le système les condi-

tions initiales et les conditions aux bords, si nécessaires, doivent être fixées. Certaines

paramètres et aussi certaines conditions initiales (ou aux bords) ne sont pas connus a

priori. On doit les identifier en telle sorte que le système reproduit au mieux un ensemble

des données (c’est-à-dire un ensemble des mesures).

On note avec Im le valeur des champs qui sont expérimentalement mesurés. On définit

une erreur qui quantifie la qualité du fitting:

E2 =

∫

Ω×[0,T ]

‖Im − Y ‖2 dx dt, (1.3)

ce qui est la nome L2 de la différence en espace et en temps entre l’observable mesuré et

simulé. Dans le cas de la croissance tumorale, les mesures disponibles sont discrètes en

temps, et donc l’intégrale en temps se réduit à une somme, comme dans le cas montré à

titre d’exemple en Fig.1.1.

L’objectif est de minimiser l’erreur par rapport au set de control choisi, c’est-à-dire

l’ensemble des paramètres qui apparaissent dans le modèle et les conditions (initiales ou

aux bords) inconnues. Cette minimisation peut être envisagée de plusieurs manières :

la première, utilisée dans [89] consiste à utiliser l’opérateur adjoint. Cette technique a

l’avantage de calculer la direction de descente pour l’erreur en utilisant seulement la simu-

lation directe et celle du système adjoint. Cette méthode peut s’écrire avec le formalisme

des multiplicateurs de Lagrange:

c = arg min
c̃

{
∫

Ω

∫ T

0

(Im − Y )2 − λ(Ẏ − g(X)) − µ(Ẋ − f(X, c̃)) dx dt

}

, (1.4)

où c est le contrôle, λ, µ les multiplicateurs de Lagrange. Les équations d’Euler-Lagrange

associées à cette fonctionnelle nous permettent de dériver le système adjoint pour les
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variables λ, µ et la direction de descente. A ce stade tous les algorithmes de descente

peuvent être appliqués.

Même si c’est plus couteux du point de vue des calculs, une approche du type sensibilité

(voir [138] pour les détails) est simple à mettre en place et facile à paralléliser. Ces sont

les raisons qui nous ont poussé à préférer cette approche pour ce travail.

On calcule le gradient de la fonctionnelle qui décrit l’erreur Eq.2.3 par rapport à un

élément générique du set de contrôle cj :

∂E
∂cj

=

∫

Ω

∫ T

0

2(Im − Y )
∂Y

∂cj
dx dt, (1.5)

où la quantité Zj := ∂Y
∂cj

est la sensibilité de Y par rapport au j−ème élément de l’ensemble

de contrôle. La direction de descente est proportionnelle au produit scalaire L2 entre

l’erreur et la sensibilité. Les équations pour la variable Zj sont écrites en utilisant la règle

de dérivation des fonctions composées:

∂

∂cj
Ẏ =

∂

∂cj
g(Y, X; c) ⇒ Żj =

∂g

∂Y
Zj +

∂g

∂X

∂X

∂cj
+

∂g

∂c

∂c

∂cj
, (1.6)

Zj(0) =
∂Y (0)

∂cj
. (1.7)

Dans l’équation pour Zj , qui est la seule variable d’intérêt afin de calculer la direction

de descente, aussi Wj := ∂X
∂cj

apparâıt et doit être calculé. Son équation et les conditions

initiales associées sont trouvées avec la même procédure appliquée aux équations qui

décrivent l’évolution de l’état du système:

Ẇj =
∂f

∂X
Wj +

∂f

∂cj
, (1.8)

Wj(0) =
∂X(0)

∂cj
. (1.9)

Le système peut s’écrire proprement comme suit:

Żj =
∂g

∂Y
Zj +

∂g

∂X
Wj +

∂g

∂cj
. (1.10)

Cette équation montre que, dans une approche de sensibilité, afin de calculer la direction

de descente il est nécessaire de calculer Nc + 1 simulations directes, où Nc est le nombre

d’éléments dans l’ensemble de contrôle. Si on calcule la solution du système adjoint on
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peut calculer la matrice Hessienne de la fonctionnelle et utiliser un algorithme du type

Newton, dont la convergence est plus rapide que celle des méthodes du type gradient.

L’algorithme du gradient s’écrit de la manière suivante:

cn+1
j = cn

j − β

(

No
∑

i

∫

Ω

(Imi(x) − Y (x; ti))(−Zj(x; ti)) dx

)

, (1.11)

où No est le nombre des mesures disponible et β est le pas, qui est un paramètre libre et

doit être fixé pour chaque cas. Si on écris cette équation de manière plus compacte on

trouve:

cn+1
j = cn

j + β

(

No
∑

i

< E(x, ti), Zj(x; ti) >Ω dx

)

. (1.12)

L’inconvénient le plus important de toutes les méthodes basées sur l’optimisation est le

coût computationel. Pour cette raison une technique d’ordre réduit a été mise à point,

en cherchant à préserver un certain pouvoir de prédiction. En particulier, dans ce travail,

la Proper Orthogonal Decomposition (POD, voir [147]) a été appliquée aux modèles de

croissance tumorale.

Cette technique utilise un ensemble des solutions du système d’EDP en variant les

éléments de l’ensemble de contrôle, afin de décrire les solutions elles-même comme éléments

d’un espace de dimension finie et si possible, petite. L’avantage d’une telle représentation

n’est pas seulement lié à la réduction du nombre d’inconnues au niveau discret mais aussi

à un effet de régularisation.

Un point critique des toutes méthodes d’optimisation est leur initialisation. En général

du moment que plusieurs minima locaux peut exister différents initialisations ont été faites

dans certains intervalles de l’ensemble de contrôle. Pour déterminer les intervalles des

simulations directes ont été faites en sorte d’identifier les bornes supérieures et inférieures,

correspondantes à des croissances en volume raisonnables.

Nous Décrivons maintenant comment l’état X et l’observable Y sont modélisés. Les

modèles de croissance tumorale d’intérêt dansle cas présent sont des systèmes paramétriques

d’EDP construits à partir de trois hypothèses principales : un ensemble d’équations décrit

la dynamique des populations cellulaires, des équations prennent en compte la mécanique

du tissu et d’autres décrivent la manière dont l’énergie est fournie aux cellules, i.e. les

nutriments.

Le modèle étudié est diphasique pour ce qui concerne la composition de la tumeur : la

densité P représente le nombre des cellules tumorales actives par unité de volume, Q celle

des cellules nécrosées. Le tissu sain est une phase distincte, notée par S. Les équations
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décrivant la dynamique des populations cellulaires sont:

∂P

∂t
+ ∇ · (vP ) = (2γ − 1)P, (1.13)

∂Q

∂t
+ ∇ · (vQ) = (1 − γ)P, (1.14)

∂S

∂t
+ ∇ · (vS) = 0. (1.15)

oú la vitesse v décrit la déformation du tissu et γ (appelée seuil d’hypoxie) est une fonction

scalaire de la concentration des nutriments et sera définie plus précisément dans la suite.

S’il y a assez de nutriment γ = 1 et la tumeur prolifère, autrement elle meure. Le tissu

sain évolue selon une équation de conservation.

En assumant que P + Q + S = 1 en chaque point du domaine on peut dériver une

équation pour la divergence de la vitesse. Couplée avec une loi de Darcy, elle permet de

décrire complètement la mécanique du système:

∇ · v = γP, (1.16)

v = −k(P, Q)∇Π. (1.17)

La fonction scalaire Π joue le rôle d’une pression (ou d’un potentiel) et k est la perméabilité,

qui satisfait:

k = k1 + (k2 − k1)(P + Q), (1.18)

où k1 est la constante de perméabilité du tissu sain et k2 celle du tissu tumorale. L’équation

qui décrit les nutriment a la forme suivante:

−∇ · (D(P, Q)∇C) = −αPC − λC, (1.19)

où α est le taux de consommation d’oxygène (le seul nutriment considéré) des cellules

proliférantes, λ est la consommation du tissu sain, D(P, Q) la diffusivité. Les conditions

aux bords et les sources sont déterminées en cherchant à prendre en compte la nature de

l’organe. La diffusivité peut s’écrire:

D = Dmax − K(P + Q). (1.20)

Le lien entre la concentration des nutriments et la dynamique des populations est fourni

par :

γ =
1 + tanh(R(C − Chyp))

2
, (1.21)
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(a) (b)

où R est un coefficient et Chyp est le seuil d’hypoxie.

Pour ce simple modèle X = P, Q, C, Π. L’observable Y = P + Q a été choisi après

une discussion avec les médecins sur ce qui est mesuré par des CT scans dans le cas des

métastases pulmonaires. Sa signification est simple : avec les rayons X on ne peut pas

distinguer différents phénotypes à l’intérieur de la tumeur, mais uniquement la masse

tumorale par rapport au tissu sain. L’ensemble de contrôle est constitué par tous les

paramètres scalaires et les conditions initiales pour la variable P.

Les conditions aux bords pour l’oxygène et la pression, ainsi que les sources seront

précisées proprement pour chaque cas analysé.

1.3 Résultats d’applications cliniques

Quelques résultats obtenus dans des cas réalistes sont présentés comme exemple d’application

potentielle de l’outil numérique dévélopé.

In Fig. 1.2 quatre scans qui couvrent une période de 45 mois sont montrés, concernants

des métastases pulmonaires. Ce patient a plusieurs métastases, mais seulement celle qui

est encerclée dans la Fig.2.2.a) a été étudiée. Il s’agit d’une métastase qui évolue de façon

quasi-statique et qui nécessite seulement d’être mis sous monitorage.

Les résultats obtenus par la technique de sensibilité sont présentés dans le cas où

seulement deux scans sont utilisés comme ensemble de données pour résoudre le problème

inverse et trouver l’ensemble de contrôle. La simulation directe a été faite et le résultat

comparé aux examens suivants. En Fig.1.3 le volume des scans est comparé aux simu-

lations directes. La ligne continue est la surface de la tumeur simulée, les cercles noirs

sont les scans utilisés dans le processus d’identification et les carrés rouges les scans qu’on
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(c) (d)

Figure 1.2: Scans: a) Novembre 2005, b) Octobre 2007, c) Juillet 2008, d) Avril 2009
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Figure 1.3: Surface de la tumeur un fonction du temps: la ligne continue représente la

simulation, les cercles noirs les données, les carrés rouges les prédictions.
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(a) (b)

Figure 1.4: a) Quatrième image b) Simulation

souhaite prévoir.

Le résultat est très prometteur et représente en quelque sorte la meilleure prédiction

qu’on espère obtenir par l’outil défini dans notre travail. En Fig.1.4 le quatrième scan est

comparé à l’image correspondante (simulée) : l’accord est plutôt satisfaisant.

Les premiers travaux qui ont commencé à envisager des applications réalistes étaient

basés sur des modèles du type EDO. Les résultats obtenus par des modèles EDP montrent

un possible avantage de ces modèles par rapport aux modèles EDO, qui sont plus simples

et moins couteux mais qui ne peuvent pas utiliser toute l’information disponible et qui

donnent une description forcement moins riche du phénomène.

Quand on traite des applications réalistes, des problèmes diverses d’ordre pratique

doivent être résolus afin de traiter les images et de les adapter à la définition d’un problème

inverse. La première opération est la segmentation. La tumeur doit être séparée du reste

de l’organe. Cette tâche devient extrêmement critique lorsqu’on ne peut pas définir les

bords de la tumeur, comme par exemple dans toutes les pathologies caractérisées par des

phénotypes diffus.

Les organes sont souvent très déformables ce qui signifie que des facteurs externes

influencent ce qui est observé sur les images. Dans ce travail tous ces problèmes d’imagerie

ont été traités de manière standard mais ils ont fait en sorte qu’on s’intéresse aux processus

de récalage non-rigide pour les tissus biologiques.

Les aspects numériques de l’intégration du problème de Monge-Kantorovich L2 ont

été étudiés afin de comprendre s’il pouvait être utilisé en tant que outil géométrique pour

les problèmes inverses. Le problème de transport optimal consiste à trouver le mapping

dont l’énergie est minimale tel qu’une densité de départ est transportée en une densité
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(a) (b)

Figure 1.5: Distribution de densité au temps a) T=0, b) T=1.

d’arrivée, les deux étant données. Les équations qui gouvernent ce transport sont définies

par un principe variationnel:

X(ξ) = arg min
X̃

{
∫

Ω0

ρ0(ξ)|X̃(ξ) − ξ|pdξ

}

, (1.22)

avec la contrainte:

ρ0(ξ) = ρT (X(ξ)) det(∇ξX), (1.23)

où X est le mapping inconnu, ρ0 et ρT les densités initiale et finale. Un résultat 3D

est montré, qui représente le mapping d’un cube de densité, uniforme, dans la densité

normalisée qui correspond à l’IRM d’une tête humaine. La complexité de la géométrie est

bien reconstruite.

1.4 Structure de la thèse

Cette thèse peut être divisée en deux parties, qui sont relativement indépendantes l’une

de l’autre. Dans la première on décrit l’étude concernant les problèmes inverses, dans la

seconde les aspects numériques du transport optimal L2.

Modèles de croissance tumorale et applications. Dans ce chapitre on présente

l’état de l’art de la modélisation de la croissance tumorale dans le but de définir le con-

texte dans lequel ce travail a été développé. En particulier on pose l’accent sur la nature

phénoménologique de la modélisation de la croissance tumorale. Dans une perspective
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(a) (b)

Figure 1.6: Coupes de la densité finale: a) plan XZ b) Z planes.

historique on commence par décrire les modèle EDO, qui ont été les premiers à être

développés. Les principes généraux de ce type de modélisation sont montrés, suivis par

des exemples. La croissance tumorale est fortement influencée par les propriétés spa-

tiales des tissus : une description basée uniquement sur des proprietés intégrales n’est

pas satisfaisante dans la plupart des cas. C’est pourquoi des modèles qui prennent en

compte l’évolution spatio-temporelle ont été proposés. On peut les diviser du point de

vue conceptuel en deux catégories : les modèles discrèts et continus. Leurs caractéristiques

principales ainsi que les avantages et les défauts sont décrit, en donnant les motivations

du choix des modèles continus pour ce travail. Ce survol des modèles est complété par une

brève description des modèles hybrides, qui cherchent à combiner les avantages des deux et

qui représentent un domain actif de recherche en modélisation de la croissance tumorale.

Dans la deuxième partie de ce chapitre on décrit les travaux concernants des applications

réalistes. Les premières ont été proposées en utilisant les modèles EDO. Des perspectives

diverses sont commentées. Dans la littérature on trouve très peu de travaux concernants

l’application des modèles spatiaux à la réalité clinique. Ces travaux seront commentés

plus en détail (en particulier ceux qui se proposent d’utiliser l’imagerie médicale comme

source d’information).

Modèles adoptés et stratégie computationnelle. Dans ce chapitre on donne une

description des modèles qu’on a utilisé dans ce travail. Le modèle de référence est un

modèle à deux espèces du type Darcy. Il consiste en un système d’EDPs paramétriques qui

est déterminé à partir de modèles plus complexes qui ont été proposé dans la littérature.
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Ensuite, on présente une version régularisée qui cherche à améliorer le conditionnement

lorsque l’on souhaite résoudre des problèmes inverses. Un autre modèle proposé dans la

littérature est étudié, qui représente une simplification du modèle de Darcy adopté. Après

avoir décrit les modèles on introduit les méthodes d’intégration qui ont été utilisées.

On commente une analyse préliminaire des simulations directes et des résultats qu’on

obtient en variant les éléments de l’ensemble de contrôle. Le chapitre se termine avec

une description très synthétique des opérations de pre-processing qui sont nécessaires afin

d’utiliser les images médicales comme données (segmentation et récalage).

Technique de sensibilité. Dans ce chapitre on décrit plus en détail les résultats con-

cernants une approche de sensibilité. D’abord on analyse des problèmes inverses lorsque

les modèles sont du type EDO et la technique est une sensibilité exacte. Un modèle qui

est une version 0-D du modèle de Darcy est proposé et testé. Les aspects les plus critiques

des modèles EDO sont soulignés et illustrés par des exemples. On commente les résultats

obtenus en utilisant des modèles EDP, en variant les éléments de l’ensemble de contrôle

ainsi que le modèle utilisé. Après avoir validé les outils numériques par des expériences

abstraites on les teste sur des cas réalistes concernants l’évolution des métastases dans les

poumons. La condition initiale pour la distribution des cellules proliférantes modélise une

structure en couches (un hypothèse bien acceptée en biologie). On conclue ce chapitre

par une comparaison entre les performances des modèles EDO et EDP.

Approche Réduite. La réduction du coût des calculs est une nécessité dans ce genre

de problème. Une approche basée sur le résidu de l’équation à différents instants est

décrite. Des tests préliminaires montrent que le problème peut être sous-déterminé et que

une régularisation doit être adoptée. La solution est de chercher dans un espace engendré

par une base construite par la technique de Proper Orthogonal Decomposition (POD).

Cette approche a été validée par des cas tests. Ensuite des cas réalistes sont étudiés et

les avantages et les défaut de cette technique sont commentés en détail.

Transport Optimal La seconde partie de ce travail est dédiée au problème du transport

optimale et en particulier à la numérique du problème de Monge-Kantorovich L2. Une

introduction décrit synthétiquement les contributions majeures sur le plan théorique, en

soulignant en particulier les propriétés utiles lors que l’on cherche à approcher la solution

de ce problème. Ensuite, les techniques numériques proposées dans la littérature sont

commentées. En utilisant les propriétés des équations de Hamilton-Jacobi associées à
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une formulation Eulerienne de ce problème une famille de méthodes lagrangiennes est

dérivée. On propose une méthode particulaire pour intégrer les équations. Une étape de

validation a été mis en place avec des cas test, dans lesquels on montre que l’algorithme

proposé est robuste dans une série de phénomènes critiques, tels que la fragmentation et la

coalescence. On commente quelques résultats concernant l’application de cette technique

au recalage non-rigide des images de tissus biologiques (en 2D et 3D). Les test montrent

qu’il y a une super-linéarité dans le coût de l’algorithme, liée à la nature du problème de

transport. Une accélération multi-niveau est proposée pour limiter ces effets. Le chapitre

se termine par une perspective concernant l’utilisation de la distance de Wasserstein pour

la réduction de modèle. L’objectif est d’utiliser le fait que la distance de Wasserstein

est définie naturellement par un transport. Cette caractéristique pourrait résoudre les

problèmes de la POD et des techniques d’analyse en composantes principales en présence

d’advection des structures cohérentes concentrées.
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2.1 Motivation

Recently, cancer has been studied in a multidisciplinary framework, as well as a broad vari-

ety of other biological phenomena, ranging from DNA and protein dynamics to biosystems

and ecology. The main contributions coming from physics, mathematics and computer

science try to set up theoretical frameworks to describe such complex phenomena. The

term in silico has been created to define numerical experiments that are able to emulate

biological systems behaviors, in contrast to in vitro or in vivo experiments, which are the

traditional tools in biological research.

The present work deals with tumor growth modeling. In particular, the goal is not

to set up novel models but, instead, to investigate if and whether it is possible to utilize

them in realistic applications. A general framework is sought, such that it can be applied

to different models and to all possible contexts, i.e. to different kind of cancers, attacking

all sort of tissues.

Concretely, the objective is to be able to exploit a set of medical images in order to infer

the main features of an undergoing pathology from a quantitative point of view. Roughly

speaking, given the images taken during the first two medical exams of a patient, a tool is

sought that it can extract useful informations and give an approximated prognosis. One

of the main challenges is to be able to work with the informations that are available in

the current clinical practice, without requiring additional medical exams.

For what concerns theoretical and modeling issues, such a tool would allow to validate

and compare models with respect to experimental data sets (coming from both in vivo

or in vitro systems), thus permitting to understand which models perform better in de-

scribing different pathologies or aspects of the growth. The interest is, of coarse, to better

describe in vivo tumor propagations. Indeed, this allow to investigate the applications of

mathematical modeling to realistic clinical practice.

Several needs and perspectives motivate this study. For instance, a numerical tool

may be set up and fused with the present medical imaging techniques to act as a filter.

Improving the diagnosis stage would allow to decrease the number of false positive and

false negative cases. Furthermore, such a numerical tool would be helpful in designing

clinical protocols, since it might suggest when a novel medical exam would be helpful to

monitor the critical stages of the progression.

For the oncologists the development of predictive tools could be of interest in the

planning and in the evaluation of an anti-tumoral treatment. For example with slowly

evolving tumors, a prediction of growth could reinforce the decision of waiting without

specific treatment or on the contrary to help in the decision of starting radiofrequency
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thermal ablation or molecular targeted therapy.

A possible outcome of this tool would be the placebo effect simulation. In clinical

tests two sets of patients (to whom the same cancer has been diagnosed) are treated, one

with a chemotherapic and the other with a placebo. Since several images are available

before the treatment starts, the placebo may be numerically simulated (a sort of in silico

test group).

Yet another possible application concerns the treatment efficacy evaluation. For in-

stance, informations might be provided on whether a patient is positively reacting to the

treatment or if tumor has managed to become resistant to the therapy and it is start-

ing spreading again. Indeed, a model calibrated on the evolution of the disease before

the beginning of the therapy may simulate how the tumor would grow in absence of any

treatment. Then, the simulated evolution might be compared to the observed one. Ther-

apy control is not treated in this work and it is one of the perspectives of the proposed

framework.

Statistical studies and some probability are useful and fundamental to understand if

there are correlations between some distinctive feature of the pathology and some phys-

iological parameters of the patients and to study the reliability of the numerical tools

proposed. However, for all these applications becoming possible, as said, the interest is to

be able to calibrate models onto a specific patient pathology, not to find some statistical

results or probability distributions describing the mean evolution of the disease over a

population of individuals.

For the present work, after having validated the proposed methods by means of nu-

merical testcases, we started applying them to clinical cases. Lung metastases have been

studied as a first realistic application. In collaboration with oncologists from Institut

Bergonié (the cancerology institute of Bordeaux) several realistic cases have been studied

and discussed. These metastases are secondary tumors that detached from a primary tu-

mor (growing in some other organ) and attack the lungs. They are a therapeutic challenge

because some are fast evolving and are good candidates for trials with molecular targeted

therapies, but other are slowly evolving and it is difficult to decide when to treat them.

Several scans may hence be available for a slowly evolving nodule and this occurrence

is important in our case since it allows a validation of the assimilation technique on a long

time horizon.
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2.2 Overview of the present contribution

Three main elements are necessary in order to set up a tool fulfilling the requirements

described in the previous section, i.e. a patient based prognostic model:

• A model describing tumor growth;

• A set of data concerning a patient pathology;

• An inverse problem in order to calibrate the model on the specific case.

In this section the different aspects and stages of the work are mentioned and described

in a synthetic way. A detailed description is postponed to the following chapters.

The first building block is a model describing the evolution of the tissues and in

particular tumor invasion. For all the models studied in the literature, a classical first

principles based modeling is not affordable, thus obliging to adopt some phenomenological

assumptions in order to target specific portions of the evolution. Hence, the parameters

appearing in all these models arise from the lack of modeling of some of the scales involved

in the natural evolution and therefore they do not have a precise physical meaning or, if

they have it, they could hardly be measured on a specific patient.

In order to calibrate the model in such a way that the patient pathology is reproduced

as good as possible, the model parameters have to be found. To this end, data coming

from medical imagery are used to recover the parameters value by means of an inverse

problem. A key point arising in inverse problems driven from realistic measurements

consists in defining the relationship between modeled and measured quantities. This is

far from being obvious for systems described by means of phenomenological equations.

Different frameworks were proposed in the literature to analyze and to solve inverse

problems (see [92, 21]). Since we are not interested in recovering statistical distributions

of the parameters, a deterministic approach is chosen for the present work. As already

stated, further investigation of probability distributions of parameters are useful to study

the reliability of the tool.

Let us describe in detail the context for a case in which a fitting of data is sought,

the dynamics being determined by a system of equations. In Fig.2.1 all the elements of

inverse problems which are of interest for this work are represented. In all the treated

problems the state variables of the system (i.e. all the variables which are needed and

sufficient to describe uniquely its configuration) are described by governing laws of the

form:

Ẋ = f(X, Y, πj), j = 0, ..., Np, (2.1)
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Figure 2.1: Conceptual scheme of an inverse problem: two images are available at t = 0

and t = 1, evolution is described by a model which has to be calibrated in sort that the

fitting error is low.

Ẏ = g(X, Y, πj), j = 0, ..., Np, (2.2)

where X is the state, and πj is the j−th parameter. Y is the vector of measured quantities

(it will be called observable in the following). The observable does not coincide in general

with the state of the system and its dynamics depends on a non-linear function of the

observable itself, of the state and of parameters. Such an equation describes the evolution

of what is measured. In order to close the system, initial and boundary conditions (if there

are PDEs that require them) have to be imposed. Some parameters and possibly some

of the initial or boundary conditions are not known a priori. They need to be identified

in such a way that the system fits at best a given set of data, that is, a collection of

measurements.

Let us denote by Im the value of the fields that are experimentally measured.

An error is defined, which quantifies how the model fits the data:

E2 =

∫

Ω×[0,T ]

‖Im − Y ‖2 dx dt, (2.3)

which is the L2 norm of the difference in space and time of the measured and the simulated

observable. In the case of tumor growth a set of measurements is available, which is

discrete in time, so that the integral in time reduces to a finite sum, as depicted in

Fig.2.1, where only two images are taken.

The goal is to minimize the error with respect to a control set, that is, the parameters

appearing in the model and the unknown initial and boundary conditions.

The minimization can be carried out in different ways: the first one, as used in [89],

consists in using an adjoint technique. This has the advantage of computing the descent

direction for the error by requiring only the simulation of the adjoint system. The system
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can be written in a Lagrange multiplier formulation as follows:

c = arg min
c̃

{
∫

Ω

∫ T

0

(Im − Y )2 − λ(Ẏ − g(X)) − µ(Ẋ − f(X, c̃)) dx dt

}

, (2.4)

where c is the control, λ, µ the lagrangian multipliers. Euler-Lagrange equations associ-

ated to this functional allow to derive the adjoint system in λ, µ and the descent direction.

Any descent algorithm can be applied to find the minimizer.

Even if it is more expensive from a computational standpoint, a sensitivity approach

(see [138] for details) is simple to set up and easy to parallelize. These are the main

reasons why in this work a sensitivity approach is chosen and studied.

Let us compute the gradient of the error functional Eq.2.3, with respect to the generic

element cj of the control set:

∂E
∂cj

=

∫

Ω

∫ T

0

2(Im − Y )
∂Y

∂cj
dx dt, (2.5)

where the quantity Zj := ∂Y
∂cj

is the sensitivity of Y with respect to the j − th element of

the control set. The descent direction is proportional to the L2 scalar product between

the error and the sensitivity. The equations for Zj are written by applying the chain rule:

∂

∂cj
Ẏ =

∂

∂cj
g(Y, X; c) ⇒ Żj =

∂g

∂Y
Zj +

∂g

∂X

∂X

∂cj
+

∂g

∂c

∂c

∂cj
, (2.6)

Zj(0) =
∂Y (0)

∂cj
. (2.7)

In the equation for Zj , which is the only variable of interest to compute the descent

direction, also Wj := ∂X
∂cj

appears and has to be computed. Its equation, including initial

conditions, is found exactly by the same procedure, leading to:

Ẇj =
∂f

∂X
Wj +

∂f

∂cj
, (2.8)

Wj(0) =
∂X(0)

∂cj
. (2.9)

Recasting properly the system, the following expression is obtained for the Zj sensitivity:

Żj =
∂g

∂Y
Zj +

∂g

∂X
Wj +

∂g

∂cj
. (2.10)

This highlights the fact that, in a sensitivity approach, in order to compute the descent

direction, Nc+1 simulations are needed, where Nc is the number of elements in the control
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set. If an adjoint computation is added, the Hessian matrix for the error functional could

be computed, allowing to perform a Newton-type algorithm, whose convergence is faster

than normal gradient based methods.

A gradient descent algorithm for the error minimization reads:

cn+1
j = cn

j − β

(

No
∑

i

∫

Ω

(Imi(x) − Y (x; ti))(−Zj(x; ti)) dx

)

, (2.11)

where No is the number of available volume measures and β is the step, which is a free

parameter and has to be fixed for each case. Recasting it in a more compact form, the

following update is obtained for the control set:

cn+1
j = cn

j + β

(

No
∑

i

< E(x, ti), Zj(x; ti) >Ω dx

)

. (2.12)

The main drawback of all the methods based on an optimization framework for PDEs

systems is the computational cost. That is why some reduced order technique has been

investigated in order to decrease it as much as possible, with the hope that the predic-

tion capability is not too much corrupted. In particular, in the present work, Proper

Orthogonal Decomposition (see [147] for details) was applied to tumor growth models.

This technique uses a set of solutions of the system of PDEs, varying the elements of

the control set, in order to describe the solutions themselves as elements of a space of

finite small dimension. The advantage of such a representation is not merely linked to the

reduction of the number of unknowns at discrete level but also to a regularization effect.

One critical point of all the optimization methods is their initialization. In general,

since local minima may arise, several initializations are done in a certain range of the

control set. To determine this, direct simulations are used in such a way that the upper

boundary of the control set corresponds to a set of parameters such that the simulated

tumor increase its volume of a reasonable factor in a given time interval.

Let us briefly introduce how the state X and the observable Y are modeled in the

present case. Tumor models which are of interests for our purposes are systems of para-

metric partial differential equations in which three main modeling hypothesis appear: a

set of equations describing the tissue composition (i.e. healthy tissue, tumor mass etc.),

a set of equation describing the mechanical evolution of the phases and then nutrients

equations, accounting for the energy supply necessary for the cellular activities.

Concerning the model used for the present work, the tumoral tissue is composed by two

different phases (called phenotypes in the following), denoted by P and Q. The density
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P represents the number of dividing cells per unit volume, Q is that of the necrotic cells.

The healthy tissue is the phase denoted by S. Equations for P , Q and S reads:

∂P

∂t
+ ∇ · (vP ) = (2γ − 1)P, (2.13)

∂Q

∂t
+ ∇ · (vQ) = (1 − γ)P, (2.14)

∂S

∂t
+ ∇ · (vS) = 0. (2.15)

where the velocity v renders in some sort the tissue deformation and γ (called the hypoxia

threshold) is a scalar function of the nutrient concentration that is more precisely defined

later on. If enough nutrients are available then γ = 1 and the tumor cells proliferate,

otherwise they die. The healthy tissue evolves through a pure conservation equation.

Assuming that P + Q + S = 1 in every point of the domain, a condition for the

divergence of the velocity field is derived that, coupled with a Darcy law allows to describe

the mechanics of the system:

∇ · v = γP, (2.16)

v = −k(P, Q)∇Π. (2.17)

The scalar function Π plays the role of a pressure (or of the potential), and k is a perme-

ability field, satisfying:

k = k1 + (k2 − k1)(P + Q), (2.18)

where k1 represents the constant porosity of the healthy tissue and k2 is the porosity of

the tumor tissue.

The equation describing the nutrients has the following form:

−∇ · (D(P, Q)∇C) = −αPC − λC, (2.19)

where α is the oxygen consumption rate for the proliferating cells, λ is the oxygen con-

sumption coefficient of healthy tissue and D(P, Q) is the diffusivity. Boundary conditions

and sources are set up according to the nature of the organs considered and will be detailed

later on. The diffusivity may be written as:

D = Dmax − K(P + Q). (2.20)

The link between the nutrients concentration and the population dynamics is provided

by:

γ =
1 + tanh(R(C − Chyp))

2
, (2.21)
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where R is a coefficient and Chyp is called the hypoxia threshold. The resulting hypoxia

function thus satisfies 0 ≤ γ ≤ 1.

For this simple model the state is X = {P, Q, C, Π}. The observable Y = P + Q

is the result of a discussion with medical doctors about what is measured by CT scans

in the case of lung metastasis. Its meaning is simply that one can not distinguish on

images the cell phenotypes composing the tumor, but only the tumor mass. The control

set consists in all the undetermined scalar parameters describing tissue properties (such

as k1,k2,Dmax, K), the tumor activities (nutrient consumptions α, λ, and Chyp), and

the fields describing the initial non-observed conditions needed to integrate the system

(P (x, 0)). Furthermore boundary conditions (and additional sources) potentially enter in

the control set. The latter play a fundamental role and it will be detailed for each test

presented in the following chapters.

2.3 Paradigmatic results of clinical applications

In this section some results obtained in a realistic application are presented as an exam-

ple of potential outcome of the framework which has been synthetically outlined in the

previous section.

In Fig.2.2 four scans covering an evolution over 45 months are presented of some lung

metastases of a primary tumor affecting the thyroid (Courtesy Institut Bergonié). Even

though this patient is affected by several metastases, only the study of the one marked in

Fig.2.2.a) will be presented. It is a quasi-steady metastasis, which grows very slowly and

thus need only to be monitored. The results obtained by means of a sensitivity technique

are presented, when only the first two scans were used in order to identify the system.
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(c) (d)

Figure 2.2: Scans: a) November 2005, b) October 2007, c) July 2008, d) April 2009

This means that the first two images were used as data set to solve the inverse problem

and find the set of control. Then, the direct simulation were performed covering the entire

evolution and the result has been compared to the data of the subsequent exams.

The computational set up is detailed in the following chapters. In Fig.2.3 the volume of

the scans is compared to the direct simulation. The solid line is the area of the simulated

tumor (seen on a 2D slice), the black circles represent the area of the scans used as data

and the red squares represent the predictions. This is a very promising result and it

will be analyzed in detail. However this represents in some sort the best that may be

achieved by a prognosis tool driven by medical imagery. In Fig.2.4 the fourth scan and

the corresponding image are compared, showing a good agreement.

The first works considering realistic applications for tumor growth were based on

ordinary differential equations. The presented results highlights one of the advantage

of using models based on partial differential equations with respect to models based on

ordinary differential equations. The latter, albeit simple and cheap from a computational

standpoint, are not able to exploit all the available informations concerning the pathology,

thus providing a less rich description of the phenomenon.

When targeting realistic applications several fundamental practical problems have to

be tackled in order to set up a reliable tool. In particular, as it will be clear later on,

images have to be preprocessed to be suitable for inverse problems. The first issue is

segmentation: tumor and the surroundings have to be distinguished as well as the organ

boundaries. This task may be very difficult in the case in which a tumor boundary

is hardly defined and phenotypes are very diffused. Moreover, organs are often very

deformable, which means that several external factors may influence what is observed on
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Figure 2.3: Area as function of time for the slow rate growth. Solid line represents the

simulation results, black circles are the data used for the identification, red squares the

predictions.

(a) (b)

Figure 2.4: a) Fourth scan b) Simulation
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(a) (b)

Figure 2.5: Density distribution at time a) T=0, b) T=1.

images. These problems were treated by means of standard techniques in this work but

they pushed us to consider non-linear registration processes for biological tissues.

We investigated numerical aspects of the integration of the L2 optimal transport prob-

lem, aiming at understanding if it may be used as a geometrical tool for inverse problem

or as an estimator of several quantities. This problem consists in finding the minimal en-

ergy mapping between two given density distributions. A study was carried out which is

relatively independent from that of inverse problems for tumor growth and it is presented

in the last part of this work.

The equations governing the transport are defined through a variational principle:

X(ξ) = arg min
X̃

{
∫

Ω0

ρ0(ξ)|X̃(ξ) − ξ|pdξ

}

, (2.22)

subject to the constraint:

ρ0(ξ) = ρT (X(ξ)) det(∇ξX), (2.23)

where X is the unknown mapping, ρ0 and ρT are the initial and the final density dis-

tribution respectively. A 3D result is shown hereafter, which is the mapping between a

uniform cube (i.e. ρ0 = 1 over a cubic domain) and the density which corresponds to

the normalized image of the MRI of a human head. In Fig.2.5 the initial and the final

density are represented. In Fig.2.6 slices of the result of the mapping (taken parallel to

coordinate planes) are shown to highlight the complexity of the geometrical configuration

recovered.
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(a) (b)

Figure 2.6: Slices of the final density distribution: a) XZ plane b) Z planes.

2.4 Structure of the present work

The structure of the present work is as follows. it may be divided into two parts, which

are relatively independent: the first one deal with inverse problems while the second one

treats the numerics of the L2 Monge-Kantorovich problem.

Tumor growth modeling and applications In this chapter the state of the art of

tumor growth modeling is presented aiming at defining the context in which the present

work was developed. In particular, the phenomenological nature of the models is un-

derlined. In an historical perspective, models based on ordinary differential equations

(ODEs in the following) are described, which were the first ones to be set up. The general

principles of the ODE modeling are commented and some examples are provided. Tumor

growth is highly influenced by spacial properties of tissues: a mere integral quantities

description is not satisfactory. This motivated the study of space models based on partial

differential equations (PDEs). They may be thought as divided into two classes: the

discrete and the continuous models. Their main features as well as their advantages and

drawbacks are discussed, motivating the choice of using continuous models for the present

work. To complete the review of the models the hybrid class is described, that tries to

combine the advantages of the two and represents a front of research in tumor growth

modeling.

In the second part of the chapter the works concerning realistic applications of the

models are described. The first applications adopt ODEs based models. Several appli-
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cations ranging from inverse problems to population and therapy control are discussed.

Few works are devoted on applications involving PDEs models. These works will be com-

mented in greater detail focusing in particular on those ones proposing an image driven

framework.

Models and computational framework adopted In this chapter the models which

were adopted for all the computations carried out in this work are presented. A first

model, which is the reference one for this work, is a two species Darcy-type model. It is

a continuous model resulting from a simplification of more complex models presented in

the literature. All the hypothesis made are commented and justified. Then, a regularized

version is introduced to satisfy in a better way some inverse problems needs. Another

model presented in the literature is commented, which may be considered a simplification

of the Darcy model presented.

After this description of the models, a synthetic overview on the integration method

of the direct system is outlined, concentrating on the distinctive features of the numerical

methods implemented. An example of direct computation and a preliminary analysis of

the simulation results with respect to the parameters value is provided.

The chapter ends with a synthetic comment and description on the preprocessing op-

erations which are necessary in order to use realistic medical images as data. In particular

two operations have to be performed: segmentation and registration.

Sensitivity technique In this chapter some results concerning a sensitivity approach

are detailed. First, ODE models are analyzed by means of an exact sensitivity procedure.

A model inspired by the continuous Darcy model is proposed, validated and compared to

a widely used existing model. Some critical points concerning the use of ODE models are

discussed and supported by some examples.

Then, the results obtained with PDEs are discussed, both varying the model and the

control set. The main part consists in the study of the regularized Darcy model. After

having validated the procedure by means of a synthetic experiment, a realistic case is

studied concerning lung metastases. The initial condition is parametrized in order to

reproduce a layer structure of the tumor, which is a well accepted biological hypothesis.

A comparison of the performances of ODEs and PDEs based approaches is detailed.

Reduced order approach The cost reduction is mandatory when dealing with these

kind of problems. A residual based strategy is proposed aiming at considering the resid-
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ual of the equations at discrete times instead of integrating the PDEs system. Several

preliminary tests show that the problem become underdetermined, thus requiring a regu-

larization. The latter is sought by means of a Proper Orthogonal Decomposition (POD in

the following) approach. The elements of the procedure are discussed and the approach

is validated by means of artificial tests.

Then, the performance of such an approach is compared to the one of the sensitivity

approach when the two works in exactly the same conditions. A realistic clinical case is

considered for this study.

In the end of the chapter some results concerning several realistic applications are

presented. The advantages and the limitations of the proposed technique are highlighted

and some conclusion is presented.

Optimal Transport The second part of the work consists in the numerics about the

Monge-Kantorovich L2 mass transfer problem. A brief introduction accounts for the main

theoretical contributions on the subject focusing on the properties which are helpful when

a numerical integration is sought.

Then, a review of the existing methods is provided and their computational cost is

discussed. Using the properties of the characteristics of the Hamilton-Jacobi equation

resulting from the minimization of the functional that defines the problem, a lagrangian

family of numerical methods is derived. A particle based method is proposed in order to

integrate it.

A validation stage is performed through synthetic testcases, in which several critical

phenomena like fragmentation and coalescence are studied. The applications on non-rigid

registration of biological tissues are described and discussed for both 2D and 3D cases.

The tests performed highlighted some difficulties and superlinearity appearing in the

computational costs of the methods: a preliminary investigation on a multilevel acceler-

ation is detailed, aiming at overcoming these problems.

The chapter ends with a perspective concerning the use of Wasserstein distance for

model reduction. The aim is to exploit the remarkable property that Wasserstein dis-

tance naturally implies a transport. This feature may overcome some problems pertinent

to POD and global modes principal component analysis when trying to describe the ad-

vection of concentrated coherent structures.
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3.1 Cancer biological nature and development

Cancer has a particularly complex, not yet understood nature. Its origin is mainly due to

the effect of genetic mutations, giving a certain cellular phenotype an advantage from a

micro-evolutionary standpoint (see [5]). Cancer cells are mainly featured by two proper-

ties: the ability to reproduce without control and to colonize tissues which are normally

occupied by other kind of cells. A tumor (i.e. a group of proliferative abnormal cells)

become a cancer only if it is malignant.

The so called monoclonal hypothesis is well accepted in the medical community: can-

cer starts from the mutation of a single cell ([15] for a detailed overview). Throughout the

life of an individual, billions of mutations occur: they are not dangerous as long as they

do not allow a group of cells to disrupt the equilibrium of the population and multipli-

cate in an uncontrolled manner. Mutations can be induced by several factors: chemical,

environmental or even by viruses and, except for the teratocarcinoma, their origin is not

epigenetic, that is, they are not caused by the wrong order of transcriptions of genes ([5]).

Studies of preneoplastic cells suggest that cancer develops through a continuous process

of mutation and selection. The mechanism that allows a phenotype to survive and to

increase the number of its individuals is called proliferation.

Natural human cells have a proliferative capacity that is much higher than what is

normally required to preserve tissues; in a healthy population the proliferation is controlled

and limited ([15]). The lack of these control mechanisms, exerted during the cell cycle,

and a combination of other factors, cause cancer.

A single cell life (represented in Fig.3.1) is characterized by a cycle (see [5, 15]), in

which four distinct phases take place, two of them are called functional (S, M) and the

others preparatory (G1,G2):

• G1: it has a variable length (ranging from 6 hours to several days); the cells prepare

the material for the S phase. The variability of the cell cycle time is mainly due to

the variability of this phase. At the end, an important check point takes place: if

the micro-environmental conditions are favorable to proliferate, the cell starts the

S phase, otherwise it enters a state called G0, or quiescence, in which it can remain

until the conditions are favorable. The transition from G0 to G1 and then S is

regulated by two other check points: the competence and restriction ones (R). In

tumor cells, this mechanism is altered in a significant way.

• S: it is the phase of duplication of the genetic material, and its duration is about 8

hours in human body. The DNA duplication occurs with a precise and controlled
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Figure 3.1: Phases of the cell cycle; from www.nature.com

time schedule (see [5].

• G2: cells increase their size to prepare to mitosis process. In this phase there is an-

other important check point; the cell can undergo to mitosis if the DNA duplication

is successfully completed and if the cell size is sufficient.

• M: it is the mitosis, and it can be divided into 5 sub-phases (prophase, prometaphase,

metaphase, anaphase, telophase), it starts with the formation of the mitotic spindle,

the subsequent division of the nucleous and it ends with the citokinesis, that is, the

division of the citoplasm. At the end two daughter cells are created.

The cell cycle is governed by biochemical groups called cyclines: they regulate and promote

different phases of the cycle ([15]). In order to guarantee that the cycle is correctly

performed, some molecules exert a control function, preventing the transition from a

phase to the subsequent one if not all the necessary tasks have been completed.

Sometimes errors occur in the genes transcription, leading to mutations. Let us briefly

describes which elements modified by mutations can transform a normal phenotype into

a malignant one.

Errors in the genes that regulate proliferation alter frequently the first stages of the

cycle, in particular the transition between the phase G1 and the phase S ([5]). This

results in an augmented capacity to proliferate: cells become able to avoid quiescence

even if micro-environmental conditions are not favorable. Moreover, growth and prolifer-

ation are promoted or inhibited by several growth factors, which are molecules (proteins,

aminoacids, nucleotides) that combine with membrane receptors to translate a signal from
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the cell neighborhood. Frequently, in cancers, the chain that allow a signal to be received

and actuated by a cell is compromised. Different pathologies can be associated to different

errors in genes transcription and in the transduction chain.

Another important element in understanding cancer causes is the alteration of the

apoptosis (see [135] for a detailed description of this mechanism), which is the programmed

death of the cell. In particular, mutations activate anti-apoptotic genes or suppress the

expression of pro-apoptotic genes, resulting in an augmented cellular survival. Two fea-

tures are peculiar of tumor pathologies: genetic instability and incapacity to undergo

to apoptosis when DNA errors occur ([5] for an overview), even if they are detected by

proteins devoted to the control of the DNA replication.

Cancer does not derive merely on the frequency of division of cells. Indeed, a ma-

jor role is played in many cancers by cell differentiation mechanism ([15]). In normal

healthy tissues a group of factors regulate the equilibrium between proliferation and dif-

ferentiation, in such a way that tissues are repaired and maintained. A disfunction of the

transcription factors prevent cells to be differentiated. All cancers involving stem cells (as

skin cancers, leukemias, carcinomas of uterine cervix) are characterized by an excess of

immature, non-differentiated cells, that proliferate continuously, leading to a neoplastic

mass.

Mutations that allow the mutation rate to increase affect the rate of propagation and

the nature of the disease ([5]). As a matter of fact, they are related to the machinery

controlling DNA replication and repairing, thus, being transmitted to their heritage, they

cause a great instability in the kariotype. This phenomenon is widely used in tumor

diagnosis and analysis. It is also related to therapy strategies to be adopted. Especially

in chemotherapy, drugs are used that are able to kill proliferative cells, but rarely they

succeed in kill all the malignant cells. Since cell population evolves rapidly through

continuous process of mutations and selections, some cells develop a resistance to the

drug used and to other drugs (multidrug resistance) of the same kind.

3.1.1 Phases of tumor invasion

Tumor growth have an enormous intra and inter individual variability, so that it is difficult

to state a unique universal phenomenology. However, for solid tumors, three phases can

be identified, characterizing the evolution of the pathology.

The first one is the avascular growth ([5, 15, 71]). In the first stage tumor starts

proliferating consuming the nutrients which are nearby (see Fig.3.1.1). The size of the

tumor in this phase normally does not exeed 1mm and its activity is limited by the
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Figure 3.2: Evolution of tumor, from left to right: avascular stage, angiogenesis, tumor

invasion; from www.gene.com

quantity of available nutrients. It may happen that carcinomas which are not able to

recruit nutrients remain dormant and do not cause disease in the patient, since they are

rarely metastatic; most of them are not diagnosed during the patient life (see [71]). This

does not mean that in avascular tumor cells proliferate at a slow rate, but that a critical

size is reached. The core of the tumor cannot receive a proper nutrient uptake, thus

a certain number of cells undergo to apoptosis. When cell proliferation is balanced by

apoptosis, the growth become quasi-steady. The differences between the size reached in

the avascular stage is determined by the ability to survive to different degrees of hypoxia.

For instance, the average diffusion length of oxygen in tissues is about 100µm (85µm for

a typical human melanoma, 110µm for prostate carcinoma): at a greater distance from

a blood vessel, cells become hypoxic and then apoptotic (see [71]). In tumors in which

particular mutations occur some cells can survive even if they are at a greater distance,

but the latter actually do not exceed 200µm.

Normal cells that mutate (hence becoming neoplastic) are not automatically angio-

genic, that is, they are not able to induce the production of new blood vessels to bring

their own nutrients. To do so, other mutations have to occur and cells have to switch

to angiogenic type. In [71] a review of studies on angiogenesis is outlined. When cells

become angiogenic they increase the expression of proteins such as VEGF (Vascular En-

dothelial Growth Factor) and bFGF (basic Fibroblast Growth Factor). Furthermore the

tumor is able to decrease angiogenesis inhibitors and to induce stromal cells to express

proteins which help angiogenesis. Moreover, a recruitment of bone-morrow happen. In

this way tumor manage to attract endothelial cells of the host and start building its own
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vascular network (capillary sprout), after having corrupted the basal membrane that nor-

mally surrounds it and separates it from the capillary vessels. Therapeutical strategies

have been set up in order to inhibite the angiogenesis process and prevent the tumor to

receive a constant nutrient uptake and potentially reach every other part of the body.

When tumor has reached a certain size, it starts invading tissues ([99]). This process

is called metastasis and it is the terminal phase of the evolution of the pathology, often

catastrophic. Angiogenesis is a fundamental precursor of this phase, since tumor needs

blood vessels in order to be connected to the rest of the body. The processes of invasion and

metastasis kill the host by locally invading the tissue and by colonizing distant organs.

Tumors prevent the organs to work properly by attacking or compressing them. The

pathology cannot be treated locally anymore. The metastatic process is complex and

involves multiple tumor-host interactions (see [99] for a detailed description). Again,

the natural selection of subpopulations plays a fundamental role: metastasis process is

highly selective, only 0.01% of cells that enter the vascular or limphatic tree give rise to a

metastasis focus. The distribution of metastases is not deterministic, but frequently cells

colonize the first capillary or limphatic bed they encounter while circulating. This explain

why the most probable locations for metastases are liver and lungs. Several hypothesis

were proposed on the mechanism of selection of the organ to be attacked by a tumor:

metastases uniformly span the organs of the human body but they grow preferentially on

certain organs, or, maybe, they are selectively attracted by certain organs.

From this global albeit synthetic picture the multiscale nature of cancer can be inferred.

In this idealized conceptual framework, three scales may be distinguished:

• microscopic: it is the intracellular level, where mutations and regulatory network

take place. Carcinogenesis is mainly related to this scale.

• mesoscopic: it is the intercellular level, where biochemical signals are exchanged by

cells and the extracellular matrix. At this scale population dynamics arise.

• macroscopic: it is the tissue level, where mechanical interactions occur as well as

nutrient macroscopic transport and invasion.

3.1.2 Classification of tumors

A large number of type of cancer exists; a common classification is performed according

to the tissue attacked and the kind of cells that become proliferating. Other names are

given according to the region of the body affected and also for historical reasons. As
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previously stated, tumor is called a cancer only if it is malignant (i.e. if it is able to

spread and invade the organs, preventing them to accomplish their normal functions); for

each malignant tumor denomination corresponds its counter benign one (in [5] examples

are found).

Cancer that derives from epithelial cells ( the cells composing the membranous tissue

covering all the cavities of the body as well as many glands) is called carcinoma. It is the

most common kind of cancer, about 90% of cancers are carcinomas; it is probably due to

the number of epithelial cells and their localization in region sensitive to proliferation.

Tumors attacking connective tissue (fibrous tissue composing for instance tendons,

bones, cartilage) or muscles are called sarcomas.

Hemopoietic cells (i.e. the ones composing blood) are linked to a cancer called

leukemia, which is not a solid tumor, but a cell suspension.

Cancers, such as gliomas, attack the nervous tissues, which are different from all the

other tissues.

Other kind of classifications are used by medical doctors. One concerns the progression

of the pathology: the stage, a number ranging from 1 to 4. When a pathology is at the very

beginning it is labelled by 1, a terminal one by 4. The aggressiveness of tumor is denoted

by another parameter, which is the grade. An elevated grade means that cancerous cells

are very active in attacking healthy tissues and colonize them.

3.2 Modeling tumor growth

Tumor growth and development has an intrinsic multiscale nature. According to its

complexity a wide variety of models were proposed in the literature.

Mathematical modeling gives a valuable contribution in understanding quantitatively

such a complex biological system (see [17, 40, 72] for reviews). Reaching biological insight

allows to target novel experiments, validating hypothesis and trying to set up tools for

realistic clinical applications.

Since the phenomenon is very difficult to be represented as a whole, several approaches

were developed, concentrating on different aspects or phases of the growth. In [141, 60,

160] the avascular stage is considered while [6, 13, 23, 155, 33, 47, 94, 103] were devoted

to the description of the angiogenesis process, and the vasculogenesis in general. An

overview of the different phases and related mathematical models is provided in the work

of Chaplain (see [44]).

Moreover, cancer shows a broad variety of behaviors, depending on the organ attacked,
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the age of the patient and several environmental factors. At present it is not possible to set

up a model describing all the kind of cancers at once. In general, some phenomenological

guidelines are used to build models adapted to a specific kind of propagation. For example

[151, 96] treat brain tumors, in [20, 154] a model for the description of tumor cords is

developed, [159] deal with lung tumors, in [78] breast cancer is taken into account.

In this section a brief review is outlined aiming at presenting the state of the art of

tumor growth modeling. First, the ODEs (Ordinary Differential Equations) models are

presented. Second, models taking the space evolution into account by means of PDEs

(Partial Differential Equations) are described according to a conceptual classification:

discrete single cell-based models are presented followed by continuous type models. Finally

hybrid models are detailed.

3.2.1 ODE models

Gompertz proposed a model for human mortality in 1825, [83]. It was intended to de-

scribe the incidence of accidental causes of death in a human population. The Gompertz

model is used to describe population dynamics and it assumes that the rate of growth is

proportional to the logarithm of the inverse of the size of the population itself, that is:

ṅ(t) = α log

(

K

n(t)

)

n(t). (3.1)

This model is suitable to describe the global behavior of a population when a limited

quantity of nutrients is available (see for instance the work of Brunton [38]). K, called

carrying capacity, represents the asymptotic population size for a given nutrient uptake.

This model is successfully used to fit tumor dynamics in simple experiments. In order

to take more complex effects and dynamics into account several models were proposed;

a review and a general framework is proposed by d’Onofrio in [57]. The most basic

models arising in the description of populations are the exponential and the logistic ones;

in general, competition phenomena between subpopulation are modeled through Lotka-

Volterra systems of equations.

ODE models used to describe tumor growth aim at describing integral properties

characterizing the tissue evolution: in all these models two elements are fundamental: the

total size of the population (expressed as number of individuals or volume or weight), and

the nutrient dynamics. In the following two models are detailed.

In the paper of Simeoni ([109]) a simple model is proposed to fit experiments, in

the case of chemotherapy treatment. In particular a three parameters model is used to
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described the non treated tumor dynamics, while two additional parameters are added

to take the therapy into account. A first exponential phase is followed by a linear phase.

This dynamics actually mimics the first two stages of a Gompertzian growth. The authors

set up a regularization, such that the right hand side of the population dynamics equation

is a differentiable function. The state variable is the tumor weight (w) and the model

(without treatment) reads:

ẇ =
λ0w

[

1 +
(

λ0

λ1
w
)ψ

]1/ψ
. (3.2)

For large values of the parameter ψ exhibits the growth described above. λ0 and λ1

represents the exponential and the linear growth rate respectively, their ratio being the

switching point between the two regimes. In order to take therapy effect into account

a subpopulation model is proposed and interpreted as a perturbation of the base one,

adding terms corresponding to the effect of the drug on the subpopulation.

The coupling between nutrients uptake and population dynamics is detailed in the

works of Hahnfeldt (see for instance [144, 86]). The starting point is the Gompertz model

for the tumor volume, but instead of considering the carrying capacity as a constant

parameter, an equation is provided, linking the capacity to the vasculature and to the

size of the tumor itself:

V̇ (t) = α log

(

K

V (t)

)

V (t), (3.3)

K̇ = −λK + bV − dKV 2/3 − eKg(t), (3.4)

where the equation for K is obtained assuming spherical symmetry for the tumor and a

reaction diffusion for the vasculature. In particular the term V 2/3 is used to described

effects involving diffusion through the tumor surface. The term g(t) is the effect of an

antiangiogenic treatment ad it is modeled using PK-PD assumptions. In [144] the resulting

model has 4 parameters and it is used to study the effects of antiangiogenic drugs from a

quantitative standpoint, comparing the results with data of the tumor volume.

Several other models were proposed in the literature, based on the same principles.

Aside for some study, properly detailed later on, ODE models are the only kind of models

currently used in clinical applications: this is mainly due to their simplicity and their low

computational cost, allowing to set up control and sensitivity problems at a reasonable

cost.

Nevertheless, tumor growth is a phenomenon in which space effects cannot be neglected

and play an important role. The tissue evolution in terms of morphogenesis and pattern

formation (see [7, 55, 62, 56, 73, 120]) can not be described by integral quantities.
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3.2.2 Discrete models

In discrete models (see [14, 75] for a review), cells are followed individually in their

evolution: so one cell corresponds to one computational element. Discrete models are

adequate to describe microscopic and mesoscopic scale phenomena such as carcinogenesis,

in [128], competition and mutations effects. All these phenomena, fundamental in cancer

development, are characterized by properties varying spatially on a scale comparable to

the cell size. They become computationally unfeasible when treating complex in vivo

systems, for which the number of cells may attain 1011, and for which there is often no

interest in following the path of a single cell.

Two kind of models were developed: the cellular automata models (see [4, 60, 119]),

called lattice-based models and the agent models ([111]), usually referred as lattice-free

models. A detailed review of these families and a comparison to continuous models is

provided by [42, 13].

In cellular automata models cells are arranged on a lattice, in such a way that in each

node there is at most one cell (or in certain cases group of cells, [96]). Different regular

topologies can be implemented (see the book of Deutsch [56] for a general treatment)

corresponding to different geometrical arrangements of interactions; in [96] cell locations

are chosen randomly and Voronoi tesselation is applied to build the lattice.

At each node a number of states is associated: the state vector includes the cell posi-

tion, its velocity and a set of biological variables, supposed to be significant for the evolu-

tion. The behavior of each cell is governed by local transition rules (modeling biochemi-

cal and mechanical processes), whose nature may be either deterministic or probabilistic.

These rules determine the state of a cell as function of a certain set of neighborhood. A

simple classical example (see the review of Roose [141]) consist in assigning three proba-

bilities k1, k2, k3 for the following events to occur: proliferation, quiescence (triggered by

environmental conditions), or movement.

Examples and applications of a Lattice Gas Cellular Automaton (LGCA) model for the

description of patterns arising in cellular systems are provided in [56]. In LGCA methods

a variable cell density is accounted for, since more cells are allowed to occupy the same

node. In each node a set of movement channels is defined (including the rest state),

representing the possible momentum vectors of the cells. A sort of exclusion principle is

proposed: cells may have the same position but not, at the same time, the same channel.

When cells divide, as consequence of a mitosis process, the daughter cell is placed in

a free lattice point near the mother cell. This is in some sort artificial and unrealistic;

as a matter of fact the geometrical constraints induced by the lattice oblige to introduce
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some extra rule in the case that no place is available for the daughter cell. This is a

weak point of cellular automata description (see [141]). Furthermore, some numerical

artifacts may arise accordingly to the chosen topology, leading to unrealistic patterns.

Inspite of their schematic nature, they have been used in a wide variety of applications

(see [110, 96]), because of their simplicity and ability to capture microscopic events or to

represent molecular pathways.

More complicated from a mathematical and computational stand point, the agent

based methods (see [111, 61, 163, 164]) are lattice-free. Cells are not constrained in fixed

locations but they move in the space, according to mechanical laws. They are often

described by rigid or elastic spheroids (see the work of Drasdo [60]). Mechanical cell-to-

cell interactions are described by central potentials (see [42]), in such a way that both

attraction and repulsion behaviors are represented. The mitosis is rendered in a more

realistic manner and it occurs with a given rhythm. Several studies were performed,

including the random cell movement (when a single cell is in liquid suspension it exhibits

Brownian motion) and chemotactic effects ([62, 63]).

The behavior of the resulting growth is analyzed theoretically by statistical mechanics

(For example through Langevin equations,[60]) and solved by means of Monte Carlo tech-

niques. The models are able to reproduce accurately in vitro experiments like spheroids

and monolayer growths. Drasdo (see [59]) proposed a coarse graining approach too. The

main idea is to consider containers in which a maximum number of cells can enter (like

in a packing problem). Equations are written through a path integral formulation; this

approach is suitable for sparse phenotypes, but it does not describe well compact tumors.

Other approaches based on statistical mechanics are analyzed by Bellomo in [28]. In

particular Boltzmann formulations are detailed; this is an interesting framework since

mean field equations can be written, although cells behaves in a really different ways with

respect to gas molecules, for what concerns collisions and reciprocal interactions.

A detailed approach were proposed by Rejniak in [137], for which cells are no longer

modeled as simple elastic spheroids, but as continuous vesicles, separated one each other

by elastic membranes. The cellular evolution is computed through an immersed boundary

method and cell-to-cell interactions are imposed by means of potentials.

The agent models are expensive from a computational standpoint. Methods to reduce

their cost were presented in [61], in which some rules are set up, governing a cellular

automata model in such a way that it mimics accurately a reference agent based model. A

key point, as outlined in [42], consists in translating the properties of agent based systems

in continuous models, in order to apply their physical insight at a larger scale. However,
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this task is hard from a theoretical standpoint and it is feasible in a limited number of

cases; works in this sense can be found in [125, 88]. This inspired the development of a

novel class of hybrid models, detailed in the end of this section.

3.2.3 Continuous models

In continuous type models the evolution of cell populations is described in terms of cellular

density (i.e. number of cells per unit volume). These models were developed to represent

tissue evolution at a macroscopic level. An exhaustive review is provided in [104].

Several models were proposed in the literature, ranging from reaction-diffusion models

(which were the first spacial models to be developed, see[2, 45, 54, 79, 84, 148]), interface

models ([98, 106, 107, 65]), mixture models (see, for a detailed overview [8, 18, 43, 51, 91,

133, 140, 33]).

In this section a general framework is presented, detailing the building blocks of con-

tinuous models and pointing out common features and differences between the approaches

proposed in the literature.

The population dynamics of different cellular species is described through the conti-

nuity equations. Given a certain number of cellular phenotypes, their volumic densities

being φi, and assuming that the specific mass for the i− th phenotype is constant in time,

the mass conservation equation is:

∂tφi + ∇ · (Ji) = Bi − Di + Ti, (3.5)

where Ji is the flux function for the i − th phenotype, and Bi, Di, Ti its birth, death and

transition rates respectively. In all the models this equation states simply that in a given

volume, the variation of the cell number of the i− th phenotype is due to a flux across the

boundary of the volume itself or to some interaction or source terms (right hand side).

In the work of Preziosi (see [131]) the Lagrangian mass conservation equation is derived,

highlighting the contribution of the growth process in the tissue kinematics. Let us point

out that in some continuous models (see [139, 140, 1, 64]) the cellular cycle is taken into

account; a new independent extra variable, the age, is introduced, representing the time

between two subsequent mitosis processes. These models are referred as age-structured

models. In the following non-structured models are detailed, since they will be used for

the present work.

In order to specify a model the nature of cells movement (i.e. Ji) has to be fixed,

as well as the population dynamics; the latter consists in the relationships between one

phenotype and the others and between one phenotype and the environment.
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If Ji is directly linked to the volumic densities, the following law can be written:

Ji = −D(i)∇φi +

Np
∑

k

Vikφk, (3.6)

where D(i) is the diffusivity tensor and Vik the interaction matrix, and the model becomes

a reaction diffusion model, as in [148, 54, 84]. Other laws give rise to non-linear diffusion

models, as in [45, 79].

If, otherwise, the motion is rendered through a transport:

Ji = viφi, (3.7)

where the vector field vi represents the velocity of the i−th phenotype. If the passive mo-

tion assumption, also called the constrained mixture assumption (see [140, 8]) is assumed,

a unique vector field exists, such that it makes the tissue evolve (vi = v, ∀i).

For the models characterized by transport phenomena, the mechanical nature of the

velocity has to be investigated. The first hypothesis allowing to state a constraint on

velocity is the saturation of the mixture, that is, in a given unitary volume, the sum of

the volumic densities is unitary, i.e. :

Np
∑

i

φi = 1 =⇒ ∇ · v =

Np
∑

i

Bi − Di + Ti (3.8)

Since the sum of the transitions is zero, this law for the divergence simply states that

the cellular process of mitosis acts as a volume source in the tissue, while the death is

rendered by a volume sink. This is reasonable since when a mother cell divides duplicating

its material, the two daughter cells occupy a greater volume, pushing the surrounding cells.

A law for the divergence is not sufficient to uniquely determine the velocity; at least a

relation for the curl has to be fixed. In order to mechanically close the system several laws

were proposed in the literature (see the review by Ambrosi [8] for a detailed derivation).

In general, momentum conservation for a continuum reads:

∂t(φiv) + ∇ · (φiv ⊗ v) = ∇ · σi + φibi, (3.9)

where σi is the stress tensor for the i − th phenotype and bi is the body force acting on

it. Constitutive equations must be added to this system in order to specify the mechan-

ical nature of the tissue. Several hypothesis can be done: linear poroelastic models are

developed in [142] to describe internal stress, anisotropic tissues are described in [48, 46],

a viscoelastic behavior is detailed in [105, 132, 9, 139].
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The tissue is often supposed to be in quasi-steady conditions (see [132]), so that the

mechanics reduces to:

∇ · σi = 0, (3.10)

which leads to a sort of viscoelastic Stokes dynamics.

Another simplification is derived under the assumption that the tissue behaves as a

flow in a porous medium. In this case the momentum equation reduces to the Darcy law

(see [8, 104]):

v = −k∇Π, (3.11)

where k is the permeability tensor and Π is the pressure, usually identified as the intersti-

tial pressure, that represents a potential for the velocity. Adequate boundary conditions

have to be set, according to the organ nature.

Another constitutive law is proposed by Cristini in [51], in which a thermodynamic

argument is used to derive a Cahn-Hilliard system of equations for a mixture model. In

this work a general framework is proposed and a study of non-linear instabilities is carried

out in the case of a two phase mixture (namely the tumor tissue and water).

If phases φi are not diffused but they belong to subdomains, interface models are de-

rived. In particular, conditions for the pressure Π are imposed on the tumor boundary

and related to the interface curvature, see for instance [104, 107, 108, 74]. These models

lead to non-linear instabilities and branching. Nevertheless in in vivo systems an identifi-

cation of a tumor boundary can be difficult or even a impossible for some kind of cancer

(especially for those of invasive nature).

In [133, 49] extra cellular matrix is taken into account for the dynamical description

of the tissue.

Once the tissue mechanics is described, another element is fundamental to close the

system and link the environmental conditions to the population dynamics: nutrients

equations. Nutrients are potentially all the biochemical substances that determines, alter

or regulate tumor growth. In [39] the effects of time delays on a nutrient-limited spheroid

growth is described, while other works describe the effect of spatially distribution of

nutrients on tumor shape (see the review by Lowengrub [104]).

The network of chemical signals interacting with a cell population is exceedingly com-

plex. Classically for the sake of simplicity only few species are considered. Oxygen,

glucose and H+ ions are the most significant ones to be considered in continuous models.

Oxygen and glucose are responsible for the energetic path of the cells, its undergoing

to hypoxia and so on, while H+ concentration denotes the acidosis effects on the tissue,

see [141]. In particular experiments have revealed that tumor is surrounded by a gradient
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of acidity, influencing its capacity to attack the healthy tissue. Nutrients dynamics is

usually rendered through reaction diffusion equations. Let ck be the concentration of the

k − th species in the tissue, its dynamics is governed by:

∂tck −∇ · (Dk(φi)∇ck) = C(φi, ck) + S(φi, ck), (3.12)

where Dk is the diffusivity tensor that depends on the phase considered or on some

morphological feature of the tissue (see for instance [148] for the motility and diffusivity

estimation in grey and white matter in the brain), C is the consumption rate and S

is a source term. Boundary conditions are imposed following some phenomenological

consideration on the system.

When angiogenesis process is described (see [33, 13, 41, 47, 114]) factors promoting

the vessels formation (like VEGF, as described in previous section), have to be taken into

account. A lot of efforts are devoted to the description of this complex phenomenon, since

it often represents the point after which tumor may reveal its malignancy, accelerating the

invasion. The models proposed ranges from totally continuous models to hybrid discrete-

stochastic models for vessel formation (see the work of Anderson[13] for a review).

Nutrients dynamics has to be linked to the population dynamics and in particular to

mitosis (see [44]). The most simple non-linear relation providing such a feedback is the

heviside function, representing a threshold:

Bi(φj) = νiH(ck − ck), (3.13)

where Bi is the mitosis rate and νi is the inverse of the mitosis time scale for the i − th

phenotype, ck is the threshold; the relation states simply that if there is a sufficient

nutrient uptake cells can proliferate, otherwise some transition to quiescence or apoptosis

is going to happen.

Therapeutical effects may also be included (see [146, 139]); for systemic treatments,

like chemotherapy, one or more nutrient equations have to be added and consequent effects

on cell population investigated.

3.2.4 Hybrid models

Hybrid models try to combine the advantages of continuous and discrete models, see

[12]. The aim is to take the intrinsic multiscale nature of tumor growth into account in

a unique theoretical framework, describing phenomena occurring at very different space

and time scales. As already mentioned, Othmer [125] derived continuous equations from
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microscopic systems describing chemotaxis in bacteria. In the same spirit, but trying to

avoid theoretical problems arising in different systems, in [34] a method is proposed such

that macroscopic variables can be integrated as function of microscopic states even if their

governing equations are not known a priori or they are difficult to be derived.

Two kind of hybrid models were proposed in the literature. The first one describes

continuous fields evolution for some element of the model, such as nutrients and ECM,

and discrete fields for the cells (see the work of Gerlee [81]). The cost of this kind of

methods is often as high as that of discrete methods.

Other approaches where developed, trying to combine the two classes of methods in

such a way that the cost is reduced, but microscopic behavior is taken into account in

regions where it is more relevant. This is the key idea of the method proposed by Kim

in [100]. In particular, only proliferating cells are represented at discrete levels, while

quiescent and necrotic cells are represented continuously, as a mixture, as well as ECM

and nutrients. The discrete method proposed is an agent lattice free method, cells are

rendered as ellipsoids, they exchange forces such as contacts and drag due to adhesion.

Forces exerted by cells on ECM are computed through an interpolation method. Stresses

in the continuous media are modeled assuming a linear viscoelastic behavior. If quiescent

cells start proliferating, a least square projection is performed and a consequent number

of discrete individual created. When applied to a spheroid in avascular stage, this method

allow to significantly decrease the computational cost (approximately by a factor 10).

Another kind of method, proposed by Bearer in [27] uses both continuous and discrete

approaches to describe cell population evolution. In particular the two representations

are used for all the phenotypes of the tumor. For the discrete cells an agent based method

is defined. Cells are represented as zero dimensional entities, but the occupied volume is

taken into account through a non-superposition constraint; chemotaxis, haptotaxis and

forces are implemented in a classic way. Discrete cells and continuous phase exchange

mass continuously: in particular when a region is hypoxic discrete cells are created and

followed individually; their motion is mainly influenced by nutrients gradients. When a

density threshold is exceeded discrete cells are reconverted to the continuous phase.

3.3 Toward realistic applications

Some works in the literature explored the possibility to use models to go toward realistic

applications. A perspective is outlined in [134]. In this section a detailed review of these

works is provided aiming at defining the context in which the present work is developed.
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An important step in validating models is the comparison with experimental data.

A first example in this sense is found in the work of Adam (see for instance [3]). A

model describing the growth of a spheroid is calibrated via an algebraic inverse problem

involving one parameter in order to fit experimental results concerning in particular the

concentration of GIF (growth inhibitor factor) in spheroids. The same set of data where

used to validate the non-linear diffusion model presented by Chaplain in [45]. In [79,

80] the effects of microenvironment and acidosis are studied and compared with some

experiments, revealing the ability of in silico models to represent some spatial details

like layer structures and pH gradients. The authors work also on data for breast cancer

(ductal carcinoma). Other works were devoted to the comparison of experimental results;

furthermore, in some of them, attempts were done trying to calibrate models for in vivo

systems using parameters fixed using in vitro data. A review of these works is provided

in [104, 141].

The applications concerning tumor growth are essentially aligned on three axes: the

first one is diagnosis, the second one is prognosis and the third one is treatment. Diagnosis

of pathologies relies on the detection of tumoral masses by means of medical imagery.

Models can be exploited in order to act as a filter, showing elements which are normally

not visible. An example of this is done in the case of brain tumors by Swanson (see [149]).

Once a model is able to describe a certain pathology evolution, a prognosis becomes

possible, showing its global behavior on a significant time scale (see [134, 89]).

Works are done aiming at describing the effect of therapy on the tumor evolution

[146, 139, 140, 33, 145]. In these works some terms are added to the model describing

untreated evolutions, so that the effects of drugs (as in [146, 145, 140, 33]) or that of

irradiation therapies (see for instance [140]) can be taken into account. The ability in

describing treatment by means of spatial models may be precious in order to evaluate

therapy efficacy and, in perspective, to define better protocols. This was investigated

mainly by ODE models, because the resulting problem is affordable from a computational

standpoint. An example in this sense is detailed in [67], in which an ODE model is

described, taking a Gompertzian growth into account, coupled with nutrient equations.

The latter are augmented by suitable terms accounting for one or two chemotherapies. A

control problem is set up as an optimization problem, for which cost functions are defined

as a trade off between different clinical needs. For all the therapies, the idea is to minimize

the injected dose (because of the collateral damages associated) while minimizing tumor

size on a given time scale. The problem is targeted from a numerical standpoint by means

of a multiple shooting method.
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In [129] the theoretical study of an inverse problem concerning size-structured popu-

lation is taken into account. The evolution of a population is described by means of a 1D

PDE of the form:

∂n(x, t)

∂t
+

∂n(x, t)

∂x
+ B(x)n(x, t) = 4B(2x)n(2x, t), (3.14)

where independent variables are the size (x) and the time (t), n is the cellular of individual,

B is the birth rate. The equation model the population dynamics by considering a process

of division of cells of size 2x into two cells of size x. This kind of model is studied in tumor

growth to give a representation of metastasis process (see [24, 25]). In [129] the problem

is to find B(x) when noisy data are available concerning the division rate and the steady

cellular density N = n exp(−λt) (under the assumption of long time behavior, λ being

a Maltus parameter associated to the steady state, see [129]). The problem is stated

in a quasi-inversibility framework: let N = N(B; λ) be the direct map corresponding

to the equation, it is inverted by means of a regularization approach. In particular an

approximate problem is solved and some theoretical estimates are proposed. In [58] the

authors revisited the problem; some numerical technique are proposed and analyzed to

solve the problem. In particular regularization approaches are compared to a filtering

approach, revealing that spurious oscillations affecting the solutions may be reduced by

properly combining these strategies.

An approach including therapy, described through PK-PD (i.e. Pharmaco-Kinetics,

Pharmaco-Dynamics) models, in the description of tumor size-structured population cal-

ibrated via inverse problems is outlined in [24]. The authors study the mathematical

properties of a model describing the metastasis process, where tumor growth is rendered

by a Gomperzian model. Then, a coupling between this model and treatment is sug-

gested. The mathematical properties of the inverse problems associated are investigated

and some analytical estimates on parameters is found.

The present work is mainly devoted to inverse problems in tumor growth modeling,

when data comes from medical images. The idea is to exploit as much as possible the

amount of information available in clinical practice. In what follows a brief section explains

the main kinds of medical imaging devices and then a review of works concerning image-

based inverse problems is done.

3.3.1 Medical imaging techniques

In this section the main classes of medical imagery are reviewed. Medical imagery is the

main source of information (in terms of quantity) concerning cancer pathologies. It is
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a fundamental tool in clinical practice, in diagnosis, in treatment planning and control.

Several kinds of imaging techniques exist, adapted to different anatomical parts of the

body (and tumors).

CT-scans Classical tomography imaging based on X-rays (CT) has reached a fine depth

on resolution, allowing to obtain 3D images with a precision of 1mm (i.e. voxel have edges

of 1mm in length). The base process consist in three parts. In the first one a slice from a

3D volume is chosen. Then a projection is performed (rays produces shadow-like shapes on

detectors) and finally the image is reconstructed by means of Radon’s transform. More

sophisticated filters (backup projection filtering) were set up, leading to a good noise

rejection. It is used mainly for monitoring lungs, chest, liver (and biliary tree), kidney,

pancreas and colon.

PET and SPECT The same reconstruction method, with some difference, is used in

PET and SPECT imaging techniques. In PET scan (Positron Emission Tomography)

some FDG (fluoro-2-deoxy-D-glucose), or other positron emitting products, is injected.

Proliferating cells are normally characterized by a great consumption in glucose, so that

they tend to accumulate it. A positron is emitted from FDG and when it annihilates

with an electron, radiation is emitted and detected by a gamma ray camera. Unlikely,

the resolution is low (5mm), that corresponds to the diffusion limit of positron before the

emission of radiation. PET is used to detect metastasis (to discriminate between primary

and metastasis) and, fused to CT allows to give estimates on tumor aggressivity. This

estimate is called SUV index, defined in general as:

SUV =
U

(I/W )
, [U ] = kBq/mL, [I] = kBq, [W ] = g, (3.15)

where U is the uptake measured according to the emission, I is the total dose of radiation

injected, W is the weight of the patient. SUV index is not uniquely defined and measured.

Several criteria are possible. According to the definition the SUV is a field, depending on

position (U = U(x)), in order to extract a scalar index the mean, the max or the min are

used.

SPECT is a 3D version (using gamma rays) of radionucleotide imaging. The principle

is that of CT scan, a radioactive isotope is injected, allowing to highlights in a better way

certain parts of the organ. It is used in liver, neuro-oncology and in lymphoscintigraphy

(melanomas or breast cancers).
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MRI Magnetic Resonance Imaging (MRI) is based on a different physical principle, rely-

ing on proton spin. The classical Bloch formula for magnetization in a classical framework

can be profitably used for image reconstruction. Its resolution is a bit lower compared

to that of CT scan (3mm), but it allows to have different contrasts and flavors on the

image and a better contrast. As a matter of fact, while in CT scan the only parameter

determining the result is the tissue absorption of X-rays, in MRI three parameters play an

important role: the so called free water density, the longitudinal relaxation time and the

transverse relaxation time. It offers several advantages with respect to CT in monitor-

ing soft tissues, its main drawback consists in difficulties to detect calcifications or bone

tumor invasions. It is used for monitoring brain, spinal cord, muscles (good detection of

sarcomas).

Current trends Other techniques are available, trying to catch more informations. The

current trend is represented by functional imagery, in which molecular informations are

included. The idea is that cancer origins are essentially molecular, and hence, mapping

some significant molecular activity would result in a better understanding of the pathology

state. A first example is DTI-MRI, which is able to provide, in addition to common

informations, the diffusion tensor of water in each point of the domain.

A vast area of applied mathematics is devoted to the development of algorithms and

methodologies for medical imagery. In particular different topics arise, corresponding to

different practical needs: segmentation, registration, denoising and inverse problems in

general. A comprehensive review of these problems can be found in [127].

3.3.2 Image-driven inverse problems

As expressed in [141, 42] the ability to calibrate models of different type to in vivo as well

as in vitro evolutions is of great interest to the development of tumor growth modeling

and the understanding of the mechanisms governing the pathology. One of the objectives

is to investigate the use of models aiming at giving clinicians some useful information in

different stages of clinical practice.

Continuous models are suitable for this task, because a large amount of information

concerning the dynamics of the patient pathology comes from medical imagery and hence

at the tissue level. As stated in the previous sections, a wide variety of macroscopic

models were proposed in the literature. They all have one key feature in common: they

are systems of coupled parametric PDEs.
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In continuous-type models, microscopic scales and a part of mesoscopic scales are not

directly modeled and represented. Thus, their effect is lumped into parameters, which

describes proportionality between the fields involved. In order to simulate the evolution of

a tumor, parameters have to be determined. In the literature the values of characteristic

parameters are proposed, mainly concerning in vitro systems (see [104]). Let us point out

that few parameters can be directly measured, instead, they have to be recovered from

other measured quantities. This is due to the phenomenological nature of models and

the fact that parameters often do not have a clear biological or physical meaning. Hence,

parameters have to be identified.

Inverse problems are the mathematical tool intended to accomplish this task. A com-

prehensive review of mathematical results concerning inverse problems for different partial

differential equations is done in [92]. Literature on inverse problems includes all kinds

of PDEs: elliptic equations for problems of conductivity recovery in presence of electro-

static fields, contaminant source determination as example of convective-diffusive system

of equations, wave scattering by unknown obstacles as the more treated case of hyperbolic

problem (see [92]). There are two different strategies and frameworks to set inverse prob-

lems (see [21]): a deterministic or a probabilistic one. In the first one the inverse problem

is often recast as the minimization of an error functional subject to some constraint while

in the second one a bayesian approach is used. In this work we are mainly focused on a

deterministic approach. However, some statistics and probability have to be considered

in order to quantify and evaluate reliability and robustness in the presence of noise in the

data and other kind of perturbations.

A first work in which images are used in order to calibrate models is done by Tracqui

in [156]. Glioma growth is treated using a reaction diffusion model in which diffusion is

isotropic. Parameters are found using an optimization method, comparing the area of the

simulated tumor with the actual area measured on images.

A pioneering work in this sense is proposed by Hogea in [89] in which a framework is

proposed to set up an image-driven parameter estimation in the case of glioma growth.

The goal of the work is twofold: first, improving non-rigid registration and extract valuable

informations in order to build statistical anatomical atlases and, second, to be able to

predict tumor growth for a specific patient. The model adopted is a coupling between

a reaction-diffusion equation for the tumor cells density (similar to what described in

[148]) and a linear elastic equation describing mechanical properties of the tissues. The

equations are:
∂c

∂t
−∇ · (D∇c) + ∇ · (vc) = ρc(1 − c), (3.16)
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∇ · (λ∇ · X) + µ(∇X + ∇T X)) −
[

p1 exp

(

−−p2

cS
− p2

(2 − c)S

)]

∇c = 0, (3.17)

v =
∂X

∂t
, (3.18)

where c is cancer cell density, D is the diffusivity, taken as a scalar varying in white and

grey matter (thus isotropic in the phases), v is the velocity field, X is the lagrangian

coordinate, ρ the division rate; the term in square brackets in Eq.3.17 represents a force

exerted by the tumor on the tissue, and it is purely phenomenological; the parameters

p1, p2, S are unknown. The elastic properties λ, µ and the diffusivity D evolve in time

and in particular they are taken as passive scalar advected with velocity v. The inverse

problem is set up in a classical optimization framework. The L2 norm between the images

and the solution of the model is minimized with respect to the set (ρ, p1, p2 ), subject

to the constraint represented by the evolution equations, with a Tikhonov regularization

(see [92, 21]) applied on the control set. Lamé coefficients λ and µ as well as diffusivities

of white and grey matter are supposed to be known at the very beginning: their value is

taken from the literature. The optimization is carried out with a classical adjoint-based

technique. At each minimization step the adjoint problem is computed, providing the

descent direction for the problem. This method was extensively studied on 1D testcases

and compared to other methods; it was tested also on real data for one realistic case.

A similar work, enlightening a different strategy is proposed by Konukoglu in [102, 101].

Glioma growth is considered and the model used is similar to what id described in [89], but

there is no transport for the tumor phase, so that there is no mechanical coupling, reducing

the model to one reaction diffusion equation (Eq.3.16 without the conservation term). The

solution of this equation is represented by a traveling wave, whose characteristic velocity

reaches an asymptotic value. The system is well approximated by an eikonal equation of

the form:

∇T (x)T D(dw, dg)∇T (x) =
4ρT

(4ρT − 3)2
, T (x) = T0, x ∈ Γ, (3.19)

where T is the time, T0 si the initial value for T when x is in the initial tumor Γ, ρ is, as

before, the growth rate of tumor cells; D is the diffusivity tensor, taken as isotropic, equal

to dgI in the gray matter, to dwDwater in the white matter, where Dwater is the diffusivity

tensor of the water in the fibers, measured by means of DT-MRI. This is a four parameter

model to be calibrated.

An error measure is introduced as the distance between the simulated contour Γ(x, ti)

and the segmented contour of the image taken at the corresponding time. The inverse

problem is hence reduced to an unconstrained minimization problem, solved by a Powell
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quadratic programming algorithm (see, for instance [130]). An interesting point arising

and discussed in this work is the non-uniqueness of the minimizer. Local minima are in

general present in this kind of problems and even if the solution exists unique, there are

usually infinitely many solutions which are able to fit the sequence of medical images with

an error which is smaller or equal to the image resolution. In [102, 101] the non-uniqueness

is due to the fact that the front speed allows to determine only the product ρD and not

the two quantities separately. One parameter, ρ is fixed and the others are determined;

this is an arbitrary choice. A perspective well explained by the authors consists in adding

more measurements (even of different kind) to overcome the underdetermination.

A similar approach is developed by Swanson in [152], in which parameters of a diffusion

models are calibrated by means of a level set methods, while assuming that the solution

is a traveling wave. Once the model is able to describe the pathology evolution with a

certain approximation several applications are possible. Among them in [150] the effect

of surgical interventions is investigated.

In [22] the integration of data coming from functional imagery is taken into account. In

particular the framework proposed integrates data coming from different PET, DT-MRI

and conventional MRI.

Two models are analyzed: a modified logistic model, and a proliferation-apoptosis-

migration model: both are one equation models describing the number of tumor cells

of the population. The models can be modified by some additive terms accounting for

therapy. Let us detail the second model, which is different from models usually set up

and explain well the key ideas of this work. The number of cells in the i− th voxels (Ni)

follows the dynamics:
dNi

dt
= piNi − diNi + kimNm, (3.20)

where pi is the proliferation rate, di the death rate and kim is the fraction of the cells of

the m−th voxels that enters into the i−th one. These function, as well as the initial value

of N in each voxel have to be fixed in order to run a simulation of the system. The initial

conditions, i.e. the number of cells in each voxel is computed using the ADC (Apparent

Diffusion Coefficient) map. Some phenomenological relation taken from the literature is

used to perform the calibration (see [22] for details). Proliferation rate is estimated via

a linear mapping involving a special kind of PET imaging data. The SUV index is used

to get some estimates for the cells death rate. Data coming from another kind of PET

imaging, based on radioactive fluorine are used to compute the migration rate kim. This

work is an example of how different kind of informations can be integrated in the same

model in order to set up an image driven analysis, exploring a promising direction.
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A work on breast cancer is done in [78]. The simulation of tissues is carried out

supposing a non-linear elastic behavior. The goal of the work is to understand, on one

hand, tissue deformations caused by tumor and, on the other hand to evaluate impact of

lampectomy on tissues. Medical MRIs are used to get the geometry needed to perform

the simulations.
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In this chapter the models used for this work are detailed followed by an accounting

of the computational techniques adopted for the direct simulations. Then a preliminary

analysis of the effect of parameters on the solutions of the direct models is presented. The

last section of this chapter outlines the operations that have to be performed in order to

use the medical images as data.

4.1 Two species Darcy-type model

In this section a simplified Darcy-type model is introduced, describing a three phases

saturated flow in a porous isotropic non-uniform medium. This is the reference model for

this work.

It is a parametric model that is simple and able to take the main physical features of

tumor growth into account. In the literature, several complex models have been proposed

[139, 140, 141, 43], describing age-structured populations as multi-species saturated flow

including the modeling of the cell cycle. Compared to those models, the mathematical

description proposed in the following is simpler and as a consequence it disregards certain

biological mechanisms.

The dynamics of two different cellular species is considered, denoted by P and Q. The

density P represents the proliferating cells (dividing cells, responsible for tumor growth)

and Q is the density of necrotic cells that die because of lack of oxygen in the tissue. A

passive motion assumption is made, so that the velocity field is equal for every cellular

phenotype phase [139]. Under this hypothesis, the mass balance equations for P and Q

are
∂P

∂t
+ ∇ · (vP ) = (2γ − 1)P, (4.1)

∂Q

∂t
+ ∇ · (vQ) = (1 − γ)P. (4.2)

where the velocity v models the tissue movement due to the increase of the tumor volume

and γ is the hypoxia threshold, a scalar function of the oxygen concentration that is

more precisely defined later on Eq. 4.10. If enough oxygen is available then γ = 1 and

Eq. 4.1 describes the proliferation of tumor cells and the quantity of necrotic cells is

constant thanks to Eq. 4.2. If there is a lack of oxygen, then γ < 1 and some proliferating

cells die and enter the necrotic phase thanks to Eq. 4.2. The function γ is a purely

phenomenological description of a complex biological process, and hence it has to be

identified since it cannot be deduced from experiments.
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The density of healthy cells is denoted by S and, since their metabolism is not as fast

as the metabolism of proliferating cells, the equation for S reduces to an homogeneous

transport equation, as explained in [139]:

∂S

∂t
+ ∇ · (vS) = 0. (4.3)

An hypothesis of saturated flow (see [140, 8]) is assumed, that is P + Q + S = 1, at

every point of the space domain and for every time. Summing up Eqs. (4.1), (4.2), (4.3)

leads to an equation for the divergence of the velocity field, namely:

∇ · v = γP. (4.4)

As already observed in the general outline of continuous models, this is equivalent to state

that mitosis acts as volume source for the flow.

In order to mechanically close the system a Darcy-type law is stated, that describes

quasi-steady flows in porous media, with a variable porosity:

v = −k(P, Q)∇Π. (4.5)

The scalar function Π plays the role of a pressure (or of the potential), and k is a porosity

field, that is a function of P and Q. The most simple, phenomenological law is a linear

mapping of the sum (P + Q), so that we have:

k = k1 + (k2 − k1)(P + Q), (4.6)

where k1 represents the constant porosity of the healthy tissue and k2 is the porosity of

the tumor tissue. Imposing Neumann conditions on the pressure field is equivalent, from

a physical standpoint, to imposing that there is no mass leaving the domain. In order to

have a well posed problem the equation for the divergence of the velocity is modified. In

particular the divergence must be a zero average scalar quantity, so that:

∇ · v = γ(C)P −
∫

Ω γP dΩ
∫

Ω(1 − Y ) dΩ
(1 − P − Q). (4.7)

From a mechanical point of view this is equivalent to impose that the growth of the tumor

causes a compression of the healthy tissue. Therefore the healthy tissue equation can be

no longer considered an homogeneous transport equation.

After defining the mechanics of the system, the nutrient evolution has to be specified.

In this case it reduces to a reaction-diffusion equation for the oxygen concentration. Other
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nutrients are not taken into account. A quasi-steady state assumption is quite reasonable

for the time interval of interest for this work (see [104]):

−∇ · (D(P, Q)∇C) = −αPC − λC, (4.8)

where α is the oxygen consumption rate for the proliferating cells, λ is the oxygen con-

sumption coefficient of healthy tissue and D(P, Q) is the diffusivity. Again, the diffusivity

can be written as a linear mapping of P + Q:

D = Dmax − K(P + Q). (4.9)

This phenomenological law reflects the fact that the diffusion of oxygen is different in

the healthy or tumor tissues. According to the physics of the system, reflecting different

clinical cases, Dirichlet or Neumann boundary conditions may be imposed for the oxygen

field. For example, in order to mimic the presence of a blood vessel, the oxygen concen-

tration is considered constant on the subdomain corresponding to the blood vessel. If

homogeneous boundary conditions are imposed a source of oxygen have to be modeled

according to the mechanisms that feed the tissues, otherwise the trivial (non physical)

solution is found.

The hypoxia function γ simply states that, when the concentration of oxygen is under

a certain threshold the cells become necrotic. The definition of γ is a regularization of

the unit step:

γ =
1 + tanh(R(C − Chyp))

2
, (4.10)

where R is a coefficient and Chyp is the hypoxia threshold.

The model presented is a continuous type model derived from the mixture theory

and it is a rather drastic simplification of those ones presented in the literature (see

[140, 132]). This choice is motivated by the applications targeted. When a tumor is

discovered it is already some millimeters in size and the propagation is essentially a

macroscopic phenomenon, so that it is naturally described by continuous models.

The cell cycle is not directly represented but its effects are lumped into the γ func-

tion. Moreover, angiogenesis is not modeled. This is unrealistic since tumors that reach

the size of some millimeters undergo to angiogenesis, which corresponds often to their

transition to malignancy. Its effect may be rendered through the oxygen parameters and

the efficacy of the model may be verified a posteriori. These simplification are necessary

to solve inverse problem because of the scarcity of the available data. As stated, the

objective is twofold: to give a reasonable description of the phenomenon and to define

an affordable identification problem. Hence the model proposed is a compromise between

these diverging objectives.
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4.2 Regularized Darcy-type model

The model detailed in this section is a simplification of the model presented in previous

one, intended to make inverse problems better conditioned. The starting point for the

derivation consists in observing that nutrients do not appear directly in the population

equations, but always biased by the hypoxia function γ. Moreover, since this model has

to be inverted for our purposes, the steeper γ, the worse conditioned the problem. One

possibility is to substitute the equation for nutrients with an equation for γ and performing

some simplifications and further regularizations.

Let us derive the equation for γ by a change of variable (γ being an hyperbolic tangent,

it is one-to-one):

C̃ = R(C − Chyp) =⇒ C̃ =
1

2
ln

(

γ

1 − γ

)

. (4.11)

The partial derivative of C̃ with respect to γ is:

∂C̃

∂γ
=

1

2γ(1 − γ)
. (4.12)

Let us stress that γ is really close to 1 or to 0 on the most part of the domain. Its evolution

equation is derived by applying the chain rule:

−∇ ·
(

D(Y )

2Rγ(1 − γ)
∇γ

)

= −αP

[

Chyp +
1

2R
ln

(

γ

1 − γ

)]

+ f(Y, P, γ), (4.13)

which is a nonlinear reaction-diffusion equation, in which Y = P + Q, as in the Darcy

model presented above. Let us consider the three parts of this equation separately.

The non-linear diffusion coefficient D(Y, γ) takes the following form:

D =
1 − kdY

2Rγ(1 − γ)
(4.14)

where kd, R are two parameters. The diffusion has a minimum for γ = 1/2 and D → ∞
for γ → 1 or γ → 0. These singularities for γ are responsible for the extremely bad

condition number of the inverse problem. Instead of having an infinite diffusivity, let us

assume that at γ = 0 or γ = 1 the diffusivity is:

D(Y, 0) = D(Y, 1) = c0D(Y, 1/2), (4.15)

where c0 is a parameter that defines the ratio between the maximum diffusivity, corre-

sponding to γ = 1, γ = 0 and the diffusivity for γ = 1/2. The diffusivity is thus rewritten
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in the following form:

D(Y, γ) =
1 − k̃Y

4(γ − ε(c0))(1 − γ + ε(c0))
, (4.16)

where ε(c0) is a scalar function of c0. This operation corresponds to translates the asymp-

totes of γ by a quantity ε: the next operation consists in ensuring that 0 ≤ γ ≤ 1. A

quadratic expression linking c0 to ε is easily obtained. The term that corresponds to the

nutrient consumption for the proliferating cells in Eq.4.13 becomes:

U = −α

(

Chyp +
1

R
ln

(

γ

1 − γ

))

P. (4.17)

In analogy to what is done before the same regularization is added, providing:

Ũ = −
(

α1 + α2 ln

(

1/2(1 + 1/c0)1/2 + (γ − 1/2)

1/2(1 + 1/c0)1/2 − (γ − 1/2)

))

P. (4.18)

Let us observe that the consuption has a maximum for γ = 1, and this maximum is:

Ũ |γ=1 = −
(

α1 + α2 ln

(

(1 + 1/c0)1/2 + 1

(1 + 1/c0)1/2 − 1

))

P = −α1P − α2 ln(K)P. (4.19)

The consumption computed for γ = 1/2 clarifies the physical meaning of α1:

Ũ |γ=1/2 = −α1P. (4.20)

The value for γ = 0 is important because it is supposed that C = 0 → γ = 0 and thus

the consumption computed in γ = 0 has to vanish:

Ũ |γ=0 = −(α1 − α2 ln(K))P = 0 ⇐⇒ α1 − α2 ln(K) = 0. (4.21)

This expression allows to eliminate one parameter as function of the other, recovering the

same number of degrees of freedom as the original model.

The last term can be modeled in different ways, according to the physics of the system

and the organ considered. In the present case a simple expression is assumed:

f = −Y γ (4.22)

This is a linear consumption term for γ that aims at modeling a sort of overpopulation

effect. For Y = 0, (i.e. in the healthy tissue) this term is zero.
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The equation describing the evolution of γ has the following form:

∇ ·
(

1 − k̃Y

4(γ − ε(c0))(1 − γ + ε(c0))
∇γ

)

= λP ln (Kg(c0, γ))P − λY Y γ, (4.23)

where the function g(c0, γ) is:

g(c0, γ) =
(1 + 1/c0)1/2 + (2γ − 1)

(1 + 1/c0)1/2 − (2γ − 1)
(4.24)

and K = K(c0) is:

K(c0) =
(1 + 1/c0)1/2 + 1

(1 + 1/c0)1/2 − 1
. (4.25)

Finally, ε(c0) is:

ε(c0) =
−1 + (1 + 1/c0)1/2

2
(4.26)

For sake of simplicity a more compact and manageable equation can be derived that

mimics in a least square sense the behavior of the equation written above, keeping the

properties imposed:

∇ ·
(

(1 − KY )(ωγ2 − ωγ + σ)∇γ
)

= (λP P + λY Y )γ, (4.27)

where ω, σ are parameters fixed according to the regularization length ε. For all the tests

performed in the present work we have chosen ε = 2.5 10−2, which implies ω = 35.40, σ =

9.76 . This modeling for γ(x, t) suggests an interpretation: the hypoxia function acts

like a triggering field for the growth and it represents the division velocity of a unitary

volume of proliferating cells that at time t is in the position x. This characteristic velocity

field is governed by a steady non-linear reaction-diffusion equation. Suitable boundary

conditions are imposed according to the organ nature.

All the other equations for this model are kept identical with respect to the reference

model presented in the previous section.

4.3 A one specie incompressible model

Another model was taken into account in the present work in order to compare the

prediction results and to investigate how the models affect the identification procedure.

The model briefly described in this section was presented and studied by Enault in [66].



74 CHAPTER 4. MODELS AND COMPUTATIONAL FRAMEWORK ADOPTED

It is a one specie incompressible model for tumor growth. The population of cancerous

cells is named Y and follows the equation:

Ẏ + ∇ · (vY ) = cY, (4.28)

where c is a constant parameter representing the growth rate for the tumor. A mechanical

description for the velocity field is provided by the saturation between healthy tissue and

tumor and by the Darcy assumption. In particular:

∇ · v = cY, (4.29)

and, then:

v = (1 + χY )∇Π, (4.30)

where the permeability is represented by the function k = (1 + χY ) and it is a linear

function of Y , exactly as in the Darcy model. Π is the scalar potential. Boundary

conditions are imposed according to the organ nature.

This model may be considered as a simplification of the Darcy model when several

hypothesis are made: first, no nutrient dynamic is involved, the division ratio being a

scalar constant parameter. This describe a tumor in steady environmental conditions.

Second, there is only one cancerous phenotype, there is no population dynamics.

This system has only two scalar parameters (χ and c). It will be useful to determine

which is the effect of the complexity on the ability to provide a realistic prognosis. A

comprehensive analysis from a mathematical standpoint is found in [66].

4.4 Computational Framework

The numerical techniques adopted to perform all the direct simulations are detailed in

this section. The numerical framework used is eLYSe.

The models described in the previous sections are in general systems of coupled elliptic

and hyperbolic PDEs. In order to approximate their solutions two main ingredients

are mandatory: a transport solver and a Poisson solver. The space discretization is

done by means of a standard Finite Volume Methods (FVM) on cartesian MAC grids

(see Fig.4.1.a). In particular, velocity is defined on cells interfaces, while pressure and

other quantities, like densities and nutrient concentrations, (generically denoted by ρ in

Fig.4.1.a) are known in the center of the cell, as usually done for incompressible Stokes

problems. Linear interpolation is used, diffusivities and permeabilities, which enters in
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(a) (b)

Figure 4.1: a) MAC discretization b) Penalization on cartesian grid

Poisson problems are computed at cells interfaces by means of the harmonic mean, in

order to fulfill continuity requirements.

As example, the discretization of the two species Darcy-type model in 2D is briefly

described. Let us first consider, the elliptic equations, describing Poisson problems for

the nutrients concentration and for pressure. Elliptic operators are discretized within

a penalization framework (see Fig.4.1.b), second order ghost fluid (see [82]) is used for

different kind of boundary conditions. For the pressure field, the equation reads:

−∇ · (k(Y )∇Π) = γP x ∈ Ωp, (4.31)

Π = 0 x ∈ Γ = ∂Ωp, (4.32)

where Ωp is the domain in which pressure have to be integrated. The equation is dis-

cretized on the whole domain:

ki+ 1

2
,j

Πi+1,j − Πi,j

∆x
∆y + ki,j+ 1

2

Πi,j+1 − Πi,j

∆y
∆x − ki− 1

2
,j

Πi,j − Πi−1,j

∆x
∆y+

− ki,j− 1

2

Πi,j − Πi,j−1

∆y
∆x +

1

ε
Πi,j Ωe = −γi,jPi,j,

(4.33)

where k is the harmonic mean of the permeabilities computed at the corresponding cell

interface, Ωe is the characteristic function of the domain Ωe and ε = 10−10 is the pe-

nalization constant. The resulting linear system is solved by a preconditioned Krilov

solver (GMRes) as implemented in PETSc libraries. In the case of parabolic equations,

as in non-steady diffusion for nutrients, second order implicit Crank-Nicholson scheme is

adopted.

Transport is computed through a classical WENO5 method, as proposed in [93], in

order to limit mass loss effects. The divergence part of the conservation equations is taken

into account as if it was a source for the transport equation, computed by means of an
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exponential term. The resulting discretization scheme is not conservative. The divergence

of the velocity being equal to the product between γ and P , a logistic equation is derived

for the population. The whole method is updated in time using an explicit Runge Kutta

mid point (second order accuracy), leading to a second order splitting of the operator.

For P variable the semi-discretized equation (in time) is the following one:

P n+ 1

2 +
∆t

2
(v ·∇P )n = P n +

∆t

2
(−P n(∇ · v)n + (2γn − 1)P n) , (4.34)

P n+1 +
∆t

2
(v ·∇P )n+ 1

2 = P n + ∆t
(

−P n+ 1

2 (∇ · v)n+ 1

2 + (2γn+ 1

2 − 1)P n+ 1

2

)

. (4.35)

The transport part has been kept on the left hand side, the other terms representing the

forcing part of the equation.

Geometries are taken into account through a level set approach. For a comprehen-

sive overview of the techniques we refer to [124]. For the present work level sets are

taken as signed distance functions, computed with the PDE approach presented in [143].

In particular Level sets are used to initialize tumor according to a layer structure (it

will be detailed later on), and to account for the organ geometry (in particular organs

boundaries). Organ frontiers may induce different boundary conditions on different fields,

according to the physical nature of interaction.

Parallelization (which is mandatory for 3D problems) is carried out using MPI and

PETSc libraries.

4.5 Direct simulations

In this section the behavior of Darcy model with respect to parameters is investigated

through direct simulations. For the 2D setting a realistic case is considered. Organ

geometry is taken into account by means of level sets, tumor is initialized as it is seen

in the first medical image. Details about the precise configuration are given further. 2D

simulations were performed varying α, Chyp , ξ, were ξ is the proportion of proliferating

cells at t = 0, defined as:

ξ =

∫

Ω P (x, 0) dx
∫

Ω Y (x, 0) dx
. (4.36)

Each parameter was varied in intervals spanning all the possible biological behaviors, i.e.

ranging from a very aggressive exponential type growth, to a stable or shrinking tumor.

The following intervals of parameters were simulated for the Darcy model:

• α ∈ [0.5, 8.0],
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(a) (b)

Figure 4.2: a) Direct simulations as function of three parameters (α,Chyp,ξ): sphere radius

is proportional to the average tumor volume, color scale renders aggressivity (norm of the

indicators). b) First indicator (f) plotted on three orthogonal slices and isocontours (30

lines between maximum and minimum).

• Chyp ∈ [0.2, 0.8] when maxΩ {C(x, t)} = 1.0 ∀t,

• ξ ∈ [0.1, 0.9].

These intervals were uniformly sampled. The simulation time was taken, for all the

simulations T = 5, which is an adimensional time such that, for the most aggressive

tumor (i.e. α = 0.5, Chyp = 0.2, ξ = 0.9) tumor final volume is about four times the

initial one. For all the simulation the porosity ratio was set as k2

k1
= 1.25.

In order to evaluate the growth, three different indicators were considered. Their

meaning and significance were discussed with medical doctors from Insitut Bergonié.

f =

∫ T

0

∫

Ω

Ẏ 2 dxdt, g =

∫ T

0

∫

Ω

Y dxdt, h =

∫ T

0

∫

Ω

Ṗ 2dxdt. (4.37)

The first quantity (f) denotes the ability of tumor to invade organs, since it tells how

fast it tends to increase its volume, in an average sense in [0, T ]. g is the average of the

tumor volume. Since the initial tumor is given and it is the same for all the simulations, g

represents also how much the tumor has increased its volume. The last indicator reflects

tumor aggressivity, its capacity to proliferate.

These quantities were plotted against the parameters values. In Fig.4.5.a) a plot is

shown in which each sphere represent the result of one simulation. The sphere radius
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is proportional to the average of the tumor volume, color scale is set according to the

magnitude of the vector (f, g, h). In Fig.??.b) three slices were taken, on planes parallel

to coordinate axis (i.e when one parameter is kept constant). The plotted quantity (color

scale and isocontours) is f .

This is in some sort a preliminary analysis, relying entirely on direct simulations and

post processing. This analysis is good to understand the properties of the model solutions

from a qualitative standpoint. Furthermore, in this work we tried to develop a reduced

order approach based on POD technique. This imply the construction of a database, i.e.

a collection of solutions varying the parameters. A good database is a trade off between

the ability to represent a sufficiently broad variety of biological behaviors and that of

rejecting impossible or improbable configurations. Such a preliminary investigation is

helpful in building a good database.

4.6 Dealing with medical images

When a sequence of images is provided by medical doctors, it is not ready to be used

for inverse problems. Several stages are required in order to systematically solve the

identification problems and get reliable results. In this work all these stages have been

done by hand. Existing techniques have been considered and no novel methods have been

investigated concerning image processing.

When bidimensional data are used the slice in which the tumor has the maximal area is

chosen. This is, of coarse, an approximation. In this work tumors have been studied that

were not too different from spheroids in shape, so that working with a section is not non

realistic. Furthermore, this is close to what is done in clinical practice. Medical doctors

are used to work on 2D slices instead of full 3D data, even when they are available. For

all the treated cases the slice selected was that on which the tumor area was the larger

among all the slices. Let us make an example of data, as they are generated by a CT scan

(see Fig.4.6). There are several elements which are different in the two: first, the zoom

is not the same. This is easy to infer (from thorax size for instance) and normally zoom

data are available. Second, the tumor location with respect to the reference frame of the

machine has changed. These images can not be used directly.

Two main stages are required before starting performing inverse problems: a segmen-

tation and a registration processes.

A segmentation procedure isolates the tumor and the organ. Both elements are needed

for the direct simulations to be performed. Images are segmented by a standard threshold
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(a) (b)

method. Realistic cases considered in this work uses CT scans of lungs as data. For this

organ images are well contrasted and resolution is not too poor so that this segmentation

method performs quite well. For other kinds of cancer this is more critical since tumor is

diffused and thus a tumor boundary is not defined.

A registration step is mandatory. Indeed, direct simulations (and, as consequence,

inverse problems) are performed in a fixed geometrical configuration, that is, the configu-

ration corresponding to the first image of the sequence. Geometrical configuration means

essentially organ shape and tumor position with respect to a fixed reference frame. Sev-

eral elements make the configuration vary in a substantial way: patient is not in the same

position when the successive scans are taken, machine may change and lungs undergo a

high strain due to respiration or external constraints.

In order to overcome possible zoom change an homothety is applied. When not avail-

able, zoom ratio between images taken with different machines were approximated by

measuring the distances between the sternum and the vertebrae, which is almost fixed,

not affected by respiration or rigid movements. Rotations were fixed by a rigid regis-

tration approach. In order to refer tumor position to the same reference frame tumor

baricenter were considered as fixed. This hypothesis is not ever realistic and the non-rigid

registration based on optimal transport aims at relaxing it. However, for the most part

of the metastases analyzed in the present work, rigid registration was a good choice.

Finally, images are recast in the desired resolution by means of a linear interpolation.

In some of the cases a quadratic interpolation was used. Tumor density is normalized

between 0 and 1, in such a way that compatibility with the models used is respected.
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In what follows a sensitivity framework (see [138] for details) for tumor growth mod-

eling is described.

In the first section inverse problems for ODEs models are detailed. In particular, the

model proposed by Simeoni in[109] is compared to the 0-D reduction of the Darcy type

model. Inverse problems have been performed on several realistic cases.

In the second section an approximated sensitivity approach is proposed for PDEs

models. Tests are commented on realistic datasets and some comparison with ODE

models is established. A study on perturbations effect is done aiming at testing the

stability and the reliability of the technique.

5.1 Sensitivity on ODE models

In this section a sensitivity approach is applied to ODE models. The goal is twofold: first,

different ODE models are compared on several realistic cases and, second, general behavior

of 0-D approaches is investigated and it will be compared to that of space approaches.

Several works were devoted to inverse problems for ODE models (see [67]). Due to the

simple nature of the equation, identifiability can be investigated in an analytical way (see

for instance [116]). For generic PDE problems this task in exceedingly hard and out of

reach.

5.1.1 A logistic-type model inspired by Darcy model

An ODE model derived from the two species Darcy model is set up. Let us briefly recall

the PDE model presented in the previous chapter:

∂Y

∂t
+ ∇ · (vY ) = γP,

∂P

∂t
+ ∇ · (vP ) = (2γ − 1)P,

∇ · v = γP,

v = −k(Y )∇Π,

∇ · (D(Y )∇C) = αPC + λC,

γ =
1 + tanh(R(C − Chyp))

2
.

(5.1)

The dynamics of two species is described, the variables P and Y = P + Q represent-

ing the proliferating and the total tumor cells densities respectively (the variable Q has
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been substituted by the observable). The total lagrangian derivative of the population

dynamics is derived by substituting the equation for the divergence of the velocity into

the population equations, resulting in a coupled logistic dynamics. Neglecting the space

effects the population dynamics of the 0−dimensional system reads:

Ẏ = γP (1 − Y ), (5.2)

which represents a logistic type dynamics for the volume. The proliferating cells volume

obeys the following dynamics:

Ṗ = (2γ − 1)P − γP 2, (5.3)

that is again a logistic-type of dynamics. The function γ translates the environmental

conditions: if the nutrient uptake is sufficient tumor proliferate, otherwise it dies. The

nutrient dynamics that is taken into account is quite simple, consisting in only one species,

let say the total quantity of oxygen that is available in the tumor neighborhood:

Ċ = (−αP + σ

(

Y

Y0

)2/3

)C, (5.4)

where α is the consumption rate of the proliferating part of the tumor and σ represent

the diffusivity rate of the oxygen, Y0 represents the volume of the tumor as it is computed

on the first scan. The initial condition for the overall amount of nutrients has been set

as C(0) = 1. The exchange of nutrients is performed through the surface of the tumor

(power 2/3 accounts for the surface); similar considerations are discussed in [144, 86].

Diffusivity has been fixed to σ = 1 for the performed tests.

The linking between the nutrients and the population dynamics is provided by an

hyperbolic tangent, as for the Darcy-type model:

γ =
1 + tanh(10(C − Chyp))

2
. (5.5)

The model was integrated by a second order Runge-Kutta mid point scheme. Sensitivity

equations were derived exactly for this case. The control set reduces to α, Chyp, P (0).

The initial condition for P is the volume fraction of the tumor which is proliferating at

t = 0.

The sensitivity system is derived for the proposed model. The following definitions

are introduced:

ZY
j =

∂Y

∂cj
, W P

j =
∂P

∂cj
, W C

j =
∂C

∂cj
, W γ

j =
∂γ

∂cj
. (5.6)
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The equations, obtained by deriving the original system with respect to the control, reduce

to:

ŻY
j = (W γP + γW P

j )(1 − Y ) − γPZY
j , (5.7)

Ẇ P
j = (2P − P 2)W γ

j + [2γ(1 − P ) − 1]W P
j , (5.8)

Ẇ C
j =

[

2

3

(

Y

Y0

)−1/3

ZY
j − αW P

j

]

C +

[

(

Y

Y0

)2/3

− αP

]

W C
j + PCδcjα, (5.9)

W γ
j = 4Rγ(1 − γ)(W C

j − δcjChyp
), (5.10)

where δ is 1 or 0 depending on whether the control element is present in the equation or

not. The initial conditions are homogeneous for all the functions except for W P
j , when

cj = P0. The algorithm is straightforward: the direct model is integrated at iteration

n, for a given set of control cn
j . The error is computed with respect to the measured

volumes (Imi); then, the sensitivity system is simulated, and the error is projected on

the sensitivity ZY
j , leading to the values of the descent direction. The gradient algorithm

used for the tests on ODEs systems thus reads:

cn+1
j = cn

j + β

(

No
∑

i

< E(x, ti), Z
Y
j (x; ti) >Ω dx

)

, (5.11)

where cj is the j − th element of the control set, No is the number of measures, E is the

error and β is the step, which is a constant parameter.

Let us describe some numerical details which are common to all the numerical tests

performed.

The model being in adimensional unit for what concerns the time scale, the times at

which data are taken need to be rescaled. As a matter of fact 0 ≤ γ ≤ 1 that implies that

the maximum growth rate for proliferating cell volume is 1. This means that:

γ = 1 ⇒ Ṗ = P (1 − P ) = sup
γ

{P (γ, t)} , (5.12)

that is a logistic equation, whose solution represent the maximum growth rate for the

tumor. This is a sort of compatibility condition, in the sense that the model can not

represent tumors growing faster than this. All the treated cases are non-dimensionalized

as follows:

τ = 1.1
(t − Tin)

(Tfin − Tin)
, (5.13)

where τ si the simulation time, t is the real biological time, Tin and Tfin are the time at

which the first and last datum are taken respectively.
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Moreover, as already said, the model have been initialized from different initial points,

in order to see if the method is robust enough and to evaluate the existence and the

basin of attraction of local minima. The procedure of initialization is case dependent and

it is the following one: several direct simulations are computed. Then, the parameters

combination that allows a tumor to grow up to a factor 5 in volume is taken as the upper

boundary for the parameters. The factor 5 is purely arbitrary but it is realistic for tumor

observed in clinical practice. The lower boundary is the set of parameters that represents

an almost steady tumor. Several initial points are chosen by uniformly sampling the

parameter space between the upper and the lower boundary. For ODEs this is costless

since a simulation takes only a second on a standard laptop.

The direct model was integrated by means of a second order explicit Adams-Bashfort

(AB2) method, taking N = 2500 time steps. Stability and convergence of the results were

checked.

The descent step is case dependent and it is chosen by tuning the algorithm in such a

way that the highest step allowing to obtain a stable descent is found. A common step,

which performs quite well for all the cases treated is β = 10−4.

The stop criterion was based on both the average relative error on the fitting and the

norm of the functional gradient at the n − th iteration, defined respectively as:

Erel =
1

No

No
∑

i

(Y (ti) − Imi)2

Im2
i

, ∆J =
1

β
‖cn+1 − cn‖2. (5.14)

The stop on the relative error was taken as E ≤ 10−2, while that of the 2−norm of the

difference between the controls was ∆J ≤ 10−4.

5.1.2 Realistic cases

In this part, the results of the proposed procedure are shown when realistic datasets are

taken. Two datasets are used, corresponding to different tumors. The first one, BEN (see

5.1) represents measures taken from a brain tumor (Courtesy, CHU Bordeaux) by means

of a conventional 3D MRI while FER (see 5.2) are volumes of a lung metastasis (primary

tumor being in the tyroid, courtesy, Institut Bergonié), taken using 2D slices of a CT

scan. What is under investigation is the ability of the model to fit the progression of the

evolution.

The biological behavior of these tumors is quite different, so that fitting them with the

same model would seem inappropriate. Nevertheless, parametric models can reasonably fit

different behaviors. Furthermore, let us claim then in ODE models effects characterizing
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Table 5.1: Data set and results for BEN case, Darcy-type model: 5 volumes measures are

taken from 3D MRI, resolution 3.0mm.

Month 0 3.7 17.0 22.6 24

V olume 7.935 9.136 12.954 13.117 13.703

E2Im(%) 0.0 0.10 0.26 1.0 3.0

E3Im(%) 0.0 0.12 0.20 0.63 2.35

E4Im(%) 0.0 0.15 0.26 0.50 2.0

Table 5.2: Data set and results for FER case, Darcy-type model: 5 volumes measures are

taken from 2D scan, resolution 1.25mm.

Month 0 21 33 38 43

V olume 0.0235 0.033 0.049 0.061 0.073

E2Im(%) 0.0 0.24 12.25 22.95 24.66

E3Im(%) 0.0 3.95 0.47 6.56 5.48

E4Im(%) 0.0 6.00 2.04 3.28 0.45

different physical and biological behaviors are flattened by the fact that only integral

quantities are described (see [141]). The following test was performed: α = 1 was

treated as a parameter (in order to have a small control set, see [102]), Chyp and P (0)

are the control. Let us remark that P (0) is the fraction of proliferating cell volume over

the total initial tumor volume (0 ≤ P (0) ≤ Y (0)). Using a small control lets us avoid as

much as possible local minima and in this case is significant, since the amount of data

is scarce. Having too many degrees of freedom would produce perfect interpolations, but

not significant, since it will be equivalent to a polynomial interpolation of sufficiently high

degree. In Fig.5.1 the results of the inverse problems are shown. The recovered parameters

using four data are: Chyp = 0.86 and P0 = 0.91. This means that the tumor at the very

beginning is almost entirely proliferating, but, since hipoxy threshold is high the system

undergoes to a saturation. In particular the solid lines represent the direct simulation

using the identified control set, the points represent the clinical measures; black circles

represent data used for the identification while red squares are the data which have to

be predicted. In Fig.5.1.a) the identification is performed using only two measures. This
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Figure 5.1: Identification for BEN case performed with a) 2 b) 3 c) 4 Data. Solid line

represents the simulation results, black circles are the data used for the identification, red

squares are the predictions.
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Figure 5.2: Identification for FER case performed with a) 2 b) 3 c) 4 Data

represents the minimal amount of information that is necessary in order to set up the

inverse problem. Let us observe that the three fittings are very similar; increasing the

number of data produces a least square effect on the fitting, that is, the model tends

to fit worse the second point in order to decrease the total value of the quadratic error.

Nevertheless the fitting is good since it allows to predict the global behavior of the tumor,

even with two data. What is more important, for realistic applications, is the ability to

predict correctly the first prediction point. In Fig.5.2 the same procedure was applied to

FER case. The parameters recovered using four images are: Chyp = 0.35 and P (0) = 0.31.

In this case only one third of the tumor is proliferating and the hipoxya threshold is lower,

so that the tumor is expected to grow in an exponential like manner. The fitting results

are worse if compare to that of the BEN data set; in this case all the images are needed

to obtain a fitting whose error is comparable with the machine tolerance for this tumor
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Table 5.3: Data set and results for BEN case, Simeoni model: 5 volumes measures are

taken from 3D MRI, resolution 3.0mm.

Month 0 3.7 17.0 22.6 24

V olume 7.935 9.136 12.954 13.117 13.703

E2Im(%) 0.0 0.70 9.69 24.49 25.59

E3Im(%) 0.0 0.71 1.74 13.97 14.43

E4Im(%) 0.0 2.90 5.43 4.29 4.35

size. In particular a non-logistic behavior (increasing proliferation rate at t ≈ 32months)

is not well represented. Moreover the fitting of the second point become worse when four

images are fitted.

The same tests were performed with the model proposed by Simeoni in [109]. Let us

recall the model:

ẇ =
λ0w

[

1 +
(

λ0

λ1
w
)ψ

]1/ψ
. (5.15)

For sake of brevity sensitivity equations are not reported; integration were performed

with the same method. In Table 5.3 the results are reported. Simeoni model has three

parameters, one (ψ = 3.6) is a regularization, which does not vary much (it may be

considered a parameter). Thus, the number of control elements is equivalent to the one

used for the Darcy-type model. The model proposed by Simeoni has a worse performance

in fitting the BEN dataset. As a matter of fact, when 4 volumes are taken it has an average

fitting error of 4.25%, greater than what obtained with the proposed Darcy-type model.

In particular, when all the volumes data are taken the fitting of the second one becomes

poor. The recovered parameters are: λ0 = 3.72 and λ1 = 0.73. In Fig.5.3 the fittings

are shown when several volume data are taken. The dynamics described by the model is

too simple in this case and does not allow a good representation of the saturation of the

growth. In order to fit the points in a least square sense the model provide an almost

linear fitting, which is not realistic.
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Figure 5.3: Identification in the BEN case performed with a) 2 b) 3 c) 4 Data and the

Simeoni model

5.2 Sensitivity on 2D regularized Darcy-type model

A sensitivity approach is set up on the Darcy regularized model. Instead of considering

exact sensitivity, an approximated sensitivity approach is set up in order to use only direct

system integrations. This is less precise than the exact sensitivity approach described in

the previous section, but it allows to build an easy parallelizable tool to solve the inverse

problem.

Let us denote the solution of the direct simulation for the observable, at iteration n,

with Y n. Let us write the solution of the perturbed system with Ỹj, which is the solution

of the direct simulation when the j − th control element is perturbed, i.e. c̃j = cn
j + ∆cj,

where ∆cj/cn
j = 5 · 10−3. In the case that the control is zero, a small perturbation of

10−4 is taken as default value. The amplitude of the perturbations have to be chosen in

such a way that the precision on the sensitivity is good (so the smaller the perturbation,

the better the approximation), and that no cancellation errors affect the computation.

Indeed, if the perturbation is too small, the solutions tends to be exactly the same (con-

sidering discretization errors), so that a zero sensitivity function would be recovered, or

a sensitivity affected by numerical errors. At first order, the following relation holds:

Zj ≈
Ỹj − Y n

∆cj
. (5.16)

The update step than consists in computing an approximated descent direction by pro-

jection of the error onto the approximated sensitivity and inject it into the optimization

method.
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Again, a gradient method were chosen as a first method:

cn+1
j = cn

j + β

(

No
∑

i

< E(x, ti), Z
Y
j (x; ti) >Ω dx

)

, (5.17)

where β = 10−2 was the step used for the computations. A second choice of the method

is a classical BFGS (see [122] for details), which will provide a faster convergence. In all

the treated case the set of control is of small dimension, so that a low memory version

is not necessary and matrix inversion may be done without a significant computational

effort.

The starting point was chosen exactly with the same procedure used for the ODEs

models: direct simulations were performed to select a range of parameters allowing to

represent the admissible biological behaviors. Then, the parameters of the most aggressive

and the quasi-steady simulations were chosen as upper and lower boundary.

The stop criterion was based, as done for the ODEs based inverse problems, on the

average relative error on the fitting and the norm of the functional gradient at the n− th

iteration, defined respectively as: The stop on the relative error was taken as E ≤ 10−2,

that of the 2−norm of the difference between the controls was ∆J ≤ 10−4.

5.2.1 Layer structure tests

The first set of tests were performed on a small size control set. The initial condition

for the proliferating cells was parametrized by using the level set that describe the tumor

boundary, as it is seen (and segmented) in the first image of the available sequence (i.e.

for t = 0). Let us denote by φ(x) the implicit function whose zero isocontour coincides

with the segmented boundary of the tumor. Then, the distribution for the proliferating

cells reads:

P (x; 0) = P0(x) = A exp(−δφ2), (5.18)

where A is the amplitude and δ is the steepness of the layer, that is, the inverse of its char-

acteristic length. This condition is based on the well accepted hypothesis (confirmed also

by experimental observations) that proliferating cells concentrates on the tumor boundary

due to the presence of nutrients and better micro-environmental conditions. The other

elements of the control set are the consumption rate of the proliferating cells (λP ), that of

the tumor tissue (λY ), the porosity ratio (χ = k2/k1), the diffusivity coefficient(K). Thus,

the control consisting in 6 parameters, 7 direct simulations are needed for each iteration

of the descent algorithm.
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Some constraints must be added to parameters in order to get admissible solutions.

For the initial distribution of proliferating cells, it is important that 0 ≤ A ≤ 1; moreover,

δ ≥ 0, so that in the limit of a vanishing δ the distribution is uniform, but it is impossible

to have a maximum of proliferating cells in the centre of the tumor. The porosity ratio

must be a positive scalar (χ > 0) for physical reasons. The penalization of the diffusivity

have to satisfy 0 < K < 1, in order to prevent that diffusivity is increased in the tumor

region, which is unrealistic (K > 0) and to avoid an anti-diffusive behavior of γ (K < 1).

An hypothesis concerns the consumption of γ: λY ≤ 2 10−2λP . A similar hypothesis

is made for the non regularized Darcy model concerning the consumption of nutrients.

These hypothesis were verified numerically. Let us suppose that cn satisfy the constraints;

it may happen that cn+1 does not: in this case the control at iteration n + 1 is modified

such that the update fulfill all the requirements. In particular it is projected onto the

constraint, the resulting update being on the constraint manifold. The constraint is, in

this case, the boundary of the hypercube defined by the parameters intervals. So, if an

update is such that, for example, cn+1
j > cmax

j , then cn+1
j = cmax

j .

This technique was tested first on a numerical testcase. In particular, a direct simula-

tion was computed (parameters were randomly chosen) and taken as reference. A dataset

of 12 images was recorded and used to validate the approach. The initial conditions for

the tumor and the geometry were taken from a realistic case (called FER-II data set

in the following). The computational domain was a square [0, 8] × [0, 8], the resolution

200 × 200. Several tests were performed by changing the starting point and letting the

algorithm evolve toward the solution according to the procedure described above. If the

starting point coincides with the solution, the algorithm stay exactly in the solution. In

all the other cases the error in L2 norm was less than 2.5 10−3. With 12 images no local

minima were found even when the starting point was quite different to the solution (i.e.

the fitting error greater than 20% in average, at the very first iteration of the algorithm).

After having validated the algorithm a realistic test was performed. Images were taken

of a patient which has several metastases (primary tumor being in the tyroid).

In Fig.5.4 four scans covering an evolution over 45 months are presented. Even though

this patient is affected by several metastasis, only the evolution of the one marked in

Fig.5.4.a) will be studied here. Several tests were performed, varying the number of

images used as input for the inverse problem. In particular, the tests with 2 and 5 images

were performed. These allows to compare the behavior of PDEs models with that of ODE

models and to understand if the chosen model is able to reproduce the growth dynamics

in a satisfactory way.
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(a) (b)

(c) (d)

Figure 5.4: Scans: a) November 2005, b) October 2007, c) July 2008, d) April 2009
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Figure 5.5: Curve of the evolution of the tumor area: identification with a) 2 images b)

5 images

Table 5.4: Data set and results for FER-II case, Regularized: 6 volumes measures are

taken from 2D scans, resolution 1.25mm.

Month 0 21.0 24.5 36.0 40.5 45.0

Area 4.2e-3 6.5e-3 8.1e-3 9.7e-3 1.03e-3 1.10e-3

E2Im(%) 0.0 1.8 2.47 2.02 1.94 1.36

E5Im(%) 0.0 1.8 1.23 3.03 0.48 1.09

‖Y − Im‖2Im 0.0 0.22 0.24 0.35 0.31 0.24

‖Y − Im‖5Im 0.0 0.22 0.24 0.33 0.29 0.22

The computational set up was the following one: the direct simulations were performed

in a square domain [0, 8] × [0, 8] with a resolution of 200 × 200. The final adimensional

time was taken T = 5, that allows to represent the growth when max {γ} = γ|∂Ωl
= 1,

where Ωl is the lung boundary as it has been segmented in the first image of the sequence.

For each direct simulation 20 frames of the growth are taken. The sensitivity technique

was initialized in several points to avoid local minima and test convergence. The time

needed to reach convergence for one sensitivity computation varies between 75 and 100

hours on one CPU.

The results in terms of volume are described in Fig.5.2.1. The curves are similar one

each other, denoting that even with 2 images a good result is obtained. In Table 5.4 the

errors are shown; the average error in volume (denoted by E) when 2 images are considered

is about 1.92% and it decreases to 1.53% when 5 images are used. The errors in L2 norm

are computed by the L2 norm of the difference between the scan and the simulation at
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Figure 5.6: Contours of the difference between the scans and the simulation at time

corresponding to a) the second image b) the last image. 40 isolines are plotted between

the maximum and the minimum.

corresponding time, normalized by the L2 norm of the scan. The trend when two or five

data are used is practically the same, the values are not so different.

The space errors are investigated in terms of structures. In Fig.5.2.1 the difference

between the scan and the simulated observable at corresponding time is shown when

the identification performed with five images is considered. The contour plot are shown

with 40 level lines between the minimum and the maximum. A zoom is represented in a

window of coordinates [2.25−4]× [2−3]. In Fig.5.2.1.a) error is represented with respect

to the second scan, which was used for the identification, while in Fig.5.2.1.b) the error

corresponding to the last image is plotted. The L2 error is computed and normalized with

the L2 norm of the image. For the second scan it is 0.22 and for the sixth one 0.24. This

is expected since the second scan was used for the identification procedure. However the

difference is not too relevant. In particular the nature of the error is the same in the two

cases: the differences are localized in a small region surrounding the segmented boundary,

such that the error is more or less a zero average field. The volume is well captured, the

recovered shape has still some errors.

The values of the recovered parameters when 5 images are used are the following ones:

χ = k2/k1 = 5.377, K = 0.794, αN = 2.90, αS = 0.010, A = 0.9157, δ = 75.5. All

the parameters have realistic values except for χ, which is too high (normal values are

about 1.25). This is due to the fact that the error that affects the fitting is essentially

concentrated on the tumor boundary. The Darcy model tends to regularize tumors, so

that they tends to become less irregular while evolving. The mechanics of the system
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is governed by the Darcy law. The divergence of the velocity play a major role in the

evolution and control tumor volume. The vorticity, instead, influences the shape: its norm

is induced by the parameter χ and it is different from zero in a small region surrounding

tumor boundary. Increasing the value of χ diminishes the error on the shape. For higher

values of χ the system could develop instabilities, which are not physical and prevent the

inverse problem to be well conditioned.

Tests using 3 and 4 images were performed: the results are absolutely equivalent and

thus, for sake of brevity, they are not reported.

An analysis is carried out on the sensitivity functions aiming at studying the properties

of the obtained solutions. An analysis of the Hessian of the functional would require the

computation of the adjoint system solution. Instead, we concentrate on the study of the

property of the descent direction in correspondence of the numerical solution. It reads:

∂J

∂ck
= −

NIm
∑

i

∫

Ω

EiZk(x, ti) dΩ. (5.19)

Using a Taylor development around the actual solution, the following is obtained:

E = Imi − Y (x, ti) = Y (x, ti) +
Nc
∑

j

Zj∆cj − Y (x, ti) + o(∆c2
j ). (5.20)

This first order expansion is replaced into the expression for the descent direction, pro-

viding:

∂J

∂ck
≈

Nc
∑

j

(

NIm
∑

i

∫

Ω

ZkZj dΩ

)

∆cj =
Nc
∑

j

< Zk, Zj > ∆cj , (5.21)

that is, at first order, the descent direction is approximated by the product between the

autocorrelation matrix of the sensitivities and a perturbation of the control. An analysis

of the spectrum of the matrix tells us if there are directions in the control space that are

not observable and that does not change the functional value in a significant way. Indeed:

∂J

∂c
≈ A∆c, ∆c =

Nc
∑

i

aiv
(i), (5.22)

where v(i) is the i-th eigenvector of A, the autocorrelation matrix of the sensitivities.

Since eigenvectors form an orthonormal bases of the space ai are uniquely defined and

represents the projection of ∆c on the i-th eigenvector. This expression is substituted
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into the approximation of the descent direction, leading to:

∂J

∂c
≈

Nc
∑

i

aiAv(i) =
Nc
∑

i

aiλiv
(i), (5.23)

and λi is the i − th eigenvalues of A. if exist a λi ≈ 0 this moving parallel to the i-th

eigenvector does not make the functional vary at the first order. Conversely, this mean

that the direction represented by the i-th eigenvector is not observable, there is no descent,

so that the solution does not move in that direction, the parameter behaves more or less

as a constant.

The analysis of the spectrum was performed and what follows was obtained: Λ =

{1.10, 0.11, 8 · 10−3, 4 · 10−4, 2 · 10−4, 2 · 10−7}. The direction that corresponds to the higher

eigenvalue is aligned with the direction that corresponds to the modification of the pa-

rameter that corresponds to the consumption of Y , which is constrained to be positive

and not too high. The eigenvector corresponding to the smallest eigenvalue is aligned

with the change in δ alone. This is probably due to the fact that the resolution of the

layer is not sufficient, thus small changes in this parameter does not affect the simulation

very much.

This computation may be used to precondition the descent and accelerate the converge.

It is not as efficient as the knowledge of the Hessian but it may be helpful in accelerate

the convergence.

5.2.2 Extending the control by harmonics

In order to see what the effect of the control set is on the solutions, a larger control set

was tested, with the regularized Darcy model, exactly in the same conditions used for

the tests shown in the previous section. We focus on the influence of the parameters

determining the initial conditions: in this case harmonics are introduced as function of

θ = atan(y/x). The expression for P0 takes the following form:

P0 =

[

Nh
∑

k=0

αkcos(2πkθ + ζk)

]

exp(−δφ2), (5.24)

where αk is the amplitude of the k − th harmonic and ζk its phase shifting. For the tests

performed Nh = 2, so that 5 parameters describes the initial distribution for P . The

constraint for the distribution has to be considered: there is no constraint for the phase

shift. For the amplitudes the following must hold:

0 < α0 < 1, (5.25)
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Figure 5.7: Contours of the difference between the scans and the simulation at time

corresponding to a) the second image b) the last image. 40 isolines are used between the

maximum and the minimum.

which means that the average of the amplitude of P0 is in (0, 1). Then, two conditions

have to be satisfied:

α0 +
Nh
∑

k=1

|αk| < 1,

α0 −
Nh
∑

k=1

|αk| > 0,

(5.26)

that is a sufficient condition for the proliferating cells density to be admissible. The test

when 5 images are taken has been performed, since it represents the best possible fitting

for the model, so that it tells us if a significant improvement is due to the use of an

extended control.

In terms of volume there are no significant differences in the fitting, so that, for the

sake of brevity the results will not be reported. Let us investigate, instead, the space

error structure. The test was stopped when the same average error of the best fitting

solution obtained with the layer structure control (see the previous section) was reached.

In Fig.5.7 the zoom of the difference between the scan and the simulation is shown. The

structure is slightlty different, the characteristic dimension of the structures is different,

they are smaller, and this is expected. Though, the same phenomenon highlighted in the

previous section is observed, concerning the nature of the error; it does not change between

an image used for the identification and the prediction. This is due to the regularizing

character of the model used and to the fact that geometrical imperfections in the tissue
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are not rendered.

The initialization of the optimization procedure was performed according to the pro-

cedure used for all the other tests, excepted for the harmonics, that were initialized to

zero for all the tests.

Local minima appears with this extended control and the problem is more difficult to

solve. In particular one solution corresponds to that obtained with the layer structure

control (harmonics coefficients are null), the others have a modulation of the amplitude

with the angle θ. The parameters values obtained are: χ = 3.30, K = 0.49, αN = 2.91,

αS = 0, α0 = 0.5294, δ = 38.74, α1 = 0.159, ζ1 = −0.676, α2 = −0.26, ζ2 = 1.36. Let

us remark that the ratio between permeabilities is decreased with respect to the layer

structure control set and the diffusivity penalization too. This is the main effect and it

is due to the presence of harmonics in the layer, that are able to render the shape in a

slightly better way. The oxygen consumption rate does not change in a significant way,

due to the fact that it influences the global behavior (the volume attained) and dynamics.

An analysis of the spectrum of the autocorrelation of sensitivities was performed in

this case. The results are similar to those obtained with the layer structure control for

what concerns the maximum and the minimum of the eigenvalues.

Extending the control with the regularized Darcy Model allows to heve better per-

formances in terms of shape recovery. The parameter describing the permeability ratio

between the tumoral and the healthy tissue vary significantly with respect to the tests

performed without harmonics. The other parameters are not affected so much. The

drawback of extending the control in this direction is the appearance of local minima that

make the system more difficult to deal with.

5.3 Testing other models

In this section some tests performed by adopting other models are detailed. First, the

performance of the identification are investigated when the model proposed by Enault

(see for instance [66]) is used. Let us briefly recall it:

Ẏ + ∇ · (vY ) = cY,

∇ · v = cY,

v = (1 + χY )∇Π.

(5.27)

The parameter c is constant and represent the inverse of the characteristic time scale of

the system, Y is the observable and χ is the permeability ratio.
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Table 5.5: Data set and results for FER-II case, One specie incompressible model: 6

volumes measures are taken from 2D scans, resolution 1.25mm.

Month 0 21.0 24.5 36.0 40.5 45.0

Area 4.2e-3 6.5e-3 8.1e-3 9.7e-3 1.03e-3 1.10e-3

E3Im(%) 0.0 4.54 1.26 4.12 4.76 0.87

‖Y − Im‖3Im 0.0 0.50 0.44 0.46 0.42 0.35
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Figure 5.8: FER-II dataset analysis: a) Volume curve with respect to months b) Contours

of the difference between scans and images for the first prediction, that is the fourth scan.

Let us describe the results obtained on the FER-II dataset when three images are

used for the identification. The objective of this test is to see if a simple model, whose

dynamics mimics the Darcy model, is able to take the main features of the propagation

into account when a small control set is chosen. In particular two scalar parameters

are set up: the proliferating rate (c) and the proportion of cancerous cells at the very

beginning (Y (0)). The observable is taken as the characteristic function of Y . In Table

5.5 the results of the numerical experiments are shown. The model identified with three

images has a greater error in fitting with respect to the Darcy model identified with two

images. Indeed the average error in volume is about 3.11% with respect to the 1.92%

obtained with the more complex model. The same trend in the errors may be observed

in the L2 errors, concerning the shape. In Fig.5.3.a) the volume curve is plotted. Again,

the continuous line is the simulated evolution, the black circles represents the area of the

scans used as data and the red squares are the measures that have to be predicted. The
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curve confirms substantially what commented about the errors. The fitting is less good

if compared to the one obtained using the Darcy model, but the growth process is well

captured. Moreover, in spite of the use a very small control set, the main features of the

propagation are represented and the errors have the same order of magnitude. This model

may suffer in cases in which a plateau type of solution appears (as the model proposed

by Simeoni), since there is no mechanism which can regulate or inhibit the growth.

In Fig.5.3.b) the difference between the fourth scan and the simulation is shown (40

contours lines are plotted between the maximum and the minimum). Peculiar structures

localized around the tumor boundary appear, highlighting the fact that the shape is

regulated approximately in the same way as in the more complex model. Thus, the

complexity of the Darcy model acts on the dynamics, allowing to represents a wider

range of growths. Little improvements are obtained on what concerns the representation

of the shape.



Chapter 6

Residual Based Approach

101



102 CHAPTER 6. RESIDUAL BASED APPROACH

In this chapter a residual based approach is presented, aiming at reducing the cost of

the inverse problem. The proposed technique is based on the use of Proper Orthogonal

Decomposition to build up a regularization for the inverse problem.

In the first section a summary of some preliminary tests are outlined: the goal is

to show if and whether a residual based computation is effective. Then, the technique

used for the model reduction is presented and the whole method detailed. In the following

section some analytical tests are presented. The comparison with the sensitivity approach

in the same numerical conditions is described and in the last section several realistic test

cases are commented.

For all the study of the reduced order approach the two species Darcy model was used.

It is recalled hereafter:
∂Q

∂t
+ ∇ · (vQ) = (1 − γ)P,

∂P

∂t
+ ∇ · (vP ) = (2γ − 1)P,

∇ · v = γP,

v = −k(Y )∇Π,

∇ · (D(Y )∇C) = αPC + λC,

γ =
1 + tanh(R(C − Chyp))

2
.

(6.1)

Again, Y = P + Q is the total density of tumor cells.

6.1 Preliminary inverse problems

The first inverse problems we solved are briefly presented. The objective is to study the

possibility to rely on the residual of the equations to recover the unknown fields and pa-

rameters, thus transforming the inverse problem into an algebraic non-linear optimization.

Several possibilities arise, the choices and the main results are discussed.

In particular the first inverse problem is a simple algebraic problem in which only a

scalar is sought. Then, informations amount is decreased in order to approach realistic

situations, in which, as already commented, it is scarce.

6.1.1 Identification of porosity

The first problem is the following one: identifying the porosity field k(P, Q) knowing

P, Q, γ(C). If the unknown is simply the porosity field the solution can be computed
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using a least square method with a Tikhonov regularization, that prevents numerical

propagation of error due to singularities, i.e. zero velocity in certain domain regions.

Since the direct equations are used the time derivative of populations densities Ṗ , Q̇,

see Eq.(4.1, 4.2) are needed.

The first choice is to use finite differences and so, supposing that two snapshots are given,

sufficiently close in time, we write:

Ṗ ≈ P (t1) − P (t0)

t1 − t0
, Q̇ ≈ Q(t1) − Q(t0)

t1 − t0
. (6.2)

Numerical tests were done in this configuration: one blood vessel sufficiently far from

the tumor, Dirichlet boundary conditions for both the pressure field and the oxygen

concentration. In such a configuration the system Eq.(4.1-2.19) can be written in the

following manner:

v ·∇P = (2γ − 1)P − γP 2 − Ṗ , (6.3)

v ·∇Q = (1 − γ)P − γPQ − Q̇, (6.4)

∇ · v = γP, (6.5)

v = −k∇Π, (6.6)

where the right hand side is known. For computational purposes the curl of the Darcy

law is taken. The above system, denoting with w1 and w2 the right-hand side of the mass

conservation equations (that we know since P, Q, γ are known), becomes:

(∂xP )Vx + (∂yP )Vy = w1, (6.7)

(∂xQ)Vx + (∂yQ)Vy = w2, (6.8)

∇ · v = γP, (6.9)

k∇∧ v = ∇k ∧ v. (6.10)

The first two equations being decoupled, the velocity field is computed directly. By using

a least square method the following is found:

R2
1 = ((∂xP )Vx + (∂yP )Vy − w1)

2 (6.11)

R2
2 = ((∂xQ)Vx + (∂yQ)Vy − w2)

2 (6.12)

Vx, Vy = arg min
{

R2
1 + R2

2 + α1

(

V 2
x + V 2

y

)}

, (6.13)
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where α1 is the Tikhonov regularisation constant, chosen by the L-curve method. Once

the velocity found, the porosity is solved in a similar manner.

The porosity field is reconstructed with an error that is smaller than 5%, in norm L2,

for all the treated cases. The error is particularly low when potential or near potential

flows k ≈ 1 + ε(x, y), ε << 1 are considered and when the system is identified in the first

part of the avascular history, let us say at 10 − 20%. This is due to the fact that in this

phase the mechanical aspects of the propagation, that are directly linked to porosity, are

particularly important.

6.1.2 Simplified logistic-type model: identifying porosity and

hypoxia function

In the second case porosity and hypoxia function γ are sought, the latter supposed to be

constant. This is equivalent to identify the Darcy-type model with a simple logistic type

model, similar to the one described in [38].

As in the previous case an approach based simply on the PDE system is possible. Let us

assume that two subsequent snapshots of P and Q are given. This is sufficient to make

the problem well defined. The system of equations to be solved is:

(∂xP )Vx + (∂yP )Vy = (2P − P 2)γ − (P + Ṗ ), (6.14)

(∂xQ)Vx + (∂yQ)Vy = (−P − PQ)γ + (P − Q̇), (6.15)

∂xVx + ∂yVy = γP, (6.16)

k∇∧ v = ∇k ∧ v, (6.17)

The equations written above can be decoupled: the first three equations can be solved

as done before using a least square method. The solution for the velocity field is thus

injected into the curl of the Darcy equation to obtain the porosity. Several tests were

performed in different numerical configurations: some numerical instability was found.

Indeed, an approach based simply on the described techniques is not always stable

from a numerical point of view. Therefore there are cases in which the identification can

not be performed directly using the PDEs system. Moreover, some tests were done in

which the data amount was decreased, in order to approach realistic applications. The

chosen observable was Y = P + Q instead of P and Q. In these cases the problem results

ill conditioned, preventing a residual based approach to be satisfactory. A regularization

is looked for, such that the problem becomes affordable.
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6.2 Regularization by Proper Orthogonal Decompo-

sition

When the number of data decreases (the observable is only Y = P+Q) the inverse problem

becomes more and more ill conditioned. In the literature regularization approaches are

discussed in order to overcome this peculiar feature of inverse problems ([92, 21, 153, 95] for

a comprehensive overview). In [153] the regularization process is studied in a statistical

context, in [95] a discussion on regularization and model reduction effects is detailed.

A polynomial chaos acceleration is commented in [112]. The regularization consists in

looking for a solution in a different space (often of reduced dimension), in such a way that

the resulting problem is better conditioned than the original one.

For the present work Proper Orthogonal Decomposition (POD) is used to set up a

regularization for inverse problems. A detailed presentation of the technique is provided

in [147, 90]. This approach was proposed for population dynamics in [165], and it is widely

used in fluid mechanics to study the arising of coherent structures (see [90]), for model

reduction (as in [32]) or in flow active control (see [161]).

Let us detail the Sirovich method for the POD decomposition. Given a solution

u(x, t; πk), where πk is the k−th parameter influencing the solution, a database of snaphots

(Ns is their number) is built, consisting in the time frames collection of the simulated

solutions. The i − th snapshot of the database is ui = u(x, tj ; πk). The POD approach

consists in looking for a basis φj, j = 1, ..., Nu, where Nu is fixed, in such a way that the

L2 representation of u is maximized, that is:

φi = arg min
φ̃j

{

Np
∑

k

∫ T

0

∫

Ω

(u(x, t; πk) −
Nu
∑

j

aj(t, πk)φ̃j(x))2 dxdt

}

. (6.18)

The Sirovich hypothesis consists in stating that φj =
∑Ns

h cjhuh, that is, the modes are

expressed as linear combination of the snapshots themselves. Introducing this into the

minimization leads to an eigenvalue problem whose solution is:

φj =
Ns
∑

h

b(j)
h uh

λ1/2
j

, (6.19)

where b(j)
h is the h− th component of the j − th eigenvector of the autocorrelation matrix

Aij =

∫

Ω

uiuj dx, (6.20)
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and λj the corresponding eigenvalue.

The representations of the variables that are not observed and that play a role in the

dynamics of the models used for this work have been investigated. A database was built

simulating the Darcy model in a squared domain. The growth of a tumor attracted by a

blood vessel was simulated, varying the following parameters: χ = k2/k1, η = K/Dmax,

α, Chyp, λ. The domain is the square [0, 8]× [0, 8], the vessel is located at x0 = (3, 4), the

tumor is initialized at the center. The vessel is simulated by a circle in which the oxygen

concentration is fixed at Cbv = 0.15. More details on this testcase are provided in the

following sections.

The database was built as follows: 576 simulations were done, taking 20 time frames

each one. The parameters were varied in the intervals:

• χ = k2/k1: [0.50, 1.0, 1.5, 2.0], k1 = 1 for all the simulations,

• η = K/Dmax: [0.10, 0.45, 0.80], Dmax = 2 for all the simulations,

• α: [0.1, 1.0, 3.0, 5.0],

• Chyp: [0.05, 0.045, 0.085, 0.125], maxΩ {C} = 0.15,

• λ: [0.001, 0.1, 0.5].

For the Darcy-type model the unknowns are P ,Y ,C,γ,Π (or v). There are two possibilities

to build the regularization basis: the first one consists in extracting a unique vector basis,

taking all the variables into account as components of the same vector field. The second

one consists in looking for a separated expansion for each variable. This second option

was chosen as the involved variables have different meanings and they are inhomogeneous

from a physical standpoint. Let us show the POD eigenfunctions for the first modes of C

and P for this testcase. For the other cases treated the POD eigenfunctions have a similar

behavior and for the sake of brevity it will not be detailed. In Fig. 6.1.a (upper line) the

first eigenfunction is shown, which is the average of the oxygen fields. The blood vessel

is recognized. In the other modes the presence of the tumor becomes more evident: it

induces some variations due to the consumption and its motion toward the blood vessel.

In Fig. 6.1 (lower line) the eigenfunction for the proliferating cell density are shown.

They are compactly supported, since proliferating cells are, ∀t ∈ [0, T ]. P is moving

toward the blood vessel so the movement is rendered by the wavy structure. The higher

the mode number the higher the wave number of the wave. The quantitative properties

of representation of the modes have been investigated too. In Fig.6.2 the L2 represen-
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Figure 6.1: Eigenfunctions for the owygen field (above) and for proliferating cells (below):
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Figure 6.2: L2 representation with respect to the number of used modes for a) oxygen

and b) proliferating cells density; the database for the Darcy model was used.
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tation error for the oxygen (a) and for proliferating cells density (b) is represented as

function of the number of POD modes, when the setting presented in case I, detailed

below, is adopted. A novel simulation, that does not belong to the database (initialized

with random parameters) was performed and then L2 error was computed when fields

were reconstructed with an increasing number of POD modes. The error is quite similar

between the two, but for oxygen it decreases faster. This is due to the fact that oxygen

is governed by a diffusion equation, while proliferating cells evolve driven by a transport

and their support evolves during the simulation. More POD modes are needed to take

this non-global behavior into account for proliferating cells.

6.3 Reduced Order Technique

In this section the reduced technique is presented. It is composed by two stages: the

offline and the online ones. The former consists in the construction of the database for

a given case (i.e. a geometry, an initial tumor location and shape, a model) and in the

extraction the POD basis for all the variables that are not observed. Then, in the online

case, the expansion is injected into the equations and inverse problems is solved. In this

section these passages are commented and the whole technique outlined.

Let us set up the reduced approach for the Darcy model; the observable evolution is

governed by:

Ẏ + ∇ · (Y v) = γ(C)P. (6.21)

the divergence of the velocity field obeys:

∇ · v = γ(C)P −
∫

Ω γP dΩ
∫

Ω(1 − Y ) dΩ
(1 − Y ), (6.22)

where the expression relative to Neumann boundary condition for the pressure field was

retained. In the case of Dirichlet boundary conditions the second term of the right hand

side of this equation vanishes. The curl of the Darcy law reads:

k(Y )∇∧ v = ∇k(Y ) ∧ v. (6.23)

and the equation for the oxygen concentration field is written:

∇ · (D(Y )∇C) = αPC + λC. (6.24)

The definition of the hypoxia function, γ, is unchanged.
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The repeated index summation convention is used from now on. The observable is,

again Y = P +Q, the non observed variables are expressed as combination of POD modes:

P = aP
i φP

i i = 1, ..., NP ;

C = aC
i φC

i i = 1, ..., NC ;

γP = aγP
i φγP

i i = 1, ..., NγP ;

v = av
i φ

v
i i = 1, ..., Nv,

(6.25)

where a(·)
i = a(·)

i (t) are scalar functions of time, φ(·)
i = φ(·)

i (x) are functions of spatial

coordinates.

The dimension of the empirical functional space, i.e., the number of POD modes used

to reconstruct the solution, is chosen such that if additional POD modes are included,

the reconstruction of a given field does not vary up to a certain error value that, in this

work, was fixed at 10−4 in L2 norm.

Substituting these expressions in the system Eqs. (6.21) and (6.24) we obtain:

Ẏ + a(v)
i ∇ · (Y φ(v)

i ) = a(γP )
i φ(γP )

i , (6.26)

a(v)
i ∇ · φ(v)

i = a(γP )
i φ(γP )

i −
∫

Ω a(γP )
i φ(γP )

i dΩ
∫

Ω 1 − Y dΩ
(1 − Y ), (6.27)

a(v)
i k(Y )∇∧ φi

(v) = av
i∇k(Y ) ∧ φ(v)

i , (6.28)

a(C)
i ∇ · (D(Y )∇φ(C)

i ) = αa(P )
j a(C)

i φ(P )
j φ(C)

i + λa(C)
i φ(C)

i , (6.29)

The hypoxia function γ, Eq. 2.21, is multiplied by P , in such a way that the product γP

is:

a(γP )
i φ(γP )

i = a(P )
j φ(P )

j

1 + tanh(R(a(C)
i φ(C)

i − Chyp))

2
. (6.30)

System (6.26-6.29) is solved by minimization of the residuals under certain constraints

that are introduced below.

The first one is linked to the fact that Eq. 6.29 is an homogeneous equation with

respect to the coefficients a(C)
i . This is due to the fact that, if the equation is in this

form, non-homogeneous boundary conditions are imposed, or a source term describing

some nutrients supply is added. Otherwise, one possible solution of the oxygen diffusion

equation is the trivial one. Indeed, if Chyp < 0 such a solution would be also a solution

for the whole system Eqs. (6.26) and (6.30). In order to prevent the identification of a

system with unphysical solutions we can proceed in two different ways. One consists in
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discretizing the boundary conditions for oxygen, getting one scalar constraint, exactly as

in the Petrov-Galerkin method. In the case of Dirichlet boundary conditions C = C0 on

∂ΩC where ΩC is a blood vessel domain, one scalar equation is obtained of the form:

∑

i

(

∑

j bi
j

λ1/2
i

)

a(C)
i (t) = 1, ∀t. (6.31)

Another option is to lift the solution and transform Eq. 6.29 into a non-homogeneous

equation, with source terms. Both these approaches yield similar results in terms of

inverse problem solution and hence in this work we simply lift the solution.

The system Eq.(6.26-6.29) can be solved by adopting two different strategies: per-

forming a Galerkin projection, or using a least square technique. Performing a Galerkin

projection implies to solve an inverse problem for a reduced order model, whose residual

is orthogonal to the representation space. Dynamical approximations of such a model

were investigated, finding that it captures the main physical aspects of propagation, but

it is not always accurate. An alternative approach is to use a least square technique.

At a given time (say t0), the snapshot Y (t0) and a subsequent snapshot Y (t1) are used

to perform the computation of the time derivative. Let the residual of the l-th equation

be Rl. We write F =
∑

l R
2
l and

(

a(·)
i (t0), πj

)

= argmin (F ) (6.32)

where a(·)
i are the expansion coefficients for the variables P, C,v, γP and πj are the pa-

rameters to be identified.

The second constraint to be imposed in the minimization results from the observation

that, since in the inverse problem the equation for the variable P is not solved, the latter

does not automatically satisfy: 0 ≤ P ≤ 1 and therefore this is a constraint (fundamental

for the population dynamics) to be imposed. To this end the residuals are penalized as

follows:

F̃ = F + c1(max{a(P )
i φ(P )

i }− 1) + c2(−min{a(P )
i φ(P )

i }) (6.33)

where c1, c2 are positive numbers, set in such a way that penalization does not affect

the stability of the procedure (in the present work (c1, c2) ∈ [1.0, 2.5]e − 2). The inverse

problem finally takes the form of a non-linear algebraic optimization problem, that is

solved using a Newton trust region method (see [87] for a Levemberg-Marquardt version

applied to inverse problems).

In order to decrease the computational cost of the procedure a third constraint is

imposed to define a feasible set of solutions. In particular, let a(P )
i (t0) be the i-th POD
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coefficient relative to the variable P evaluated at the time t0. The maximum and the

minimum values reached by the coefficient a(P )
i (t) in the database can be calculated on

the basis of the auto-correlation matrix of the variable. Indeed, the definition of the i-th

POD mode implies that:

φ(P )
i =

bi
jPj

λ1/2
i

=⇒ a(P )
ik =< Pk, φ

(P )
i >=

1

λ1/2
i

< Pk, b
i
jPj > (6.34)

where a(P )
ik denotes the projection of the k-th snapshot of P on the i-th eigenvector.

From the definition of the eigenvector we finally obtain:

a(P )
ik =

1

λ1/2
i

< Pk, Pj > bi
j = λ1/2

i bi
k =⇒ max

k
{a(P )

ik } = λ1/2
i max

k
{bi

k}. (6.35)

The same holds for the minimum of the coefficient. Thanks to this relationship the interval

of excursion Idb
k of the projection coefficients is estimated as follows:

Idb
k = [min{a(P )

ik }, max{a(P )
ik }]. (6.36)

The solution is asked to be not too different from the simulations of the direct problem,

since a database is built in which the biological behaviors of the variables are represented.

Thus we restrict the admissible values of the POD coefficients to an interval Ik that is

obtained from Idb
k by a stretching factor 1 + δ where δ is a suitable positive number. In

all the following simulations the value δ = 0.1 was adopted. It should be noted that this

choice still allows the procedure to identify solutions that are different with respect to the

solution of the database. This procedure is repeated for all the variables included in the

database.

6.3.1 Time interpolation

The hypothesis that two subsequent snapshots are close in time, or, in other words, that

the time between two snapshots is small if it is compared with the characteristic evolution

time of the phenomenon, is very optimistic. In order to relax this hypothesis, instead of

using first order finite differences, that is equivalent to perform a linear interpolation

between the snapshots, a different kind of interpolation is used. However, an higher order

finite difference scheme, equivalent to a polynomial interpolation, would require a large

number of snapshots. As an alternative, still assuming that only two images are available,
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an additional hypothesis about the growth rate could be retained. Here, two cases are

considered. In the case of exponential growth we write:

Ẏ ≈ Aexp{ζt} + Bexp{−ζt} = f(ζ), (6.37)

where A, B are chosen in such a way that the two available snapshots are interpolated.

One parameter, ζ , is free and enters the residual minimization process. The first equation

of the system (6.21-6.24) becomes:

f(ζ) + ∇ · (a(v)
i φi

(v)Y ) = a(γP )
i φ(γP )

i . (6.38)

In the case of a logistic-type growth we proceed in a similar way. We take

Y ≈ AG(ω, σ) + BG(−ω,−σ) (6.39)

where

G(ω, σ) =
ωeωt

ω − σeωt
. (6.40)

As before A and B are adjusted such that the snapshots are interpolated. In this case,

however, we are left with two free parameters (ω and σ) that are found within the residual

minimization process.

6.4 Analytical testcases

In this section a synthetic validation of the technique is proposed. The identification

of a Stokes-type flow using a Darcy-type model is described in two different physical

situations. The aim of the tests commented in this section is twofold. First, it is a sort

of emulation of realistic applications, in which a parametric model is used to describe

the evolution of a more complex system, which may not obey the simple laws adopted.

Second, this test highlights the possibility to apply inverse problems to build a hierarchy

of models: if a simple model is able to recover the solution of a more complex one (with

an acceptable error), it can be profitably used for realistic applications and preferred to

the more complex one, since in general it is easier to deal with.

The equations describing a Stokes flow are the following ones:

∇ · σ + ∇p = 0 (6.41)

σ = ν
(

∇v + ∇Tv
)

(6.42)



6.4. ANALYTICAL TESTCASES 113

Table 6.1: Relative projection error as a function of the number of POD modes NP and

of the time instant considered T .

NP T = 0 T = 5 T = 10 T = 15

5 5.18e-2 9.64e-2 15.10e-2 15.68e-2

10 3.85e-2 5.12e-2 5.81e-2 9.13e-2

15 2.64e-2 3.62e-2 3.12e-2 4.45e-2

20 1.53e-2 2.38e-2 2.42e-2 3.51e-2

25 1.12e-2 1.44e-2 1.91e-2 2.52e-2

where ν is the kinematic viscosity, σ is the stress tensor, p is the pressure field. In order

to perform the identification, two subsequent snapshots are taken from the numerical

simulations of a Stokes-type flow. These snapshots are considered as if they were part of

the evolution of a Darcy-type flow.

To solve the inverse problem the procedure described in the previous section is followed.

To this end, a database of solutions of the Darcy-type flow is built, eigenfunction basis is

extracted, the inverse problem is regularized and residuals are minimized. It is important

that eigenfunctions are extracted from the simulations of the model used to performed

the identification in order to approach what is done in realistic applications.

Let us point out that in the Stokes type flow the cellular species obey exactly the

same population dynamics and what changes is the mechanical closure. As pointed out

in [26] a viscoelastic flow in a two dimensional limit is well described by a Darcy-type law

with a suitable definition of porosity. Thus, it is expected that 2D simplified Darcy model

represents in a satisfactory manner all the main physical feature of the more complex

Stokes-type flow. Nevertheless, there are also differences between the models, mainly due

to the role of diffusivity.

As a preliminary test we investigate how the density of proliferating cells P determined

using a Stokes mechanical closure is approximated by empirical eigenmodes obtained

for a Darcy-type flow with the same initial conditions. The initial conditions and the

computational set up is identical to that of the next section. We consider the L2 relative

projection error, see Table 6.1. This table shows that the relative projection error is

acceptable and that it decreases with the number of modes and increases with time, as

expected.

Next, we present the results of two different inverse problems, in which both the be-

havior of the oxygen concentration and the mechanical behavior of the healthy tissue
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vary. In the first case the oxygen concentration on the boundary of the blood vessel is

given, whereas in the second test case we assume that the oxygen is provided through the

boundary of the computational domain and the value of the oxygen concentration on this

boundary has to be identified. In the second test case we also impose a geometrical con-

straint corresponding to the fact that the tumor cannot leave the computational domain.

This is done by modifying the boundary condition on the velocity, which in turn affects

the dilatation rate and therefore the mechanics of all the tissues, including the healthy

one. This is a model for the tumor growth inside an organ before the metastatic process.

6.4.1 Far blood vessel

The results of a first inverse problem are described. The tumor is a little spheroid that

starts growing fed by a single blood vessel, of known position and source intensity. In

particular, the computational domain is the box Ω = [0, 8] × [0, 8], the tumor is initially

located at xt = (6, 4), the blood vessel at xbv = (3, 4).

Dirichlet boundary conditions for both the oxygen and the pressure fields are imposed.

In particular:

Π = 0 on ∂Ω, C = 0 on ∂Ω, C = C0 on ∂ΩC , (6.43)

where ΩC represents the domain of a blood vessel, and C0 = 0.15.

In Fig.6.3 two snapshots of the solution of the Stokes-type flow for this case are rep-

resented. In Fig.6.3.a) the initial condition is plotted: at the right hand side the tumor

(proliferating cell density is represented) is initialized as a little spheroid with an exponen-

tial distribution of proliferating cell density. The contour lines represents the isosurfaces of

the oxygen concentration in the tissue. The same quantities are represented in Fig.6.3.b)

for a subsequent time. Tumor has grown and it has started moving towards the blood

vessel. Due to the oxygen consumption the tumor changes the oxygen distribution in the

tissue.

In this case the system of equations defining the dynamics reduces to:

Ẏ + ∇ · (av
i φ

v

i Y ) = aγP
i φγP

i , (6.44)

aγP
i =

1 + tanh(R(ac
iφ

c
i − Chyp))

2
, (6.45)

av
i∇ · φv

i = aγP
i φγP

i , (6.46)

k(Y )∇∧ av
i φ

v

i = ∇k ∧ av
i φ

v

i , (6.47)

∇ · (D(Y )ac
i∇φc

i) = αaP
j aC

i φP
j φC

i + λaC
i φC

i . (6.48)
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(a) (b)

Figure 6.3: Solution of the Stokes-type flow in the case of a far blood vessel, at: a) T=0;

b) T=20; contour lines represent oxygen concentration in the tissue.

Constraints to the oxygen field are imposed in order to prevent unphysical solutions to

arise, as explained in the previous section. In order to close the procedure minimizing

the residual of these equations, time derivative of Y is expressed as function of the snap-

shots. Linear interpolation, exponential interpolation and logistic interpolation are used.

According to the sensitivity analysis on the representation properties of POD modes the

following number of modes are used: for the variable P NP = 10 − 15, for C NC = 5, for

v Nv = 30, for γP NγP = 10 − 15.

Numerical results

In this section the numerical results of the procedure are discussed. Before analyzing

the errors from a quantitative point of view the qualitative behavior of the obtained

solution is described. In Fig.6.4 three snapshots taken from the two simulations are

shown. The identification when T = 5 was performed using the second snapshot at

T = 10. There are not a lot of differences between the images, all the stages of the

growth being well represented. There are indeed no elements which discriminate in a

definite manner the behaviors of the solutions. An error has to be defined to quantitavely

evaluate the performance of the identification. The observable being Y = P + Q a good

choice is represented by the tumor volume and localization, that is, its center of mass

position. The volume is:

VY (t) =

∫

Ω

1Y dΩ. (6.49)
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(a) (b) (c)

Figure 6.4: Tumor mass Y for the Stokes flow (upper row) and for the Darcy flow (below)

: a) T=5 b) T=10 c) T=15; Color scale ranges from 0 (blue) to 1 (red)

Where 1Y is the charateristic function of the variable Y, so that the volume is the measure

of the support of the tumor density. The position of the mass centre is:

xG =

∫

Ω 1Yx dΩ
∫

Ω 1Y dΩ
. (6.50)

The procedure to evaluate the error is straightforward: two snapshots of the Stokes type

flow are taken and the identification using a Darcy-type flow is performed. Darcy flow

system is simulated using the identified parameters and taking the first snapshot of the

Stokes type flow as initial condition. The volume and the center of mass position are

evaluated. If we denote as V (e)
Y and x(e)

G the volume and the center of mass position of the

tumor in the Stokes-type flow, the relative errors are defined as follows:

εV (t) =
VY (t) − V (e)

Y (t)

V (e)
Y (t)

, (6.51)

εX(t) =

(

XG(t) − X(e)
G (t)

)2

(

V (e)
Y (t)

)(1/2)
. (6.52)

The system is identified at different times, taking a different time interval between the

snapshots. In Fig. 6.5.a) the relative error in volume is plotted, when the reference
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Figure 6.5: Relative error when identification time is T=5, with linear interpolation. a)

volume error; b) centre of mass position error

snapshot is taken at T = 5, for linear interpolation, varying the time at which the second

snapshot is taken. The error remains under the value of 0.1 for a large part of the time

hystory of the simulation of the Darcy-type flow. All the identifications are practically

equivalent. Let us investigate the property of approximation when the time interval is

∆t = 5.

As a matter of fact in realistic applications the medical scans are performed at a

somehow constant time rate. For example, if the first snapshot is taken at T = 5,

the second one at T = 10, it is interesting to evaluate the error in T = 15, when the

hypothetically third snapshot would be taken. According to this procedure, the error is

under 10%.

In Fig. 6.5.b) the error on the centre of mass position scaled with the square root

of the volume. We adopt this normalization in order to have a dimensionless error. In

particular it is reasonable that the higher the dimension of the tumor the higher could be

the absolute error in the centre of mass position. The relative error obtained represents

the absolute error of the centre of mass position per unit length of the mean tumor radius.

All the simulations are equivalent and the error is particularly low, so that the trans-

port approximation is rather good. This is true for all the performed simulations. Let us

point out that the considered time scales are rather realistic. In the simulated time range

the tumor volume is doubled.

In Fig. 6.6.a) the relative volume error is shown when ∆t = 5 and interpolations

are varied. The logistic one turns out to be less accurate for this case. This is probably
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Figure 6.6: Relative volume error when ∆t = 5, varying interpolations. a) T=5; b) T=10

due to the fact that the procedure is less stable from a numerical point of view, since in

the logistic interpolation the time derivative is approximated adding two free parameters.

At T = 10 the linear interpolation is better than the exponential one. On the contrary,

when T = 5 the exponential interpolation provides a rather good approximation of the

time derivative, so that the error remains under 0.1 for all the rest of the simulation. Let

us analyze the error when T = 10 for both the interpolations, when we vary the time

at which we take the second snapshot. In Fig .6.7 the three interpolations behave not

so differently. The exponential one has a slightly better results for ∆t = 2. When the

identification is performed at T = 10, the error is small for a large part of the avascular

history, but in general tends to grow faster with respect to the error made when the system

is identified at T = 5. This is maybe due to the fact that the tumor has started moving

towards the blood vessel so that the derivative can be no longer be well approximated by

the derivative of an exponential type system.

When the Darcy type flow is simulated the initial condition for the Stokes type flow is

used: this is equivalent to have an informations on the active part of the tumor. Thus, the

computed error is solely due to the parameter reconstruction procedure and the differences

between the models.

In other cases treated in the present work, initial conditions are identified. This turns

out to be relevant for realistic applications, since it allows to have precious informations

from a clinical standpoint. In particular, the distribution of the proliferating cells density

can be approximated.

There is a sensitivity to the starting point for the Newton solver, due to the presence
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Figure 6.7: Relative volume error when T = 10, varying ∆t with . a) Linear interpolation;

b) Exponential interpolation

of local minima. One good criterion is to initialize the unknown POD coefficient in the

following manner: a snapshot of Y is taken from the database, in such a way that the

tumor size is comparable with that of the image, and a Galerkin projection of the initial

conditions is done to find the coefficients. To evaluate the behavior of the procedure,

several starting points were taken, randomly and according to the proposed criterion.

After convergence, the lowest minimum was chosen as solution.

Irregular tumor shape

In this subsection the dynamics of an irregular tumor is identified, in the same configura-

tion. The aim is to check if the procedure is robust enough to identify complex geometries.

This is the main motivation for using a distributed model based on PDE.

In Fig.6.8 the solution of a Stokes flow (upper row) is compared with the solution of

the Darcy flow when the identification procedure has been applied with an exponential

type of interpolation. The inital tumoral distribution was taken from a scan image of a

lung cancer (courtesy David Sarrut, Centre Léon Bérard, Lyon, France).

The solutions are similar, the procedure takes the effects of complex geometries into

account, even if the models are quite different. As in the Stokes type flow some diffusivity

acts. It is expected that the tumor boundary become less irregular as time increases,

while in the Darcy-type flow there is no diffusivity.

As before, the error analysis is performed, the same qualitative and quantitative be-

havior is found with respect to the case of regular shapes. In particular the relative
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(a) (b) (c)

Figure 6.8: Tumor mass Y for the Stokes flow (upper row) and for the Darcy flow (below)

: a) T=5 b) T=10 c) T=15

error stays under the value of 0.1 for a relevant portion of the avascular growth history,

corresponding to the doubling of the tumor volume.

6.4.2 In vitro-like tumor: spherical growth

In this section the identification of an in vitro-like tumor growth is described; the tumor is,

at the beginning, a little spheroid in the centre of the domain and the oxygen is provided

by the boundary. Neumann boundary conditions for the pressure field and Dirichlet

boundary conditions for the oxygen field are imposed. The oxygen concentration value at

the boundary is taken as one of the unknowns of the inverse problem.

In Fig.6.9 the distribution of the proliferating cell density is plotted and the contour

lines for the oxygen concentration; the solution at time T = 0 and time T = 20 is shown.

A spherically symmetric growing process establishes, a necrotic core appears in the middle

at the end of the numerical experiment, as expected in consequence of the symetric setting.

The same procedure described in the previous section is utilized, regularizing on the

variables that are not observed. In this case the oxygen field is lifted, in such a way that

the boundary conditions are automatically satisfied by the POD modes expansion.

Let us note that, since the divergence of the velocity field is not merely equal to the
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(a) (b)

Figure 6.9: Solution of the Stokes-type flow in the case of a in vitro-like tumor at: a)

T=0; b) T=20; contour lines represent the oxygen concentration levels

product γP , governing equations can no longer be decoupled, so that the residuals of all

the equations together have to be minimized. Let C∗ = C−C0, where C0 is the boundary

value. The equation defining the inverse problem are, in this case:

Ẏ + ∇ · (vY ) = γ(C∗)P, (6.53)

γ(C∗) =
1 + tanh(R(C∗ + C0 − Chyp))

2
, (6.54)

∇ · v = γ(C∗)P −
∫

Ω γP dΩ
∫

Ω 1 − Y dΩ
(1 − Y ), (6.55)

k(Y )∇∧ v = ∇k ∧ v, (6.56)

∇ · (D(Y )∇C∗) = αPC∗ + λC∗ + (αP + λ)C0, (6.57)

In this way, a non homogeneous equation for the oxygen concentration is found, with

a source term, and homogeneous boundary conditions. As in the previous case all the

computations were performed using linear, exponential and logistic interpolation, with

the same number of POD modes.

Numerical results

As done in the previous case, we look at the relative error of the volume and of the centre

of mass position, when the time interval between two snapshots is varied, as well as the

time at which the identification and the interpolation are performed.
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(a) (b) (c)

Figure 6.10: Tumor mass Y for the Stokes flow (upper row) and for the Darcy flow (below)

: a) T=5 b) T=10 c) T=15

The qualitative behavior being reasonable, let us analyze quantitatively the error of

the procedure for the present case. In Fig.6.11.a) the relative error of the volume is

shown when a linear interpolation is used, varying the time at which the second snapshot

is taken. The error remains smaller than 0.1 for a large portion of the remaining history.

When the snapshots are close in time the linear interpolation is quite good.

The center of mass is fixed in all the simulations (a spherically symmetric growth is

taking place) and the error of the center of mass position is expected to be very low,

comparable with machine precision, since both the Darcy type flow and the Stokes type

flow admit the spherically symmetric growth as solution. Indeed, this is confirmed by

numerical experiments (see Fig. 6.11.b)). As done before, several interpolation rules

are compared. In Fig. 6.12.a) the relative error of the volume is plotted when ∆t = 5,

the first snapshot taken at T = 5 and the interpolation is varied. The linear and the

exponential interpolations are substantially equivalent, the error remaining under 10%

for a large part of the avascular history. The logistic interpolation is less stable, as in the

previous case, but in the end it allows the Darcy-type model to fit better the Stokes-type

one. In Fig.6.12.b) the same error is shown when identification is performed at T = 10.

In this case the error is larger, but the logistic interpolation reveals to be better than the

others.
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Figure 6.11: Relative error when identification time is T=5, with linear interpolation. a)

volume error; b) centre of mass position error
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Figure 6.12: Relative volume error when ∆t = 5, varying interpolations in the case: a)

T = 5 ; b) T = 10
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6.5 Comparison with Sensitivity

In this section a systematic comparison between the techniques proposed in this work is

carried out. The same inverse problem is set up and solved, fixing all the ingredients: the

model, the control set, the time scale and the data set. Let us point out that this setting

may not be the best one, i.e. the setting allowing to obtain the smallest fitting error;

here the objective is to compare the techniques in terms of computational cost, efficacy,

accuracy and stability.

The chosen model is the regularized Darcy one, because of its simplicity. Dirichlet

boundary conditions are imposed for both pressure and oxygen field. Geometry and data

set are taken from FER-II case (see Sensitivity Chapter for details). The test consists

in performing the identification when only the first two images are given, with both the

techniques.

Two tests were performed: the first one with the layer structure control set, the second

one by adding two harmonics.

6.5.1 Layer structure test

The control set consists in the parameters and in the initial distribution for the prolifer-

ating cell density. In this particular test the initial density distribution for proliferating

cells is taken:

P (x, 0) = A exp
{

−δΦ2
}

, (6.58)

where Φ is the level set for the tumor, A the amplitude and δ the steepness. Let us

point out that using this expansion oblige to revisit the reduced technique. No expansion

for P is needed anymore, and hence there is no penalization of the functional, since the

expansion satisfies by construction 0 ≤ P (x, 0) ≤ 1. Only the modes for Π and γ are

computed. The system of equations to be solved reduces to:

Ẏ + ∇ · (k(Y )Y ∇φΠ
i )aΠ

i = aγ
j φ

γ
j P (x, 0), (6.59)

∇ · (k(Y )∇φΠ
i )aΠ

i = aγ
j φ

γ
j P (x, 0), (6.60)

∇ · (D(aγ
kφ

γ
k, Y )∇(aγ

j φ
γ
j )) = (λP P (x, 0) + λY Y )aγ

i φ
γ
i . (6.61)

This system is solved at t = 0, taking the second image at t = 0.3. The time derivative

is approximated by a logistic inerpolation. The so obtained algebraic system is solved

by means of a Newton trust region method. In this particular case it is equivalent to

solve the reduced order model for the elliptic equations and to couple them with the
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Table 6.2: Data set and results for FER-II case, fitted with the parameters identified by

ROM: 6 volumes measures are taken from 2D scans, resolution 1.25mm.

Month 0 21.0 24.5 36.0 40.5 45.0

Area 4.2e-3 6.5e-3 8.1e-3 9.7e-3 1.03e-3 1.10e-3

ESens(%) 0.0 1.8 2.47 2.02 1.94 1.36

EROM(%) 0.0 1.9 2.50 2.80 8.67 6.12

‖Y − Im‖Sens 0.0 0.22 0.24 0.35 0.31 0.24

‖Y − Im‖ROM 0.0 0.23 0.26 0.38 0.36 0.32

residual approximation for the observable. The system is cheap from the computational

stand point, its solution taking only few minutes on a standard laptop. The system was

initialized with several initial conditions in order to check the stability and the presence

of local minima.

In Table 6.2 the errors are compared between the sensitivity approach (when two

images are taken into account) and the reduced order model. The ROM performs quite

well in terms of volume in the first part of the growth. For what concerns L2 norms

and in the second part of the growth sensitivity has substantially better results. The

most relevant fact is that the two approaches show similar behavior in the very beginning

(ROM is solved at t = 0). It is interesting that the reduced order model allows to get

a correct solution on a time scale that is sufficiently large, i.e. on a scale comparable

with the interval between two subsequent medical exams. In Fig.6.13 the fitting curves

are shown, confirming essentially what commented about the errors. Let us remark that

the two methods starts with exactly the same trend, so that the Reduced Order Model

approach results in an approximation of the Sensitivity one in t = 0. The Error contours

for the third image (i.e. the first prediction) are shown for the two methods in Fig.6.14.

On the left, the result of the sensitivity is shown, the reduced order model is on the right.

The differences between the two residuals are minimal, showing the ability of the reduced

approach to mimic sensitivity. The error structure is the same and it is due to the control

set and to the regularizing effect of the model, as previously commented.
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Figure 6.13: Area as function of time, for the Reduced Order Model (black line) and for

the Sensitivity approach (blue line).
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Figure 6.14: Difference between the third scan and the solution when the identification is

performed by a) Sensitivity b) ROM
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6.5.2 Extended control

The same comparison was carried out by adopting the control set extended by two harmon-

ics. The problem is less stable from a numerical standpoint because of the appearence

of more local minima. Constraints on the harmonics have been directly forced in the

function of the residual computation for the Levemberg-Marquardt algorithm. Several

reinitializations of the algorithm are needed to find the solution.

No significant improvement is observed with respect to the layer structure case. The

residuals are similar to those observed with sensitivity and previously commented.

6.5.3 Costs and Summary

The techniques have a quite different phylosophy and structure. The sensitivity approach

is straighforward and it relies entirely on a functional minimization framework. Its cost

is higher with respect to that of inverse problem and become important when 3D cases

are considered, with a large control set. For a simple computation with a layer structure

control set, in a 2D configuration, 2 days and a half are needed on one CPU.

The reduced order approach is divided into two phases: an offline and an online one.

All the cost is concentrated in the offline stage. This stage for the moment has to be

performed for each case treated, but it can be done when only one image is known (just

to get geometry and the necessary conditions to perform direct simulations). Once more

data are available (typically after three four months), the cost of the inverse problem is

negligible (usually 15 minutes on a standard laptop). The technique is based on a residual

formulation, which is less practical to deal with and to set up if compared to sensitivity,

but costless.

6.6 Realistic tests

In collaboration with Institut Bergonié , we study thyroid cancer metastasis in lungs.

We make the choice of keeping a two-dimensional setting. The main reason for that

is computational feasibility, in the sense that computationally intensive identification

procedures in clinical practice seem out of reach for the moment. Another motivation

for this choice is that for practical reasons physicians tend to interpret the scans on the

largest section of the lesion, even though three-dimensional data are available.

In what follows three different cases are treated, covering the spectrum of all the pos-

sible biological behaviors. For all, Darcy model was used for the identification. According
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(a) (b)

Figure 6.15: Fast growing tumor: scan at a) june 2008 b) september 2008 c) december

2008

to the sensitivity analysis on the representation properties of POD modes,the following

number of POD modes was used: for the variable P , NP = 10, for C, NC = 5, for v,

Nv = 30 and for γP , NγP = 10.

6.6.1 Fast rate growth

As first case, an exponential fast growth is studied. In Fig.6.15 the evolution of a

metastatic nodule is shown; the evolution takes about six months, the scans are taken at

approximately constant rate. The problem is the following one: given the first two scans,

we try to recover the third one, after having performed the parameters identification.

A database was build varying all the parameters in uniform intervals. The database

consists in 128 simulations. For each one, 20 time frames are taken. The minimization

takes about 20 minutes on one standard CPU. In Fig.6.16.a) the superposition of the

simulation to the realistic geometry is shown, at the time corresponding to the third scan.

The result is realistic, the volume not being too far from the measured one. The error is

essentially a shape error. The model tends to regularize the shape, so that the simulated

tumor is closer to a spheroid with respect to the real tumor. In order to prevent this error

to arise two strategies are possible: the first one consists in modifying the model such

that its dynamics is less regularizing and the second one consists in changing the control

set.

In Fig.6.16.b) the volume curve is plotted with respect to days. There is a certain

error in volume at the time corresponding to the third scan, but, in terms of time, it is

about 15 days on a time interval of 6 months. For such a growth, featured by a high rate

and a large final volume, not enough mechanics have been accounted for. As a matter of
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Figure 6.16: Results: a) Superposition of simulation and geomtry b) Volume curve with

respect to days

fact, tumor expansion causes some compression in the tissues and the constraints imposed

by the thorax are not negligible.

6.6.2 Slow rate growth

The FER case is taken into account, presented in the chapter describing Sensitivity tech-

niques. Though, the data set used is different (FER-I), essentially for historical reasons.

When we started working on this case only a partial set was available, since it was, in

some sort, a preliminary test. In what follows this test is reported. In the sections below

a systematic comparison between the sensitivity and the ROM approaches is described,

when both deal with the same data set, in the same conditions.

Using only the first two scans, we recover the parameters and the initial conditions that

allow us to perform a forward simulation beyond the time corresponding to the second

scan. Therefore, starting from the scan corresponding to October 2007 (see Sensitivity

chapter for details), the growth rates obtained are actual model predictions.

In order to determine the POD modes, two databases were constructed by integrating

in time the Darcy type model. The first database consists of 128 parameter configurations

that result in growth rates of the order of the ones observed between the first and the

second scan on a conventional time scale of 1. For each of the 128 configurations, 20 time

snapshots were recorded. In order to check the stability of the identification with respect

to the solution space sampling, a second database of 768 simulations was also built. Again
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(a) (b)

Figure 6.17: a) Fourth scan b) Simulation

20 time snapshots per simulation were considered. The results shown in the following do

not significantly vary as a function of the database used.

Initially the proportion of proliferating cells is fixed to P = 1 on the tumor support,

that is, at the beginning the tumor is totally proliferating. This value is of course not

always realistic, but the results of the identification proved to be weakly dependent on

this assumption.

In Fig.6.17 the simulated nodule growth are compared to the actual nodule size re-

sulting from the scan of April 2009. The support of the Y distribution has approximately

the same area as the real tumor. However, in the simulation the nodule is more isotropic

than in reality.

In order to give a more quantitative evaluation of the results obtained we focus on

the overall growth history. To this end, the predicted area of the tumor is compared

to the actual one. In Fig.6.18 the solid line represents the simulation while the circles

are the computed areas of the scans. The red squares are the prediction data. Let us

point out that the procedure was carried out before that the last exam was performed by

physicians Similar results on area or volumes can be obtained by identifying ODE based

models. Nevertheless, the present approach has the advantage of retrieving a precise

spatial localization of the tumor as well as an indication of its cellular type and nutrient

distribution.

We stress that only the first two scans were used in the identification. Nonetheless,

the procedure is able to correctly detect the changes in trend at month 35, without having

data near this point. The volume error on the forth scan corresponds to 10 days on a time

of 41 months, and, for the last exam, to 20 days over 45 months. This case shows what
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Figure 6.18: Area as function of time for the slow rate growth. Solid line represents the

simulation results, black circles are the data used for the identification, red squares the

predictions.

is the best result that can be otained with the present technique. Having such a good

prognosis power depends upon how good is the database (i.e. how close the simulations

are to reality), how the logistic interpolation on Y affects the identification and, of coarse,

how segmentation and data errors propagates through the whole process. In the next

section a case is studied in which the reduced technique does not perform at best.

6.6.3 Two nodules

In this section the growth of two different metastatic nodules belonging to same patient

are considered. Their evolution is shown in figure 6.19: the nodules exhibit different

dynamics: while the first one is characterized by a rapid phase of growth followed by a

plateau type of solution, the second one has a regular growth.

The problem, as before, is the following: we try to recover the third scan taking

the first two images as data. The database used for the identification consists in 512

simulations for both the nodules, varying the parameters; 20 time frames per simulation

were retained.

In Fig. 6.20.b) the volume curve is shown for the Nodule 2. The prediction is correct

and it confirms substantially what obtained for the case discussed is the previous section.

In Fig. 6.20.a) the prediction (in terms of volume) for the first nodule is shown. The

identification is more difficult since two different growth patterns match the data with

comparable residuals: the first one is an exponential type of growth (dashed blu line in
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(a) (b) (c)

Figure 6.19: Nodule 1 (upper row) and Nodule 2(lower row) at: a) June 2008 b) April

2009 c) July 2009
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Figure 6.20: Volulme curve for: a) Nodule 1 and b) Nodule 2.
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the figure) and the second one is a plateau-type of evolution. The difficulty lies in the

rapid growth of the nodule (its volume increased by a factor of 4): the configuration

corresponding to the second image is too far from the first one and the approximation

related to the derivative operator becomes poor. Thus, local minima for the functional

have comparable values, two different families of solutions are possible. The correct curve

has a residual norm smaller (so that it is actually well captured) than the exponential-

type solution. However, in such a case, a third image is mandatory in order to get reliable

predictions.

This case shows that the present technique is able to detect with a certain approx-

imation different behaviors. Nevertheless there are certain reliability limitations linked

to the relationship between the time scale on which the exams are performed and the

proliferation speed of the tumor. A better set of data is needed when the volume ratio

between the tumor volumes of two subsequent images attains a value of approximately

2.5.

These examples of application are clearly not conclusive from the view point of clinical

relevance. An appropriate experimental protocol is under definition with our partners at

Insitut Bergonié in order to systematically investigate the tumor growth prediction error.
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Figure 7.1: Conceptual scheme of Optimal Transport

7.1 Optimal transport theory

A part of this thesis is devoted to optimal transport theory and L2 Monge-Kantorovich

mass transfer. This section aims at introducing optimal transport and summarizing the

main theoretical contributions on the subject.

Optimal transport is an ancient problem, formulated for the first time by Monge in

1781 (see [118] for the original formulation). It consists in looking for a transformation

x = X(ξ) (see Fig.7.1) allowing to re-arrange a density distribution from a starting (ρ0(ξ))

to a final (ρT (x)) given configurations. Infinite many X exist that perform such a mapping

but they are not all equivalent. A cost can be defined as a functional of the maps, the

problem becoming to find a map that perform the density arrangement minimizing the

cost ([118]). The formulation reads:

X(ξ) = arg min
X̃

{
∫

Ω0

ρ0(ξ)|X̃(ξ) − ξ|pdξ

}

, (7.1)

subject to the constraint:

ρ0(ξ) = ρT (X(ξ)) det(∇ξX), (7.2)

where the cost defined in Eq.7.1 is called Lp transportation cost, and it is proportional to

the density and the p norm of the displacement. The Eq.7.2 is the mass conservation equa-

tion expressed in lagrangian coordinates and it is called Jacobian equation. It supposes,

in this form, that the mapping X is one-to-one. Details on this formulation and a gener-

alization within a measure theory framework are found in [31, 30, 68, 157, 158, 11, 70].

The solution of the problem (i.e. the optimal X(ξ)) defines the p-Wasserstein distance

between the densities (ρ0 and ρT ). Uniqueness and regularity of solutions are analyzed in

[70, 68].

This highly non-linear problem recently revived from a theoretical standpoint. Kan-

torovich in [97] proposed a weak formulation, defining a duality principle and highlighting
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a linear nature for the problem in a product probability space. In particular, Monge-

Kantorovich mass transfert is analyzed within a convex analysis framework. It is shown

(see [68, 97] for details) that the weak problem can be formulated using a couple of convex

functions; if, for instance, L2 cost is assumed, they satisfy:

(φ(ξ), ψ(x)) = arg min
ψ̃,φ̃

{
∫

Ω0

ρ0(ξ)φ(ξ)dξ +

∫

ΩT

ρT (x)ψ(x)dx

}

, (7.3)

subject to the inequality constraint:

ψ(x) + φ(ξ) ≥ x · ξ. (7.4)

Another important contribution was given by Brenier polar decomposition theorem (in

[35]), which is a generalization of Helmoltz (and de Rham) decomposition of vector fields.

Given a vector field, it may always and uniquely be considered as the composition between

an optimal mass transport and a divergence free mapping. The theorem was also proven

by Gangbo in [76].

Polar factorization enlightened many relationships between optimal transport and par-

tial differential equations (see [68, 10, 157, 158]). For instance, in [126], Wasserstein dis-

tance and, thus, optimal transport, is linked to the flow in porous media. The work of

Otto contributed to show the possibility to study some PDEs evolution as gradient flow

in a Wasserstein space (see [158] for a detailed comment of Otto’s work).

Many connections arise with semi-geostrophic models used in meteorology and oceanog-

raphy ([52, 53]). A first work in this sense, stating a variational formulation for incom-

pressible Euler equations, is found in [19]. The interest of the approach proposed in [53] is

twofold: first, by means of an analytic change of variable, Euler incompressible equations

with semi-geostrophic terms are transformed in an optimal transport problem and, sec-

ond, this allows to state a time boundary formulation for meteorological problems. Two

configurations given, a flow is recovered uniquely, transporting the first into the final one.

Other physical applications concerns non-linear Born-Infeld theory for electromag-

netism (see [37, 36, 50]). Interesting works treat collapsing sand piles ([69] for a details),

representation of coalescence and fragmentation phenomena (in [162]), crowd motion (see

[113]).

An important branch consists in using optimal transport in optimization problems

(as, for instance, in [77]) and computer vision ([123]). In particular, some works in the

literature ([85] among them) explored the possibility to use optimal transport as a non-

rigid registration tool for medical imaging. This inspired the present work.
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Optimal transport is treated from a numerical standpoint: after having analyzed the

current approaches, a family of methods is proposed, exploiting the lagrangian structure

of the problem. The aim is to use Monge-Kantorovich solvers as a tool for manipulating

medical images, in a sort of pre-processing for inverse problems.

7.2 The L2 Monge problem

In the original formulation Monge proposed the so called L1 cost, that is, the cost is

proportional to the mass and the displacement. In this work we focus on the numerical

solution of the L2 optimal mass transfer problem in d, where d is the number of space

dimensions. Let ρ0(ξ) and ρ1(x) be two non-negative scalar (density) functions with

compact support Ω0 and Ω1, respectively. We assume that
∫

Ω0

ρ0(ξ) dξ =

∫

Ω1

ρ1(x) dx = 1. (7.5)

Let x = X(ξ) be a smooth one-to-one map taking Ω0 onto Ω1 that verifies the jacobian

equation

det (∇ξX) ρ1(X(ξ)) = ρ0(ξ). (7.6)

As a consequence, we have that ∀Ω ⊆ Ω0

∫

Ω

ρ0(ξ) dξ =

∫

X(Ω)

ρ1(x) dx. (7.7)

The jacobian equation (7.6) has many admissible solutions. Among all these mappings,

the objective of this work is to describe a lagrangian method to find X∗(ξ) such that

∫

Ω0

ρ0(ξ)‖X∗(ξ) − ξ‖2 dξ ≤
∫

Ω0

ρ0(ξ)‖X(ξ) − ξ‖2 dξ (7.8)

for all smooth one-to-one mappings X(ξ). This functional measures the cost of the mass

transport by a weighted square distance function. Other classes of optimal transport

problems can be defined by introducing different norms instead of the above. We con-

centrate on the L2 case because of its links with continuum mechanics [37] and since the

solution of this problem finds applications in oceanography [53], shape optimization [77],

computer vision [123] and image processing [136].

Mainly two classes of methods to solve this problem in realistic applications were pro-

posed. One idea (see [16]) is to look for a mapping between the initial and final condition
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by solving an appropriate partial differential equation up to steady state. The compu-

tational cost of this approach is that of finding the asymptotic solution of d transport

equations. The main drawback is that, apart from accuracy, the convergence rate to the

asymptotic solution may be poor. A different path is followed in [31], where a time-like

variable is introduced and the space-time mapping between the initial and final mass

distribution is found by a saddle point method that requires the solution of a Poisson

problem in space and time at each iteration. The merit of the latter formulation is to

show the links between the least action principle and the optimal mass transfer problem.

From the computational view point, however, the time-like variable introduces additional

unknowns to be solved for. In the next sections we will summarize the formulation at the

base of these two approaches in order to introduce an alternative solution method where

no partial differential equations are numerically solved to approximate the optimal map.

7.3 The Angenent-Haker-Tannenbaum (AHT) gradi-

ent flow

Let us recall a basic theoretical result on the L2 optimal mass transfer problem (see

[35],[68],[76]): there is a unique optimal map X∗(ξ) characterized as the unique map

transferring ρ0(ξ) to ρ1(x) which can be written as the gradient of some convex function

Ψ(ξ):

X∗(ξ) = ∇ξ Ψ(ξ); (7.9)

in other words if we find a map that can be expressed as in the equation above and that

satisfies equation (7.6), than this is the optimal map. Such a consideration is at the base

of the AHT method [16].

In the following we recast AHT method in a continuum mechanics framework. Let

x = X (ξ, t) be a smooth one-to-one mapping such that X (ξ, 0) = Xi(ξ) and let the initial

map Xi(ξ) satisfy the jacobian equation (7.6). The objective is to make this initial map

evolve toward the optimal map by a gradient method, without altering the distribution

ρ1(x).

Our plan is therefore to compute the variation of the cost functional

I =

∫

Ω0

ρ0(ξ)‖X (ξ, t)− ξ‖2 dξ, (7.10)

with respect to t. To do so, we need some preliminary steps. We introduce the inverse

mapping ξ = Y (x, t), that, for given value of the parameter t and space coordinate x ∈ Ω1
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retrieves the corresponding ξ ∈ Ω0. In other words x = X (Y (x, t), t) and hence

∇ξX = (∇xY )−1, (7.11)

∂tY + U ·∇xY = 0, (7.12)

where U(x, t) = ∂tX (ξ, t). If X (ξ, t) has to take Ω0 onto Ω1, ∀t ∈ +, then ∀x ∈ ∂Ω1

and ∀t ∈ +, U(x, t) · n = 0, where n is the normal to ∂Ω1. As an initial condition for

the inverse map we take Y (x, 0) = Yi(ξ) with Yi(x) = X−1
i (x). Let also assume that

x = X (ξ, t) is mass preserving ∀t ∈ + so that

det (∇xY (x, t)) ρ0(Y (x, t)) = ρ(x), (7.13)

and

det (∇xY (x, 0)) ρ0(Y (x, 0)) = ρ1(x), (7.14)

thanks to equation (7.11). On the other hand, mass conservation can also be written

∂tρ + ∇x · (ρU) = 0, (7.15)

with initial condition ρ(x, 0) = ρ1(x).

The derivative of the cost functional with respect to t is then

∂tI =

d

dt

∫

Ω0

ρ0(ξ)
[

‖X (ξ, t)‖2 − 2X (ξ, t) · ξ
]

dξ =

d

dt

∫

Ω1

ρ0(Y (x, t))‖x‖2 det (∇xY (x, t)) dx − 2

∫

Ω0

ρ0(ξ)∂tX (ξ, t) · ξdξ =

d

dt

∫

Ω1

ρ(x, t) ‖x‖2 dx − 2

∫

Ω1

ρ(x, t) U(x, t) · Y (x, t) dx.

(7.16)

The vector field Y (x, t) can be decomposed as the sum of a divergence-free vector field

Yω(x, t) and the gradient of a scalar potential Φ(x, t), according to the classical Helmoltz

decomposition. Hence, Φ = ∆−1
x (∇x · Y ), Yω = Y − ∇x ∆−1

x (∇x · Y ) and Yω · n = 0 on

∂Ω1. We now take

U =
Yω

ρ
, (7.17)

and as a consequence it follows that ∂tρ = 0, i.e., ρ(x, t) = ρ1(x). Then, in equation (7.16)

d

dt

∫

Ω1

ρ(x, t) ‖x‖2 dx =
d

dt

∫

Ω1

ρ1(x) ‖x‖2 dx = 0, (7.18)
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and
∫

Ω1

ρ(x, t) U(x, t) · Y (x, t) dx =
∫

Ω1

Yω(x, t) · Yω(x, t) dx +

∫

∂Ω1

Φ(x, t)Yω(x, t) · n dx =
∫

Ω1

Yω(x, t) · Yω(x, t) dx.

(7.19)

In summary, by taking U(x, t) as in equation (7.17) an optimal descent direction is

found for the minimization of I:

∂tI = −2

∫

Ω1

Yω(x, t) · Yω(x, t) dx, (7.20)

together with an evolution equation for Y (x, t)

∂tY +
Yω

ρ1
·∇xY = 0, (7.21)

such that the forward map X (ξ, t) satisfies

det (∇ξX (ξ, t))ρ1(X (ξ, t)) = ρ0(ξ), (7.22)

∀t ∈ +. The minimum of the functional will be reached when Yω(x, t) = 0, i.e., when

Y = ∇xΦ. Let us prove that this result on Y implies that X∗ = ∇ξΨ. Indeed:

Y (x) = ξ = ∇xΦ(x) ⇒ ξ = ∇ξΦ(X(ξ))(∇ξX)−T , (7.23)

that, after multiplication by the Jacobian to both sides leads to:

ξ(∇ξX)T −∇ξΦ = 0. (7.24)

The expression that follows is found by applying the properties of the derivative of scalar

product of vector functions, assuming that Y is invertible:

ξ(∇ξX)T = ∇ξ(ξ · X) − X(ξ). (7.25)

The expression for X is found by combining this relation with the Eq.7.24:

X = ∇ξ(ξ · X − Φ(X(ξ))), (7.26)

thus, a function Ψ exists such that:

Ψ = ξ · X − Φ, (7.27)
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that is, Ψ is the Legendre transform of Φ, the two functions being a pair of convex

conjugate functions. The converse is also true (see [158] for an extensive overview), that

is, given a function Ψ convex almost everywhere such that X = ∇ξΨ, then Y exist such

that Y = X−1 and Y = ∇xΦ where Φ is the convex conjugate of Ψ.

The AHT approach to the solution of the optimal mass transfer problem is important

because of its links with polar factorization of vector fields [35] and generalized Boussinesq

equations [37]. However, from the numerical point of view it suffers from some drawbacks

in that one should build Xi(ξ) and this is not always an easy task. Moreover even when

equation (7.12) is carefully integrated in time by a high order scheme, mass is not exactly

conserved at the discrete level. Therefore if the initial map is far from the minimum

and many gradient step iterations are needed, the error in mass conservation may be

large. More recently, in [85], it was proposed to directly solve the minimization of (7.10)

under mass conservation constraint, by a sequential quadratic programming approach.

This method, however, leads to an optimization problem of the size of the spatial grid

resolution.

7.4 Action minimization

In [30] it is shown that the optimal mass transfer problem is equivalent to the flow of a

pressureless ideal compressible fluid. Consider a time-dependent density function ρ(x, τ)

defined in d such that

ρ(x, 0) = ρ0(x) (7.28)

and

ρ(x, T ) = ρ1(x). (7.29)

The variable τ stands now for time and it plays a different role compared to the

parameter t of the previous section. It can be shown (see [30]) that the optimal mass

transfer problem is equivalent to the minimization with respect to U(x, τ) of the time

integral of the kinetic energy (the action) associated to the transport:

J =
1

2

∫ T

0

∫

Rd

ρ(x, τ)‖U(x, τ)‖2 dxdτ, (7.30)

subject to equations (7.15), (7.28), (7.29).

Introducing a space-time lagrange multiplier ψ(x, τ), the Euler-Lagrange equations for

the constrained minimum of J are

∂τψ + U ·∇ψ =
‖U‖2

2
, (7.31)
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U = ∇ψ. (7.32)

and because initial and final conditions are given for ρ(x, τ), no conditions are imposed

on ψ(x, τ).

In [31], the action minimization problem under constraint is solved by the Uzawa

algorithm. The main disadvantage of this approach is that the discretization of the

additional time dimension is such that the size of the discrete problem is multiplied by

N , if N is the size of the resolution in one space direction.

An important property of the optimal transport easily follows from this formulation.

Indeed, an evolution equation for the potential can be obtained substituting equation

(7.32) into equation (7.31):

∂τψ +
|∇ψ|2

2
= 0, (7.33)

which is an Hamilton-Jacobi equation that describes a transport along straight lines. This

can be seen by taking the gradient of the equation above to obtain

∂τU + (U ·∇)U = 0, (7.34)

which shows that the velocity U(x, τ) is constant along a characteristic, i.e., the velocity

is constant along rays in space and time. In fact, this means that if ξ is the lagrangian

coordinate and X (ξ, τ) the map between x and ξ at time τ , we have

U(X (ξ, τ), τ) = V (ξ), (7.35)

where V (ξ) is the initial velocity. Deriving the above equation with respect to τ , we find

equation (7.34).

7.5 Mass transport along straight lines

The plan is now to use a lagrangian representation of the density distribution to impose

mass conservation. We consider a set of particles such that

ρ(x, τ) ≈
Np
∑

j=1

cj(t)σ(x − Xj(τ)) (7.36)

where Np is the number of particles, Xj is the particle coordinate and σj = σ(x−Xj(τ))

is a regularization of a Dirac mass satisfying
∫

Ωr

σ(ξ) dξ = 1, (7.37)
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where Ωr ⊂ d is the support of the regularizing kernel σ. Let Ω(τ) =
Np
⋃

j=1
Ωj(τ), with

Ωj(τ) the support of σj . We have that
∫

Ω(τ)

(∂τρ + ∇ · (ρ∇ψ)) dx =
d

dτ

∫

Ω(τ)

ρ dx, (7.38)

and substituting equation (7.36)

d

dτ

∫

Ω(τ)

ρ dx =
d

dτ

∫

Ω(τ)

Np
∑

j=1

cj(τ)σj dx =

Np
∑

j=1

d

dτ

(

cj(τ)

∫

Ω(τ)

σj

)

dx, (7.39)

which reduces to
d

dτ

∫

Ω(τ)

ρ dx =

Np
∑

j=1

∂τ cj(τ). (7.40)

In the following we assume that

∂τ cj(τ) = 0, (7.41)

so that the mass conservation equation is identically satisfied. As a consequence, the time

invariant quantity cj can be interpreted as the mass of the j-th particle.

Let us now take

Xj(τ) = ξj + V (ξj) τ, (7.42)

where ξj is the position of the particle at τ = 0 and V (ξj) is the initial velocity of the

particle. This equation translates the fact that the velocity is constant along straight

lines. Thanks to this assumption, equation (7.34) is identically satisfied.

7.5.1 Reconstruction of the initial condition

The discretization of ρ(x, τ) verifies the mass constraint by equation (7.41) and the particle

trajectories Xj(τ) are such that U(x, τ) respects equation (7.34). We now choose the time-

invariant coefficients cj in such a way that the initial mass distribution ρ(x, 0) = ρ0(x) is

approximated in a least-square sense.

Given ρ(x, 0) on a regular cartesian mesh, a simple choice consists in placing the

particles in the nodes where ρ(x, 0) > δ0, δ0 being the smallest density that is considered.

At the discrete level, the approximation problem is then formulated as an optimization

problem for the cj :

cj = arg







min
dj

Ng
∑

k=1

[

ρ(xk, 0) −
Np
∑

j=1

dj σ(xk − Xj(0))

]2






, (7.43)
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where Ng is the number of grid points where the error is evaluated. The particle initial

positions Xj(0) = ξj are given and coincide with the grid points where the density is

above a certain threshold. Other more sophisticated choices, like for example adapting

the particle distribution to ρ(x, 0), can lead to better accuracy. However, if the initial

position of the particles is given, the reconstruction of the initial density distribution

always amounts to a quadratic optimization problem in the coefficients cj that can be

solved by a linear system. The computational cost of this step is negligible since the size

of the problem is Np × Np and the number of particles is usually of the order of 103 to

106, according to resolution and the number of space dimensions.

7.5.2 Potential velocity field and reconstruction of the final con-

dition

The mass cj of each particle is now determined from the approximation of the initial

condition. The particles move along straight lines and the particle mass remains constant

along these trajectories. Two conditions for the minimum of (7.30) are hence satisfied. We

still have to enforce that the velocity field is potential and that the final condition on the

density distribution is verified. In order to do so, we assume that the components of the

velocity are expressed as centered finite differences in the respective directions of a scalar

function whose values on the grid are ψl. Denoting by Djl the elements of the discrete

centered gradient operator, we have that the velocity of each particle is Vj =
∑Nd

l=1 Djlψl,

where Nd is of the order of Np. Next, an optimization problem with respect to ψl is solved

to approximate the final mass distribution. We have

ψl = arg

{

min
Ψl

E(Ψl)

}

=

arg







min
Ψl

Ng
∑

k=1

[

ρ(xk, T ) −
Np
∑

j=1

cj σ(xk − ξj −
Nd
∑

l=1

DjlΨl T )

]2






.

(7.44)

The gradient of the above function can easily be computed so that the numerical solu-

tion of this problem is solved by a steepest descent method or by quasi-Newton iterations.

Mollifying kernels σ(ξ) with compact support can be used, although the support must

be large enough to keep some desirable properties. In cases in which, for example, a

fragmentation process takes place, or simply in cases in which the density supports at

times τ = 0 and τ = T have null intersection, compact support kernels with small enough
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support may result in having ∂E/∂Ψl = 0 from the first optimization step because the

error vanishes where the support of the kernel is non zero and vice versa.

In order to possibly speed up convergence toward the minimum, a penalization can be

added to E(Ψl):

Ep(Ψl) = E(Ψl) + β

Np
∑

j

cj
‖
∑Nd

l=1 DjlΨl‖2

2
, (7.45)

where β ∈ +. The actual effect on convergence of the penalization term is studied in the

numerical experiments hereafter.

In summary, in the discrete problem that we have formulated mass conservation,

mass transport along straight lines and potential velocity field are exactly satisfied at the

discrete level. The initial and final mass distribution are approximated in a least square

sense. Of course, the problem solution is independent of T . We kept the notion of the

time variable τ in case the intermediate states of the mapping are to be computed. This

is an inexpensive task thanks to equation (7.42).

The code used for the numerical experiments presented below was written in C++.

The code was conceived in an object oriented framework, the implementation is based on

Standard Library only.

7.6 Preliminary numerical tests

In the following numerical experiments we use the gaussian kernel

σ(ξ) =
1

(%
√

π)d
exp

(

− |ξ|2

%2

)

, (7.46)

where % is the kernel characteristic length.

The first test is relative to a problem where the initial density distribution is uniform

and the final one shows concentric compressions and rarefactions. The error in the initial

and final density distributions is studied as a function of the discretization parameters.

The other examples are aimed at analyzing the performance of the proposed solution

method in more critical cases where density distributions with sharp boundaries are given

or mass fragmentation phenomena occur. These cases are paradigmatic of situations that

are encountered in medical imagery problems. The last two applications show results in

this sense.

In all test cases the reconstruction of the final condition was attained by a constant

step gradient descent method. The most computationally intense simulation, the two-

dimensional mass splitting phenomenon, takes about 1 hour on a standard laptop. In
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(a) (b)

Figure 7.2: Density distribution at time a) T=0, b) T=1.

the next pictures, when isocontours are shown, 25 levels equally distributed between the

minimum and the maximum value of the scale are drawn.

7.6.1 Recovering a wavy density distribution

The initial density distribution is ρ(x, 0) = 1 for x ∈ [0, 1]× [0, 1]. We consider a velocity

distribution

U(x, 0) = K∇(sin(2πω‖x‖2) exp(−(‖x‖2/η2))),

where K = 1.00e − 2, ω = 4 and η = 0.25. The initial density distribution and the

velocity field are propagated in time according to equations (7.15) and (7.34). Once the

density distribution at time T = 1 is found, we solve the optimal mass transfer problem.

In Fig.7.2 the initial and final density distributions are represented. Rarefactions and

compression zones can be identified according to the color scale. The space resolution of

the figure is 200 × 100. In this test case the resolution is intentionally not uniform.

Three different grid resolutions were considered, 100× 50, 200× 100, and 400× 200.

For such resolutions, placing particles where density is larger than the density maximum

divided by 1000, leads to the following number of particles: 1.25e3, 5.00e3 and 2.00e4,

respectively. The minimization of E was stopped when the difference between the gradient

norm of two subsequent iterations was less than 1.0e − 4. The results are presented in

tables 7.1, 7.2, 7.3.

First of all we remark that β has a reduced influence on the results. εT slightly

decreases with β increasing, but then this effect is saturated. Of course ε0 is independent
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Table 7.1: Resolution 100×50. ε0 is the L2 relative error on the initial density distribution,

εT on the final. Ni is the number of iterations to minimize E , i.e., such that the gradient

norm variation is below 1.0e − 4.
% β ε0 εT Ni

2.00 e-2 5.0 e-4 6.776 e-4 6.078 e-4 230

1.80 e-2 5.0 e-4 6.120 e-4 4.437 e-4 269

1.60 e-2 5.0 e-4 5.398 e-4 3.185 e-4 336

1.40 e-2 5.0 e-4 4.648 e-4 2.821 e-4 409

1.20 e-2 5.0 e-4 3.871 e-4 4.076 e-4 522

2.00 e-2 1.0 e-3 6.776 e-4 5.882 e-4 328

1.80 e-2 1.0 e-3 6.120 e-4 4.078 e-4 380

1.60 e-2 1.0 e-3 5.398 e-4 2.641 e-4 627

1.40 e-2 1.0 e-3 4.648 e-4 2.326 e-4 508

1.20 e-2 1.0 e-3 3.871 e-4 3.748 e-4 623

2.00 e-2 5.0 e-3 6.776 e-4 5.434 e-4 561

1.80 e-2 5.0 e-3 6.120 e-4 4.040 e-4 481

1.60 e-2 5.0 e-3 5.398 e-4 2.622 e-4 572

1.40 e-2 5.0 e-3 4.648 e-4 2.302 e-4 493

1.20 e-2 5.0 e-3 3.871 e-4 3.727 e-4 620

of β. We have that ε0 → 0 as % → 0, since in the limit case cj equals the local value

of the initial density distribution. Increasing the grid resolution, the number of particles

increases and the error on the final resolution is systematically decreasing.

The error εT is not monotonically decreasing with the kernel length. There is a trade

off between accuracy on the initial and final density distributions, depending on the ratio

between the grid size and the kernel length. However, the optimal kernel length decreases

with increasing grid resolution, as it should for consistency. No significant trend appears

in the number of iterations except that in general the number of iterations increases as β

does.

The values of
∣

∣

∣
ρ(xk, T ) −

∑Np

j cj σ(xk − ξj − Vj T )
∣

∣

∣
/ρ(xk, T ) are shown in figure 7.3,

when the resolutions used are 200 × 100 and 400 × 200 and % = 1.00e − 2, β = 5.0e − 3.

The error is concentrated on the boundaries and in the higher density zones.
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Table 7.2: Resolution 200 × 100
% β ε0 εT Ni

1.40 e-2 5.0 e-4 3.979 e-4 2.633 e-4 173

1.20 e-2 5.0 e-4 3.729 e-4 1.675 e-4 177

1.00 e-2 5.0 e-4 3.249e-4 8.646 e-5 245

0.80 e-2 5.0 e-4 2.566 e-4 5.408 e-5 399

0.60 e-2 5.0 e-4 1.873 e-4 4.704 e-4 140

1.40 e-2 1.0 e-3 3.979 e-4 2.655 e-4 161

1.20 e-2 1.0 e-3 3.729 e-4 1.678 e-4 184

1.00 e-2 1.0 e-3 3.249e-4 8.852 e-5 236

0.80 e-2 1.0 e-3 2.566 e-4 5.703 e-5 393

0.60 e-2 1.0 e-3 1.873 e-4 4.859 e-4 142

1.40 e-2 5.0 e-3 3.979 e-4 2.673 e-4 189

1.20 e-2 5.0 e-3 3.729 e-4 1.768 e-4 196

1.00 e-2 5.0 e-3 3.249e-4 1.019 e-5 244

0.80 e-2 5.0 e-3 2.566 e-4 7.522 e-5 360

0.60 e-2 5.0 e-3 1.873 e-4 3.855 e-4 230

(a) (b)

Figure 7.3: Relative error on the final density distribution. Resolution: a) 200×100, b)

400×200.
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Table 7.3: Resolution 400 × 200
% β ε0 εT Ni

1.00 e-2 5.0 e-4 8.288 e-5 3.737 e-5 230

0.85 e-2 5.0 e-4 7.108 e-5 2.754 e-5 204

0.70 e-2 5.0 e-4 5.921 e-5 3.420 e-5 307

0.55 e-2 5.0 e-4 4.790 e-5 9.985 e-5 390

0.40 e-2 5.0 e-4 3.573 e-5 2.704 e-4 193

1.00 e-2 1.0 e-3 8.288 e-5 3.821 e-5 219

0.85 e-2 1.0 e-3 7.108 e-5 2.770 e-5 213

0.70 e-2 1.0 e-3 5.921 e-5 3.517 e-5 326

0.55 e-2 1.0 e-3 4.790 e-5 9.998 e-5 410

0.40 e-2 1.0 e-3 3.573 e-5 3.004 e-4 195

1.00 e-2 5.0 e-3 8.288 e-5 3.975 e-5 250

0.85 e-2 5.0 e-3 7.108 e-5 2.821 e-5 245

0.70 e-2 5.0 e-3 5.921 e-5 3.519 e-5 278

0.55 e-2 5.0 e-3 4.790 e-5 1.021 e-4 334

0.40 e-2 5.0 e-3 3.573 e-5 4.455 e-4 227

7.6.2 Mass splitting: recovering a one-dimensional exact map

In this subsection we study the accuracy of the scheme proposed in a case where the exact

map X∗(ξ) is known. The difficulty is that the mass splits and that the initial and final

densities are not uniformly differentiable, whereas the kernels used to represent the density

distributions are uniformly differentiable. The initial density, of mass 1, is a hat function

defined between -1 and 1. The final density distribution, of equal mass, is represented by

two hat functions, symmetrically placed about the vertical axis and defined between -1

and 0, 0 and 1, respectively. The exact optimal map can be determined in this case by

simply integrating the jacobian equation.

In Fig. 7.4 the results obtained with 80 grid points are contrasted to the exact solution.

On the left, the initial density distribution, on the right the final one. In table 7.4 the

results of the numerical solution are presented. In particular, we consider the error εT

defined as before. Also, we consider the error εa, the L2 norm of the difference between the

exact solution and the result of the simulation, computed with an higher order quadrature.

In this case it is possible to compute such an error since both the exact solution and the

one resulting from the simulation are defined for all values between -1 and 1. Finally,
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(a) (b)

Figure 7.4: Density distribution at time a) T=0, b) T=1. The grid resolution is N=80.

we can compute Emap, the L2 error between the exact map and the one obtained in the

simulation. Since we actually compute the potential, this is a more stringent error since

it is relative to a differentiated quantity. As before, the errors systematically decrease

with increasing grid resolution. Also, the optimal kernel length decreases as the number

of points increases.

7.6.3 Two-dimensional mass splitting

We investigate the two dimensional case of a final density distribution obtained using a

potential that is just C0. The velocity field is discontinuous and hence the mass distri-

bution is fragmented. In Fig.7.5 the density at time T = 0 and T = 1 are shown. At

the beginning, the distribution is a normalized paraboloid. The potential from which the

velocity field derives is .01|x− 0.1 sin(4πy) − 0.5|.

The image is assigned on a 200 × 100 grid and the number of particles used is about

5e3. The number of iterations for the algorithm to converge is approximately 1500. In

Fig.7.6.a) the solution obtained by numerically solving the optimal transport problem is

shown. All the details of the fragmentation process are correctly recovered. In Fig.7.6.b)

the relative error on the final image in the case of 200 × 100 resolution is represented.

The relative error is not concentrated along the singularity, but on the external boundary,

since there the density values are close to 0.
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(a) (b)

Figure 7.5: Reference density distributions, resolution 200×100, at time a) T=0, b) T=1.

(a) (b)

Figure 7.6: a) Density at time T=1 for the computed optimal solution b) relative error

on the final image.
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Table 7.4: Np is the number of particles, % is the kernel length, εT is the error computed

on the actual grid, εa is the error computed with respect to the exact solution, and Ep is

the error on the mapping, i.e., on the gradient of the exact potential. The regularization

was set to β = 5e − 4.
Np % εT εa Emap

10 2.00 e-1 1.74 e-2 8.30 e-2 1.16e-1

10 1.75 e-1 1.63e-2 8.44 e-2 1.14e-1

10 1.60 e-1 1.71 e-2 8.51 e-2 1.15e-1

20 1.60 e-1 1.52 e-2 3.39 e-2 0.92e-1

20 1.50 e-1 1.43e-2 3.10 e-2 0.91e-1

20 1.40 e-1 1.21 e-2 2.93 e-2 0.90e-1

40 1.15 e-1 1.00 e-2 1.60 e-2 0.79e-1

40 1.10 e-1 0.95e-2 1.51 e-2 0.77e-1

40 1.05 e-1 0.93 e-2 1.46 e-2 0.74e-1

80 8.50 e-2 8.91 e-3 9.98 e-3 0.55e-1

80 7.50 e-2 7.13e-3 8.41 e-3 0.51e-1

80 7.00 e-2 6.75 e-3 7.54 e-3 0.53e-1

7.6.4 Application to medical imagery

One possible application of optimal transport techniques concerns medical imagery and, in

particular, non-rigid registration, see for example [136]. Image registration is the process of

establishing a common geometric reference frame between two or more data sets possibly

taken at different times.

Registration has a substantial recent literature devoted to it, with numerous ap-

proaches effective in varying situations, as described in [117]. These range from optical

flow to computational fluid dynamics, to various types of warping methodologies. One

class of methods is based on variational techniques, where the characterization of the

desired transformation is embodied in the definition of the functional to be minimized. A

mass preserving mapping that minimizes the distance may be of practical interest thanks

to certain desirable properties: it is parameter free, symmetrical and the minimizer of the

distance functional involved is unique. However, in the present context, image registration

is used moreover as a challenging numerical illustration.

The first example discussed is relative to a thorax scan presenting lung noduli, while

the second example is relative to the morphing of an image showing lung tissue attacked
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(a) (b)

Figure 7.7: Thorax image scan at a) T=0, b)T=1 (corresponding to an evolution of six

months); Courtesy Institute Bergonié, Bordeaux.

by cancer.

Thorax scan

In Fig.7.7 the initial and final thorax scans are shown. The objective is to find an optimal

mapping between the two geometries. The images have a resolution of 200 × 200 and

the number of particles used is approximately 2.0e4. The number of iterations to reach

convergence, due to the complexity of the geometry was 2500.

In Fig.7.8 the result of the computation is presented. On the left the solution obtained

by applying the transformation to the first image is shown, on the right there is the actual

scan. The main difference is in the normalization of grey scale: in order to perform a

registration based on the optimal transport problem, the mass of the two density distri-

butions must be the same and therefore the grey scale of the final image is modified so

that it has the same “mass” of the initial image. Despite the complexity of the geometry,

the agreement is quite good.

In Fig.7.9.a) the relative error on the final image is shown. It is higher in the region

where there are sharp boundaries, as expected. The error is basically due to the gaussian

kernel spreading sharp boundaries. In Fig.7.9.b) the potential of the transformation is

shown.
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(a)

Figure 7.8: On the left: optimal transport result at T=1; On the right the true image at

the same time.

(a) (b)

Figure 7.9: Residual of the final image in the case of a) Thorax non-rigid registration, b)

Tissue mapping for a regressing tumor.
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(a) (b)

Figure 7.10: Tissue scan at a) T=0, b)T=1 (corresponding to an evolution of three

months; Courtesy Institute Bergonié, Bordeaux.

Tissue morphing

A growing tumor can be associated to a certain displacement field. This field can be

computed as the optimal plan that realizes the mapping between the scans. A portion of

a lung scan representing tissue affected by cancer is considered and in Fig.7.10 two images

are shown. The first image represents the original tumor (T = 0), which is then treated

and its area decreases (T = 1). The space resolution of these images is 128 × 128 pixels,

which is the original resolution of the scan. In Fig.7.11 the result of the optimal flow is

compared to the actual image. The grey scale has slightly changed and this is due to the

fact that the mass (the integral of the density over the domain) is decreased when the

tumor is collapsed, so that a renormalization of the grey scale was necessary in order to

enforce the mass conservation constraint. Apart from this, the agreement is good and no

particular error structure emerges from the computation.

In Fig.7.9.b) the relative error with respect to the normalized image is shown.

7.6.5 A three-dimensional application

The objective of this section is to provide a discussion of the present approach computa-

tional viability to recover a non-trivial density distribution. Again, we take an example

from medical imagery. The problem is to map a uniform mass distribution in a cube to

a density distribution that corresponds to the magnetic resonance imaging (MRI) of a

human head.
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(a)

Figure 7.11: On the left: Monge result at T=1; On the right the true image at the same

time.

Gaussian kernels evaluated on a sub-domain of 512 points and three different grid

resolutions were employed: 153, 303 and 603. The simulations were stopped when the L2

norm of the residual, as defined for the previous numerical tests, was divided by a factor

100 with respect to its initial value.

In Fig.7.12 the initial and final densities are represented at the highest resolution and

in Fig.7.13 cuts in different planes of the same distribution show the complexity of the

geometry to be recovered. In Fig.7.14 planes with the isocontours of the residual are

represented, superposed to the solution. The residual is negligible everywhere except for

some spots, corresponding to the sharpest details of the target distribution.

In table 7.6.5 we report the computational time per gradient iteration (Tit), and the

number of gradient iterations (It). The computations were performed on a standard

laptop computer. As before, Np is the number of particles and β the penalisation. The

kernel length is % = 2e − 2 for all the resolutions. If the number of particles is Np and

the grid points are N , using global kernels (kernels whose support is the whole domain)

leads to a computational time per gradient iteration scaling with Np × N ≈ N2. But, as

discussed, a simple truncated kernel evaluation leads to a linear scaling with Np. This

trend is indeed confirmed by the evolution of the computational time per iteration as

a function of the number of particles in table 7.6.5. The AHT method [16] has also

a computational cost per iteration which is proportional to N , whereas in the Uzawa

method [31] the cost of one iteration scales more than linearly because the computation
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(a) (b)

Figure 7.12: Density distribution at time a) T=0, b) T=1.

(a) (b)

Figure 7.13: Slices of the final density distribution: a) XZ planes b) Z planes.
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(a) (b)

Figure 7.14: a) Contour lines of the residual distribution in the X plane; b) Contours of

residual in YZ planes

Np β Tit It

153 1.2 e-3 1.2s 1000

303 2.4 e-4 9s 1100

603 1.6 e-4 72s 4000

of the gradient is obtained thanks to a fast Poisson solver in d + 1 dimensions.

Overall, the possible advantages of the present method reside mainly in the exact

mass conservation and in the fact that Np might be significantly smaller than N , since

a particle is present only where mass is present. The actual computational bottle neck

is rather linked to the number of gradient iterations to get to the minimum. However,

this is a common issue to all methods based on optimization, i.e., the AHT and the

Uzawa scheme. Of course, a full discussion of this issue should involve the initial image,

i.e., how far from the solution the minimization starts, the width of the scale spectrum

of the target image, and the actual minimization method employed. In this direction,

a promising approach seems to be a multilevel optimization where the initial density

distribution on a finer grid is obtained from the solution of a Monge problem on a coarser

grid.
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7.7 A preliminary investigation on the multilevel ap-

proach

In this section a multilevel acceleration of the proposed lagrangian method is introduced.

The results on an artificial model problem are commented to support this preliminary

analysis.

The idea is to exploit the solution on coarser grids to initialize the problem on finer

ones. This is in some sort a preconditioning of the method. In particular it is efficient

for all the cases in which the mapping solution of the optimal mass transport problem is

characterized by low frequency displacements. The principle is that on coarser grids the

scalar product between the particle kernel and the residual is larger (because the support

of the kernel function is larger), allowing to recover large displacements in a better way.

For the moment, the technique has been implemented only on cartesian grids. The

method on general non-structure grids is under development. The number of levels (Nl in

the following) is a priori chosen. The original problem is defined on the finest grid, whose

resolution is fixed (let us denote it by N0, number of quadrature points used). Then, the

other levels are defined by considering half of the resolution in each space dimension, so

that Nk+1 = 1
2d Nk, where d is the space dimension.

The first step of the algorithm consists in applying a restriction operator to generate

the problem to be solved of the coarser grid. In the present work a d−linear interpolation

were adopted. A proper study on the influence of the restriction operator on the problem

will be carried out in future.

Once the problem is solved at k level (i.e. the residual has been reduced of a certain

factor), the potential or the velocity field are interpolated on the grid of the level k − 1,

via a d−linear interpolation. This field is used as initial condition for the problem at k−1

level.

An analysis of the computational cost is performed on a synthetic numerical example.

Let us investigate the scaling of the multilevel approach and compare it to those one

commented in the previous section for the original algorithm. The cost of a multilevel

algorithm conceived in this way scales approximately as:

C ≈
Nl
∑

k

1

2dk
Itk, (7.47)

where C is the cost expressed in equivalent iterations on the finest grid (i.e. at the level

0), Itk is the number of iterations to converge at level k. The overall effective cost is
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Table 7.5: Table representing the cost of the multilevel algorithm: the cost in equivalent

iterations is shown for three different resolutions of the grid and as function of the number

of levels adopted. The parameter a(m)
R = Cm

C0
quantifies the acceleration obtained when m

levels are used for a problem originally formulated of a grid of resolution R2.
Levels C256 a256 C128 a128 C64 a64

1 15600 1 12250 1 6000 1

2 5437.5 2.87 4321.5 2.84 2812.5 2.13

3 5062.5 3.08 3946.8 3.10 2550.0 2.35

4 5053.3 3.09 3937.8 3.11 2540.8 2.36

proportional to C via the number N of particles on the grid and the number of evaluations

(and quadrature) for each particle.

The numerical test is proposed in a 2D setting. The computational domain in the

square [0, 1] × [0, 1]. Two densities are defined as follows:

ρ0 = 0.25 +
R0

∫

Ω R0 dx
, R0 = exp

(

−85(x2
0 + y2

0)
)

,

ρT = 0.25 +
RT

∫

Ω RT dx
, RT = exp

(

−100x2
T − 120y2

T + 150xT yT

)

,

x0 = x − 0.45, y0 = y − 0.45,

xT = x − 0.55, yT = y − 0.55.

(7.48)

These densities represent a translation (the norm of the gaussians centers displacement is

0.1
√

2 ≈ 14% of the domain length) and a deformation of the gaussian function.

This problem was solved by the formulation presented in the above section, using

d − linear kernels (i.e. the hat functions typically used in Finite Elements). The kernel

length in this case is automatically given by the mesh size. The problem was discretized

in three different resolutions, namely 642, 1282, 2562 and for each one the original method

was compared to a 2, 3 and 4 grids approach. The computations were stopped, in all the

numerical experiments, when the residual reached 1/50 of its original value. The residual

was normalized by the number of particles, so that it results an intrinsic quantity, allowing

to better compare the simulations. The results are reported in Table 7.5. There are two

main facts to be underlined. First, the multilevel, as it has been defined, produces an

increasing acceleration with the number of the grid levels adopted. For the shown example,

for all the resolutions, the acceleration obtained by means of a two grids approach is

already good and there are not a lot of differences between the three and the four levels
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computations. The maximum acceleration is a function of the resolution of the finest grid.

In particular, when the original problem has a resolution of 128, it is maximum. This is

problem dependent and it relies on the characteristic frequencies of the displacement field

which is solution of the Monge problem. A second aspect to be described is the decreasing

of the superlinearity of the algorithm. Let us consider the number of iterations when the

classical algorithm is applied: with a resolution of 642 6000 iterations are needed, with

256 they mount to 15600, that is 2.6 times. When 4 grids are used, the ratio between

the costs decreases to 1.98, because the problem is better conditioned.

Further investigations on the properties of the algorithm are under scrutiny. In par-

ticular the aim is to understand which elements of the problem affect the conditioning

and which is the number of grids which allows to better solve it.

7.8 Application of Wasserstein distance to model re-

duction

In this section a possible application of the optimal transport tool presented above is

introduced. The objective is to investigate the properties of Wasserstein distance when

applied to model reduction. A classical tool in Reduced Order Modeling (ROM) is the

Principal Component Analysis (PCA). In particular, in this work, POD (see [147]) was

used in order to build a reduced dimension space describing fields involved in tumor

evolution. In POD the L2 representation of a given set of solutions is maximized, so that

the L2 distance between the reduced model and the database results minimized. The

strategy based on L2 norm has been widely studied and performs well when solutions are

featured by a global behavior. On the contrary, when in physical systems structures are

transported (let us think to a concentrated structure, like a vortices for examples), POD

does not allow to give a satisfactory representation.

The key idea is to use the fact that the Wasserstein distance is naturally built by

means of a transport to analyze systems in which transport plays a major role.

In what follows a technique is defined aiming at defining a representation that min-

imizes the Wasserstein distance between the reduced order model and a set of solutions

of PDEs. A set of functions equipped with the Wasserstein distance is a metric space.

In order to recast the analysis of the Wasserstein distances of this space into a principal

component analysis framework (aiming at providing a reduced representation of it) an

embedding is sought such that the metric space is approximated (at best) by an euclidean

space. Indeed, the technique that allows to approximate a general distance with an eu-
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clidean one is called multi dimensional scale embedding, and it may be found in [121].

In their article the authors use this tool to investigate the Wasserstein distances between

phase spaces of time series described by ODEs.

Here, the purpose is to set up a similar tool to analyze partial differential equations so-

lutions. Instead of considering the phase space, which would lead to exceedingly expensive

computations, the time sampling of the solutions is used.

7.8.1 Technique definition

Let us suppose to have a database of densities, denoted by ρi, i = 1, ..., Ns, such that:

∫

Ω⊂Rd

ρi dx = 1, ∀i = 0, ..., Ns. (7.49)

This hypothesis is necessary to study the densities in terms of optimal transport; it can

be relaxed following the work of Benamou (see [29]). In this first study it is supposed to

hold for the sake of simplicity.

The 2−Wasserstein distance (denoted by W) between a couple of densities is thus

defined as:

W2(ρi, ρj) = inf
X̃

{
∫

Ω

ρi(ξ)|X̃(ξ) − ξ|2 dξ

}

,

ρi(ξ) = ρj(X̃(ξ)) det(∇ξX̃).

(7.50)

This means that the squared Wasserstein distance is proportional to the density ρi and

the square of the optimal displacement field. The optimal displacement is induced by

the optimal mapping X∗, that, among all the change of coordinates X̃(ξ) realizing the

mapping between the densities i and j, minimizes the cost of Monge L2 problem.

The Wasserstein distance squared is computed for all i, j = 1, ..., Ns, so that 1
2Ns(Ns−

1) Monge problems are performed. Then, the following matrix is defined:

Dij = W2(ρi, ρj), (7.51)

that is the matrix of the squared distances between the densities. This matrix has a

particular structure: it is symmetric (W(ρi, ρj) = W(ρj , ρi)) and all the elements on the

diagonal are zero because (W(ρi, ρi) = 0), for the definition of distance. The i − th row

of the matrix represents the distance between the i − th density and all the others. D
describes the densities as elements of a space equipped with the Wasserstein distance.
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An embedding is sought, such that coordinates of the elements of the space are found

with respect to the baricenter of the space, on the basis of their reciprocal distances. A

standard technique is adopted. Let us define a projector J as follows:

J = I − 1

Ns

T , (7.52)

where I ∈ Ns×Ns is the identity matrix and ∈ Ns is the column vector whose compo-

nents are all 1. Given a vector v, the action of J on it consists in projecting it onto the

space orthogonal to . The matrix embedding is defined as:

B = −1

2
JDJ. (7.53)

Then, B is decomposed via a singular value decomposition as follows:

B = USV H , (7.54)

where U and V are unitary matrices and S is the diagonal matrix whose entries are the

singular values of B. Let us concentrate on the spectrum of B. It is proved that if

the distance adopted is euclidean B is positive semi-definite. In this case a remarkable

geometric interpretation is found. Wasserstein distance is in general not euclidean, so

that negative eigenvalues appear. However, if we concentrate on the positive part of the

spectrum, supposing that there are m positive eigenvalues, the following holds:

B ≈ XΛ+XT , (7.55)

where Λ+ ∈ m×m is the matrix whose diagonal contains the positive part of the spectrum,

X ∈ Ns×m is the matrix whose columns are the eigenvectors corresponding to the positive

eigenvalues. The components of the eigenvectors represent the coordinates of the points

with respect to their baricenter. This completes multiscale embedding.

The eigenvectors have a different meaning in this context with respect to classical PCA.

As stated, the embedding is performed with respect to a baricenter of the space, which

is a density distribution whose properties will be further investigated in the following

sections. The i − th component of the k − th eigenvector represents the weight of the

i−th mapping (that transports the baricenter in the i−th snapshot) to build the optimal

transport corresponding to the k− th eigenvalue. In the following we call k− th mode the

k − th optimal transport, when a baricenter density is given. Conversely, when a base of

mappings is taken in the space {v1, ..., vk}, the mapping transporting the baricenter in the
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i − th snapshot is derived by summing the base mappings multiplied by the coordinates

of the point representing the i − th snapshot.

Roughly speaking, in POD the reduced space for the snapshots representation is built

by means of the snapshots themselves, while in the proposed approach, due to the defini-

tion of Wasserstein distance, the representation of the snapshots is provided by means of

a set of optimal transports that map a baricentral density into the snapshots. The space

reduction is carried out in the space of the mappings.

7.8.2 Normalization of the embedding when a sampling of an

optimal transport is considered

Let us suppose that the densities ρi are taken by uniformly sampling in time an optimal

transport between ρ0 and ρNs−1. In this case, Xi, mapping ρ0 into ρi is written by

interpolation (see [30]):

Xi = ξ + i∆t∇ξΦ(ξ), (7.56)

where ∆t is the sampling time. In this particular case, all the densities are aligned on a

one dimensional subspace of the Wasserstein space, since they belong to the same optimal

transport. Hence, we expect that only one eigenvalue of the matrix B is different from 0.

A property have to be investigated: if the number of samples is increased, the non-

zero eigenvalue changes and tends to infinite with the number of the samples (i.e. with

the dimension of D). A normalization is introduced such that the eigenvalues tends to a

finite value. Let us first compute the structure of the matrix of squared 2−Wasserstein

distances for the case of an optimal transport. Let ρ0(ξ) be the first density.

The squared Wassertstein distance between the i − th and the j − th sample is thus:

D2
w(ρi, ρj) =

∫

Ωi

ρi(η)|X(η)− η|2dη, (7.57)

where X(η) is the optimal mapping between ρi and ρj . Using the properties of the

mappings the elements of the matrix have the form:

Dij = W2(ρi, ρj) =
C

N2
s

(i − j)2, (7.58)

where C is a constant, representing the squared Wasserstein distance (i.e. twice the

kinetic energy) of the unique mapping linking all the snapshots. The time at which the

last snapshot is taken is supposed to be T = 1.
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Let us consider the matrix D̃ = (i − j)2, D̃ ∈ n×n and prove that: the associated

embedding matrix B has only one zero eigenvalue, its value is λ = n(n+1)(n−1)
12 .

First, the elements of B are computed using two standard results in finite series:

n
∑

j

j =
n(n + 1)

2
,

n
∑

j

j2 =
n(n + 1)(2n + 1)

6
. (7.59)

By performing all the matrix vector products, exploiting the projector properties, the

following is derived for B:

−(2B)ij = (n+1)(i+ j)−2ij− (n + 1)2

2
⇒ Bij =

(n + 1)2

4
+ ij− (n + 1)

2
(i+ j) (7.60)

Let us introduce k = n+1
2 . The expression for the entries of B can be recast as follows:

Bij = k2 − k(i + j) + ij ⇒ Bij = (k − i)(k − j). (7.61)

The relation written above states that B is the tensor product of a unique vector, whose

components are yi = (k − i). This is sufficient to prove the first point. As a matter of

fact:

Bv = λv ⇒ yyTv = λv ⇔ < y, v > y = λv, (7.62)

and only two possibilities arise:

1. λ = 0 ⇒< y, v >= 0 so that v belongs to the space orthogonal to y,

2. λ =< y, y > and v = y.

This prove the first point. Let us compute explicitly the only non-zero eigenvalue. Again,

the results on finite series are used, leading to:

λ0 =< y, y >=
n
∑

i

(k − i)2 =
n(n + 1)(n − 1)

12
. (7.63)

The normalization condition for the generic B ∈ Ns×Ns reduces thus to:

N =
(Ns + 1)(Ns − 1)

12Ns
. (7.64)

Let us define:

B =
B

N
= − 6Ns

N2
s − 1

JDJ, (7.65)
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and λ0,Ns the only non zero eigenvalue associated to B. The following property holds:

lim
n→∞

λ0,Ns =

∫

Ω0

ρ0(ξ)|∇ξφ|2 dξ = λ0,Ns ∀Ns. (7.66)

This property provides an interpretation for the eigenvalues of the embedding matrix.

The only non-zero eigenvalue of the normalized embedding matrix B approximates the

squared Wasserstein distance of the displacement field, (T = 1 is supposed to hold).

The proposed normalization of the technique is useful not only in the particular case

in which it has been derived. It is applied for numerical purposes when generic large

systems are considered.

7.8.3 Baricenter of the space

In this section a property of metric spaces equipped with the Wasserstein distance is

investigated. In particular, a baricenter is defined, i.e. a function (a density distribution)

such that the sum of the 2−Wasserstein distance between it and all the other elements

of the space is minimal. This is a mathematical property that holds independently from

the technique proposed for the model reduction. Indeed, in the multiscale embedding the

baricenter is implicitly defined. The baricenter obtained in that case (which is the origin

of the euclidean space that approximates the Wasserstein one) is an approximation of

the baricenter defined in this section. The interest in the computation of this particular

function is that it represents the density distribution that, transported by a suitable

combination of the base mappings (i.e. mappings which are the base of the euclidean

space that approximates the Wasserstein one), approximates the snapshots.

In this section a characterization of the baricenter of the densities in the Wasserstein

space is provided, by using basic results proved in the literature (see [68]). The result

for the 2−Wasserstein distance is obtained; a generalization to p−Wasserstein distance

is straightforward. The baricenter is defined as the element minimizing the sum of the

squared distances with respect to the other points. The difficulty lies in the fact that the

associated problem is a system of coupled variational problems:

Xi(ξ) = arg min
X̃

{
∫

ΩG

1

2
ρG(ξ)|X̃ − ξ|2 − λi

(

ρG − ρi det(∇ξX̃)
)

dξ

}

,

i = 0, ..., Ns − 1 (i)

ρG(ξ) = arg min
ρ̃

{

∫

ΩG

1

2
ρ̃(ξ)

N
∑

i=1

|Xi − ξ|2 −
N
∑

i=1

λi (ρ̃ − ρi det(∇ξXi)) dξ

}

(ii).

(7.67)
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The first Ns problems describes the optimal mappings linking ρG to all the other densities,

while the last one is the coupling problem, translating the definition of baricenter. The

Euler-Lagrange equations are derived, according to [68].

For the first Ns problems the solution of the L2 optimal mass transfer problem is

recovered:

ρ0(ξ) = ρi(Xi(ξ)) det(∇ξXi), (7.68)

∇ξλi = (Xi − ξ)[∇ξXi]
T . (7.69)

This couple of equations defines a map between the initial condition ρG, whatever be, and

the final density distribution ρi. A last Euler-Lagrange equation allowing to couple the

problems and thus to determine ρG is obtained by making the variation with respect to

ρ̃ vanish in Eq. 7.67.(ii). This leads to:

N
∑

i=1

1

2
|Xi(ξ) − ξ|2 − λi = 0. (7.70)

In order to find a more explicit condition let us take the gradient of this expression:

N
∑

i=1

(Xi(ξ) − ξ) · ([∇ξXi]
T − I) −∇ξλi = 0. (7.71)

Let us substitute Eq.7.69: the following result is obtained:

N
∑

i=1

Xi(ξ) − ξ = 0 ⇐⇒
N
∑

i=1

ui(ξ) = 0. (7.72)

In each point of the space, the density ρG(ξ) is such that the displacement fields associated

to the mappings, summed up, are equal to zero. This system in every point of the space

behaves as a Ns body system, ρG being implicitly a baricenter.

In the following sections some examples of applications of the proposed technique are

detailed.

7.8.4 Ideal vortex scattering

In this section some numerical experiments are presented, concerning the study in terms of

Wasserstein distance of the scattering of four ideal vortices in 2D. The detailed derivation

of the equations governing the systems are found in [115].

Two couples of counter-rotating ideal vortices are initialized in the plane (their ge-

ometrical configuration is detailed below). The flow is incompressible and the vortices
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being ideal, the vorticity is represented by four Dirac masses located in the vortices cen-

ters, so that the flow is irrotational almost everywhere. The potential field theory applies

and the system may be reduced to an hamiltonian dynamical system describing the po-

sition of the centers in the plane. This case has been chosen because POD and standard

techniques based on L2 representation fails in giving a compact representation; the result-

ing number of modes is almost equal to the number of snapshots. Wasserstein distance

provides, instead, an efficient compact representation.

Let us briefly present the governing equations. The domain is 2, the four variables

that determine the entire evolution of the system are r1, r2, θ1, θ2 and they are initialized

as follows:

r1(0) =
(

l2 + (1 + β)f 2
)

1

2 ,

r2(0) =
(

l2 + (1 − β)f 2
)

1

2 ,

θ1(0) = arctan

[

(1 + β)f

l

]

,

θ2(0) = arctan

[

(1 − β)f

l

]

,

(7.73)

where l, β, f are three parameters that determine the geometry of the system and the

nature of the scattering. The cartesian coordinates of the vortices cores are linked to the

variables as follows:

xa = r1 cos(θ1) ya = r1 sin(θ1),

xb = r2 cos(θ2) yb = r2 sin(θ2),

xc = r1 cos(θ1 + π) yc = r1 sin(θ1 + π),

xd = r2 cos(θ2 + π) yd = r2 sin(θ2 + π),

(7.74)

The ODEs describing the evolution of the variables are:

ṙ1 = − 2 sin(2(θ1 − θ2))r1r2
2

π (r4
1 − 2 cos(2(θ1 − θ2))r2

1r
2
2 + r4

2)
,

ṙ2 = − 2 sin(2(θ1 − θ2))r2r2
1

π (r4
1 − 2 cos(2(θ1 − θ2))r2

1r
2
2 + r4

2)
,

θ̇1 =
3r4

1 − 2 cos(2(θ1 − θ2))r2
1r

2
2 − r4

2

2πr2
1(r

4
1 − 2 cos(2(θ1 − θ2))r2

1r
2
2 + r4

2)
,

θ̇2 =
r4
1 + 2 cos(2(θ1 − θ2))r2

1r
2
2 − 3r4

2

2πr2
2(r

4
1 − 2 cos(2(θ1 − θ2))r2

1r
2
2 + r4

2)
.

(7.75)
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Figure 7.15: Three different scattering, trajectories of vortex cores for: a) l = 1.5, β = 0.5,

f = 0.25 b) l = 1.0, β = 0.75, f = 0.15 c) l = 2.0, β = 0.15, f = 0.30

The equations of motion are integrated via an adaptive step fourth order Runge-Kutta

scheme, in the time interval [0, 2.5]. The solution depends on the parameters initial

values. In Fig.7.15, three different situations are represented. In Fig.7.15.a) a scattering

is represented in which vortices keep their partner (the parameters used are: l = 1.5,

β = 0.5, f = 0.25). When l = 1.0, β = 0.75, f = 0.15 vortexes change their partner

during the interaction and escape with the counter rotating vortex belonging to the other

couple. In Fig.7.15.c) a weak interaction is represented, in which the couples simply move

on (almost) straight lines (for l = 2.0, β = 0.15, f = 0.30).

Once the position of the vortices centers is known, the flow is obtained by the su-

perposition of ideal vortex fields (velocity goes like 1/R, where R is the distance to the

centre). For a first analysis enstrophy is considered, so that the motion of four unitary

Dirac masses is investigated. The Wasserstein distance has been computed by means of

an exact combinatorial algorithm. For all the test 50 time frames were taken.

The embedding technique presented in the previous section were adopted. Some nega-

tive eigenvalues appear, due to the fact that the distance is not euclidean. They are small

in modulus so that they are linked to some secondary feature of the evolution (in terms

of Wasserstein distance). In Fig.7.16.a) the singular values of the embedding matrix are

represented for the first case described. Only two eigenvalues are relevant in the approx-

imation of the phenomenon. The corresponding eigenvectors are represented in a phase

plane plot. The circles represent the components of the eigenvectors and can be associ-

ated to the time frames. Two directions emerges, that represent the optimal transports

occurring before and after the interaction. The points which are not aligned represents

the snapshots of the enstrophy configurations taken during the interaction.
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Figure 7.16: First case: a) the singular values of the embedding matrix in logarithmic; in

b) the first two eigenvectors are represented in a phase plane plot.

The same analysis was performed for the cases b) and c) of Fig.7.15. Concerning the

second case (see for instance Fig.7.17), the spectrum of the embedding matrix is similar to

that obtained for the first case: two singular values emerges. Thus, the plot of the first two

eigenvectors was done in a phase plane plot. As the vortex interaction is quite different,

the resulting eigenvectors have a different configuration, but the optimal transport before

and after the interaction may be recognized. The third case (see Fig.7.18) is different from

the others. The interaction is very weak so that the resulting motion is practically an

optimal transport. This third case may be considered as a perturbation of the analytical

case analyzed in the previous section, in which the uniform sampling of a single optimal

transport was used to derive a scaling relation for the eigenvalues. Indeed, in Fig.7.18.a)

the plot of the singular values confirms that only one eigenvalue is important. The plot of

the corresponding eigenvector in Fig.7.18.b) show that most of the snapshots are aligned,

that is, they may be obtained by non-linear interpolation (i.e. by transport) of the

baricentral density via a unique optimal transport. In this simple (and almost analytical)

first examples, the comparison with the standard POD can be done conceptually in a

very straightforward manner. The enstrophy is considered, which consists, as stated,

in four Dirac masses. Thus, for the second and the third cases (Fig.7.15 b) and c))

the autocorrelation matrix (i.e. the matrix of scalar products of the snapshots) is the

identity matrix. Hence, a lot of POD modes are necessary to reach the representation

that is given by one or two modes built by the Wasserstein distance approach. For the

first case (Fig.7.15.a)), the trajectories intersect, so that the autocorrelation matrix is not
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Figure 7.17: Second case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first two eigenvectors represented in a phase plane plot.
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Figure 7.18: Third case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first eigenvector
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Figure 7.19: Kinetic energy of the flow around a circular cylinder: a) singular values in

logarithmic scale b) phase plot of the first two eigenvectors

diagonal. However, few extradiagonal elements appear, so that, even in this case, a lot of

POD modes are required.

7.8.5 2D cylinder vortex shedding

In this section the vortex shedding around a circular confined cylinder is analyzed. Several

quantities may be studied. In order to give a complete analysis of the patterns arising (von

Karman street) and to link the expansions for the mappings to incompressible Navier-

Stokes equations at least two quantities are necessary (namely the two components of the

velocity field u, v). In this preliminary study we concentrate on the ability to represent

coherent structures and in particular to the possibility to have a good approximation in a

reduced space. The kinetic energy of the flow is studied: it has been normalized in order

to fulfill the mass constraint. Half a period of vortex shedding is considered of a flow

computed at Re = 200.

A first analysis was performed taking 10 snapshots of the kinetic energy of the flow

and computing the matrix of Wasserstein distances squared. The space resolution adopted

was 200 × 100, resulting in 2 · 104 collocation points. A multilevel algorithm was used

with 4 grids and linear interpolation kernels. In Fig.7.19.a) the singular values of the

embedding matrix associated to the problem is shown. The cascade has a smaller steepness

with respect to those ones observed for the vortex scattering, but even in this case two

eigenvalues may be retained, that provide a good approximation. In Fig.7.19.b) the phase
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(a)

Figure 7.20: Baricentral density for the kinetic energy of the flow around a circular

cylinder: isocontours, 30 lines between the maximum and the minimum

plot of the first two eigenvectors is shown, revealing a remarkable structure: the points

are located on a circle. That means that, given two orthogonal base mappings φ1, φ2 the

flow is well approximated by the transport of a baricentral density (localized in the centre

of the circle) by the following mapping: Φ(t) = cos(2πt)φ1 + sin(2πt)φ2, where t ∈ [0, 1]

is the time corresponding to a period.

This analysis suggests that three snapshots are sufficient to compute the baricentral

density and two orthogonal base mappings. Three snapshots are taken at t = 0, t = 0.25,

t = 0.5, equally distributed on half a period. In the following ρ0 is the kinetic energy

distribution at the very beginning, ρ1 the kinetic energy at a quarter of period and ρ2

that of at half a period. The optimal transport is computed by means of the multilevel

algorithm, then, the obtained mapping is used to transport ρ0 into the baricentral one,

according to:

XG = ξ +
1

2
∇ξφ02, (7.76)

where the factor 1/2 means that the collocation points are moved by half the displacement

that allows to map ρ0 into ρ2. Hence:

ρ0(ξ) = ρG(Xg) det(∇ξXG). (7.77)

In Fig.7.20 the baricentral density is shown, computed from the nonlinear interpolation

between the kinetic energy distributions ρ0 and ρ2. It is not perfectly symmetrical with

respect to the x axis, and this is due to the fact that the considered snapshots have a

slight asymmetry too. Let us remark that the baricentral density is not a configuration

happening in the physical evolution of the system. However, the average position of

the structures and the characteristic distance of the vortex in the weak may be inferred.

In Fig.7.21 the base mappings are shown. The first mapping (Fig.7.21.a) has already
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(a) (b)

Figure 7.21: Isocontours of the base mappings: 30 lines between the maximum (1.25e−3)

and the minimum −1.25e − 3.

(a) (b)

Figure 7.22: Isocontours (30 lines between the maximum and the minimum) of the recon-

struction (upper line) and the simulation (lower line) for a) t = 0 and for t = 1/8

been computed to find the baricentral density. Once obtained, the mapping between the

baricentral density and ρ1 (i.e. the density located at a quarter of period) is computed

providing automatically the mapping represented in Fig.7.21.b). The displacements fields

(computed by taking the gradient of the potentials) are two sequences of alternated couples

of sources and sinks, rendering the periodicity of the structures.

The approximation properties are investigated. In particular, given the base maps, the

snapshots of the flow are reconstructed by transporting the baricentral density with the

suitable displacement field, obtained by summing the mappings multiplied by (cos(2πti),

sin(2πti)), where ti is the position in the period of the i − th snapshot.

Two cases are shown, corresponding to a good approximation and to a poor one. In

Fig.7.22.a) the representation is shown for t = 0. In this case only the first mapping is

used, and the snapshot has been used to build the base. This reflects in a very good
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approximation. All the structures are represented correctly in terms of position and

intensity. In Fig.7.22.b) the worst approximation is shown corresponding to the kinetic

energy at t = 1/8, which is the farthest from the snapshots used to build the reduced

space. Some errors appear concerning the position and the intensity of the structures.

However, these errors are localized in the weak, the structures near the body are well

captured. This is good if the local properties of the flow around the cylinder are of

interest: for instance, if a representation of the forces acting on it is sought.

This first test is particular encouraging since it shows the possibility to give a suf-

ficiently good approximation of the flow pattern using very little of information. The

representation adopted is the minimal one, consisting in two modes computed using three

snapshots. Adding a third mode and the informations coming from other snapshots will

improve the representation.

Several possibilities arise concerning the model reduction strategy. Two perspective

are currently under scrutiny: the first one is the enrichment of the reduced order model

by means of global modes, resulting in an hybrid strategy: Wasserstein modes account for

transport while global (POD) modes renders global behaviors. Moreover, a link between

the potentials and the equations of the physics may be sought.
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Dans ce chapitre on présente les conclusions de ce travail, ainsi que quelques perspec-

tives et des questions ouvertes. D’abord on commente les résultats pour les problèmes

inverses et ensuite ceux qui concernent les aspects numériques du transport optimal.

Problèmes Inverses Deux techniques ont été proposées dans cette thèse et les deux

ont des résultats prometteurs, au sens qu’elles montrent qu’appliquer les modèles dans

des cas cliniques n’est pas impossible.

Les avantages des modèles spatiaux par rapport aux modèles EDO est double: on

donne une description des aspects spatiaux liés à la croissance et on pourrait espérer

donner plus d’information aux médecins. Les tests effectués montrent que normalement

les modèles EDP ont besoin de moins de données pour être calibrés. Le défaut principal

des méthodes qui utilisent des modèles EDP est le coût computationnel. L’utilisation

de la réduction de modèle est une avancée importante afin de rendre les méthodes EDP

compétitives pour appliquer la technique cliniquement.

Un compromis entre la complexité des modèles et les données auxquelles on a accès est

un élément clé pour la mise à point d’instruments basés sur des modèles phénoménologiques.

Des modèles plus complexes ont un pouvoir prédictif supérieur, ils nous permettent no-

tamment de donner une description de plus de phénomènes qui interviennent dans le

processus de croissance, mais ils sont plus difficiles à calibrer. En particulier, si on n’a

pas accès à beaucoup de données, ce qui est souvent le cas, le problème inverse est sous-

déterminé. Les données utilisées dans le cadre de ce travail sont de CT sans, qui ont des

bonnes propriétés de résolution et de contraste mais qui, en revanche, nous permettent de

distinguer seulement entre tissu sain et tumorale. Par conséquence seulement des modèles

très simples de croissance peuvent être utilisés.

Un autre élément qui joue un rôle primordial est le rapport entre les quantités modélisées

et les mesures. Dans le cas présent une définition très simple d’observable a été adoptée,

après une discussion avec les médecins. Rien ne garantit que ce choix (qui n’est pas

unique) soit le meilleur. D’autres définitions d’observables pourraient être adoptées, qui

donnent des meilleurs résultats. Une direction de recherche potentielle est constitué par

l’inclusion dans l’ensemble des données de l’imagerie fonctionnelle. Celle ci permettrait

d’avoir plus d’information concernant les tissus et d’utiliser des modèles plus complexes.

Dans ce cas le rapport entre quantités modélisées et mesurées devrai être étudié avec

beaucoup de soin.

Les résultats présentés doivent être jugés en considérant deux éléments : les erreurs

dans les données et la variabilité du phénomène en jeu. Les scans ont une résolution
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de 1.25mm, qui est comparable avec la taille des tumeurs dans la phase vasculaire. Les

tumeurs analysées dans cette thèse ont une dimension qui est d’environ 5-6mm (mesurée

sur le premier scan). Les erreurs (dues à la segmentation ou au bruit) pourraient influencer

la précision des résultats de façon très significative. Une procédure standard au niveau de

traitement de données est absolument nécessaire afin de pouvoir comparer les résultats

des manière plus objective et systématique, même si les données sont dans des différents

configurations géométriques.

Les mutations génétiques ainsi que phénomènes aléatoires qui influencent l’évolution de

la tumeur de manière catastrophique ne peuvent pas être prévus. Comme on a commenté

précédemment, la croissance tumorale est caractérisée par une grosse variabilité intra

et inter-individuelle. Un objectif qui parait raisonnable est d’estimer les volumes de

la tumeur ainsi que les distributions spatiales des espèces proliférantes avec des erreurs

de 10% sur une échelle de temps raisonnable, c’est-à-dire, correspondant à l’intervalle

de temps entre deux examens cliniques successifs. Ce but a été atteint par les deux

techniques présentés. Au niveau de volume les erreurs sont acceptables ; au niveau de

forme les erreurs sont plus marquées et, cela, reste un point faible de la technique, parce

que l’avantage des modèles spatiaux est de fournir potentiellement les informations sur la

distribution spatiale du tissu tumoral. Il y a deux facteurs principaux qui déterminent ce

résultats : le premier est l’ensemble de contrôle et le deuxième est le modèle. Les tests

montrent que l’ensemble de contrôle a une influence sur le résultat, mais elle est limitée

par rapport à celle du modèle. Le modèle utilisé permet de reproduire des comportements

très variés. Ce qui n’est pas bien représenté est la complexité géométrique du tissu autour

de la tumeur. En particulier, le tissu dans les poumons n’est pas isotrope, mais au moins

localement orthotrope, suite à la présence de structures telles que les bronches ou d’autres

inclusions aléatoires. Tous ces éléments géométriques ne sont pas déterminés a priori et ne

peuvent pas être identifiés car le problème inverse serait sous déterminé. L’objectif serait,

plutôt, d’arriver à les mesurer par des techniques d’imagerie fonctionnelle (DT-MRI, par

exemple).

La façon de choisir les paramètres doit être discutée. En général dans les modèles

phénoménologiques plusieurs paramètres apparaissent, qui décrivent les proportionnalités

entre les différents champs qui caractérisent la croissance. Pour limiter l’effet des échelles

spatiales et temporel et pour trouver des paramètres qui déterminent la croissance de

façon intrinsèque, une version non-dimensionnelle est souhaitée. La technique de sensi-

bilité permet de comprendre quels sont les paramètres qui influencent le plus l’évolution

de la tumeur et ceux qui, en revanche, jouent un rôle mineur. Une analyse de la fonction-
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nelle dans un voisinage de la solution permettrait de comprendre s’il y a des directions

invariants dans l’erreur. Une façon efficace de choisir les paramètres fait en sorte que des

vitesses non-dimensionnelles apparaissent (par exemple le rythme de division cellulaire,

qui multiplie γ dans le modèle de Darcy), conformément au fait qu’on a des données d’une

progression de la croissance. La rétroaction entre les concentrations des nutriments et la

dynamique des populations est souvent modelisée par un effet de seuil. Le paramètre de

seuil a une signification biologique claire, mais pourrait conduire à problèmes inverses mal

conditionnés. La nature des équations influence les problèmes inverses : la longueur de

diffusion des espèces chimiques dans le tissu n’étant pas significative, des modèles hyper-

boliques pourrait être envisagés. Les équations elliptiques nécessitent des conditions au

bords, et souvent le bord que l’on peut choisir est la frontière de l’organe. Ce choix nous

oblige à simuler tout l’organe, même si seulement une petite portion est attaquée par la

tumeur.

L’approche de sensibilité est directe et facile à mettre en place. On peut utiliser

différents modèles et plusieurs combinaisons d’observables. Ses défauts principaux sont le

coût computationnnel et la présence de minima locaux (liée à la formulation de minimi-

sation). Les solutions obtenus par cette technique nous donnent beaucoup d’information.

Si la valeur de la fonctionnelle est petite et la norme de la sensibilité est petite le fit-

ting des données sera satisfaisant et stable pour des petites perturbations de l’ensemble

de contrôle. Si la sensibilité n’est pas pratique dans tous les cas (par exemple pour les

cas 3D), elle est un instrument puissant pour étudier les propriétés des solutions et les

comparer avec celles que l’on peut obtenir par des approches réduites.

L’approche réduite proposée dans cette thèse est basée sur la POD. L’avantage prin-

cipal est son faible coût computationnnel. Le coût est entièrement concentré dans l’étape

offline, mais cette étape peut être parallelisée de façon massive. L’introduction d’une base

POD ne permet pas seulement de réduire le nombre d’inconnues mais aussi d’améliorer

le conditionnement du problème. Contrairement à ce qui est fait couramment le système

d’équations n’est pas projeté sur la base. La projection demande souvent une étape de cal-

ibration pour améliorer la représentation. On choisit plutôt d’écrire le résidu des équations

aux instants de temps qui correspondent aux images. L’avantage est de transformer le

problème inverse en un problème algébrique et de pouvoir le résoudre rapidement. Une

perspective concerne la possibilité de mettre en place une approche hybride qui arrive à

combiner les avantages des deux. Les résultats des problèmes inverses sont influencés par

l’estimation des dérivés de l’observable. En particulier, cette approximation est produite

par un estimateur qui prend la séquence d’observables et calcule les derivés temporelles
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aux temps correspondants. Dans les cas où les données sont très eloignées (i.e. quand

le rapport entre les volumes de deux images est plus grand que 2.5 environ) l’estimation

est mauvaise et elle a un effet de pollution sur les résultats. Le problème inverse identifie

une configuration intermédiaire entre le modèle que l’on souhaite calibrer et l’estimateur

qu’on utilise, c’est-à-dire, on identifie les paramètres du modèle (par exemple le modèle

de Darcy) tels qu’il ait le comportement de l’estimateur. Cet effet est lié à la rareté

d’informations.

Les résultats présentés dans la section Slow Growth sont en quelque sort les meilleurs

résultats qu’on peut espérer obtenir par une approche réduite. Dans ce cas, la base

de données a été bien ciblé sur la croissance et la régularisation du problème inverse

est très puissante. La solution du modèle calibré arrive a reproduire la croissance sur

une échelle temporelle de deux ans environ, même si les approximations introduites sont

très importantes. Dans les cas ou le contrôle ne satisfait pas automatiquement certaines

propriétés requises, celle-ci sont imposées par pénalisation. Cette technique est très simple

à mettre en place mais introduit des paramètres qui doivent être fixés, ce qui rend la

procédure un peut plus lente.

Le défaut principal des méthodes basées sur la minimisation est la présence de minima

locaux. Ce phénomène devient dangereux lors que plusieurs solutions arrivent à reproduire

l’ensemble des données avec des résidus comparables. Dans ce cas le risque est de sous-

estimer la croissance et des nouveaux examens cliniques seraient nécessaire afin de mieux

comprendre la nature de la maladie.

Transport Optimal Au cours de cette thèse le transport optimal a été étudié afin de

mettre en place une procédure de recalage non-rigide. Au delà de cette motivation, des

généralisations et d’autres applications ont été analysés et proposées.

On a étudier les aspects numériques du transport optimal. La difficulté est entièrement

liée au fait que le problème est défini par des conditions au bords en temps. Une classe

de méthodes qui utilisent la structure lagrangienne du problème a été proposée et validée

par des cas test variés. Un soin particulier a été porté à la robustesse, afin d’arriver à

reproduire les champs de déplacement dans des configurations critiques du point de vue

de la mécanique des milieux continus, telles que la fragmentation ou la coalescence de la

masse.

La perspective principale liée à la technique est l’approche multi-niveau qui permet

d’accélérer de façon remarquable la vitesse de convergence. Cette approche permet aussi

d’utiliser des noyaux à support compacte, caractérisés par un faible cout d’évaluation et
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de quadrature. Une autre perspective est liée à l’utilisation des maillages non-structurés,

qui permettraient de concentrer les points de quadrature où le résidu est plus élevé.

L’outil de recalage non-rigide fourni des champs de déplacement réguliers dans la plus

part des cas. Néanmoins il y a des systèmes physiques ou biologiques pour lesquels les

simplifications introduites par le transport optimal ne sont pas acceptables. La croissance

tumorale en fait partie, car en général la tumeur grossit et la masse n’est pas conservée.

Une normalisation de l’échelle de gris a été souvent proposée dans la littérature, mais

elle est artificielle. Une perspective concernante l’utilisation du transport optimal pour

analyser des systèmes dans lesquels la masse n’est pas conservée est proposée dans [29].

Le travail sur le transport optimal se conclut par une perspective concernant l’utilisation

de la distance de Wasserstein en réduction de modèle. L’objectif principal de cette par-

tie est de comprendre si on peut donner une représentation réduite efficace des systèmes

physiques où les phénomènes de transport dominent. Le choix qui a été fait pour ce

travail préliminaire est d’utiliser la distance de Wasserstein en cherchant quand même de

se remettre dans un cadre d’analyse en composants principales, grâce à une opération de

scaling multidimensionnel. Les résultats obtenus sur des cas test artificiels sont promet-

teurs.

Le problème théorique principal que l’on doit prendre en considération concerne le

fait qu’une base de données de densités ayant toutes la même masse doit être construite.

Dans les système EDP il y a parfois des quantités qui sont conservés, mais il est important

d’arriver à analyser des solutions quelconques. La perspective proposée dans [29] semble

être une possibilité concrète de résoudre ce problème.
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In this chapter the conclusions of the present work, some perspective and open ques-

tions are presented. First, a discussion on inverse problems is outlined, followed by some

comments on optimal transport.

Inverse problems For what concerns inverse problems, two techniques were presented,

both providing encouraging results, in the sense that they suggest that attacking realistic

applications is not out of reach. Let us analyze in detail the main contributions and the

problems encountered.

The advantage of the using of space models with respect to ODEs is twofold: the

space character of the phenomenon is taken into account, which allows us to provide, for

the considered cases, useful informations to clinicians (like for instance the identification

of the active part of the tumor); second, the systems based on PDEs usually requires less

data to capture the dynamics, since more elements are described concerning the evolution

(usually, two, three data are sufficient to get a relatively reliable prediction). The main

disadvantage of PDEs based approaches is their computational cost. The setting up of

reduced order model may tackle this problem and it is important to make PDEs based

tools competitive for realistic applications.

The balancing between the complexity of the model and the available data is the

key element for the setting up of tools based on phenomenological models. Complex

models have the advantage of rendering more complex dynamics, which translates in a

better prediction power, but they are more difficult to calibrate. In particular, if the

data amount is scarce (which is often the case), they make the related inverse problems

under-determined. A trade off might be chosen. In the present work the considered data

were scans, which have a good resolution and contrast properties but they only show

two phenotypes: tumor and healthy tissue, without any other kind of information. Only

simple models may be calibrated starting from these data.

Another key point is represented by the relationship between modeled and observed

quantities. A very simple definition of observable were adopted (after a discussion with

medical doctors), which is reasonable, but does not guarantee that better (and more

sophisticated) choices might be made. A promising direction of research is represented by

functional imagery, which make more informations available concerning the tissue nature.

The models that might be used with such an amount of data would be more complex and

this could improve substantially the predictions. The link between quantities shown by

functional imagery and the modeled ones would need to be investigated more carefully.

The obtained results have to be judged considering two elements: the errors in the
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data and the variability of the phenomenon. Scans have a resolution of 1.25mm, which is

comparable with the typical size of avascular tumors. The tumors analyzed in this work

have, in the first image of the sequence, a size that does not exceed 5 − 6mm. Errors

(segmentation, noise, etc.) might affect the precision of the results in a very significant

manner. A standard procedure for measuring quantities, segment images and registrate

them is mandatory. It is fundamental to improve the results, since it allows to set up

an objective basis to quantitatively and systematically compare the results. Moreover, it

makes comparison between several clinical case possible even if exams were performed on

different machines and in different conditions.

Mutations and random phenomena that influences tumor behavior in a catastrophic

way can not be predicted. As said, tumor has an enormous inter and intra individual

variability. A reasonable goal is to estimate with an error less that 10% the volume and

the main features of the tumor on a time scale comparable with that of the clinical exams.

This has been reached, for the cases considered, by both the techniques presented in this

work. In general, they manage to capture the dynamics of the growth even when two

or three data are used. The volume is well represented while the shape is reconstructed

with a larger error. This is still a weak point, since the advantage of space models is in

their ability to represent space features of the growth. There are two main causes of this

error: the control set and the model. The control set may influence, as proved, the result

of the identification, but it does not influence the predictions as much as the model does.

The model adopted allows to recover a wide range of dynamical behaviors. Globally, all

the considered growths could be reasonably represented. The lack is in the geometric

representation of the tissues. In particular, for lungs, the tissue is not, locally, uniform

and isotropic. Bronchia induces, at least, an orthotrope structure. Random inclusions and

fibered structures affects the evolution and can not be a priori determined or identified

(the problem would be under-determined). The goal is, instead, to measure them, using

for example DT-MRI.

Parametrization of the models has to be discussed. In general phenomenological mod-

els have different constants and parameters that appears and play an important role in the

dynamics. In order to bypass the effect of the space and time scales, a non-dimensional

version of the models would have to be written. This would help finding parameters which

intrinsically determines the growth, allowing a more straightforward comparison between

different cases. Furthermore, sensitivity helps finding which parameters influences more

the solutions and which not. In particular, it highlights the most important directions of

descent for the error functional. A more significant parametrization would be such that
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non-dimensional velocity appears, like the rate of division (i.e. a constant that multiplies

γ in the two species Darcy model), and so on. This is conformal to the use of a sequence

of data showing a progression of the growth. The feedback between the nutrients and

the population dynamics is often rendered by a threshold. Using the threshold value as

a parameter may be dangerous (it may induce a bad conditioned behavior), but, on the

other hand, is meaningful. The equations nature affects also the inverse problems pre-

cision. As seen, the diffusion length of chemical species in the tissue is not so relevant,

so that a model based on hyperbolic equations might be proposed. Elliptic equations

require boundary conditions to be impose on the organ boundary (it is the more natural

boundary to be chosen); this oblige us to consider the entire organ for the simulations

even if only a small part of it is involved in tumor dynamics, resulting in an extra cost

from a numerical standpoint.

The sensitivity approach is straightforward and it may be easily set up based on

different models and observables sets. Its main drawbacks are the computational costs

and the presence of local minima (due to the functional minimization approach). However,

the results provide a lot of informations concerning the obtained numerical solution. If

the value of the functional is low and the norm of the sensitivity is low, the result is the

resulting fitting will be good, even if perturbations in the parameters are added. As a

matter of fact the definition of sensitivity (and its physical meaning) guarantees us that if

it is small in norm the difference between a solution and the solution obtained when small

perturbations are added in the control set is small. If it is not practical for all the cases

(3D) due to its cost, it is a powerful tool to investigate the properties of the solutions and

to compare them with those obtained by reduced order techniques.

The reduced order model proposed in this work is based on POD. The main advantage

is the low computational cost carachterizing the online stage. The offline stage may be

easily parallelized. The effect of POD does not only affect the cost by reducing the num-

ber of unknowns, but improve substantially the conditioning of the problem, regularizing

it. One of the main causes of illness of inverse problems is the effect of higher frequencies.

A regularization eliminate or control their effect, accelerating the convergence. Contrary

on what is currently done, the system of equations is not projected onto the basis. The

projection on the basis need often a calibration procedure to be set up, since the repre-

sentation of the dynamics results poor. Instead, a residual minimization is sought. The

main advantage is due to the fact that the algebraic problem is solved rapidly, the main

disadvantage consists in the fact that it is more difficult to formulate the residual problem

and to deal with it when more than two images are taken into account or different set of
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models or kinds of observables are considered. A promising perspective in this sense is

the setting up of an hybrid approach potentially combining the advantages of a sensitivity

approach with those of the reduced order methods.

The results of the reduced approach are mainly influenced by the approximation of the

derivative of the observable. It is made by an estimator taking the sequence of the images

in input. When few images are available and the tumor has grown fast, that is when tumor

volume ratio between two subsequent images exceeds 2.5, a bad estimation has an effect

of pollution of the results. The inverse problem identify an intermediate configuration

between the Darcy model and the estimator, that is, it identify the parameters of the

Darcy model such that it behaves like a logistic one, for example (if logistic estimator is

adopted). This is the effect of the scarcity of the informations.

The results presented in the section Slow Growth, concerning FER-I data set are

in some sort the best result that may be obtained by means of the reduced approach

proposed. In that case the database represented very well the dynamics of the growth,

resulting in a powerful regularization. The identified dynamics fitted the real data pro-

viding a reasonable prognosis on a time scale of two years, inspect of the simplifications

introduced.

In the proposed residual based approach penalizations should be added to the func-

tional according to the control set in order to impose some constraints. This introduces

free parameters to be set, which might decrease the rapidity of obtaining the results and

makes the procedure less friendly.

The main problem affecting inverse problems is the presence of local minima. This

becomes dangerous when divergent predictions fits the data set with comparable residuals.

If more solutions fit well the data, the risk being to under-estimate the growth, novel exams

should be done, in order to discriminate between the solution and to understand whether

the growth is aggressive or not.

Optimal Transport In the present work optimal transport were investigated to set

up a non-rigid registration tool and possible estimators of quantities appearing in tumor

models. In spite of these first motivations, possible generalizations and applications to

other contexts were analyzed and proposed.

The numerics of the optimal transport was studied. The difficulty lies entirely in the

fact that transport is formulated as a boundary value problem, instead of a common ini-

tial value problem. A family of methods exploiting the remarkable lagrangian formulation

of optimal transport were proposed, whose cost scales like the other methods proposed
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in the literature. The technique was validated by several examples and demonstrated

robust, allowing to represent collapsing and fragmentation phenomena (which requires a

weak formulation) or to recover non-trivial three dimensional configurations. The main

perspective concerning the numerics is the study of the multilevel technique, that proved

to significantly speed up the convergence. In particular the aim is to use a multilevel ap-

proach with a compact kernel representation, which is featured by a low cost of evaluation

and quadrature. Another direction of research consists in using non-structured meshes,

adapted on the residual in order to diminish it more rapidly where it is higher. This,

combined with a multilevel approach, might improve substantially the quality and the

rapidity of the computation, opening the possibility to use optimal transport in several

realistic applications.

When used as non-rigid registration tool it furnishes reasonable registration displace-

ment fields in most of the situations. However, there are cases, like for example tumor

growth, in which mass is not preserved, so that merely rescaling grey scale in sort that

mass is conserved between the configuration is artificial and not realistic. This is what

is currently done in the literature and it has been tested in this work. Mass sources can

be taken into account by following the work of Benamou ([29]) or by considering suitable

changes of variables.

The use of Wasserstein distance to set up model reduction strategy was investigated.

The objective is to provide a representation of the advection of concentrated structures

(which is not well represented by conventional PCA strategies) exploiting the properties

of Wasserstein distance. A multidimensional scale embedding was used to introduce a

principal component analysis framework based on Wasserstein distance. The proposed

technique was applied to different numerical testcases, leading to promising results. Other

tests are mandatory and they will be carried out in future. The main open question

concerns the balancing of the data. Indeed, optimal transport needs, in order to be set

up, that the density distributions are of equal mass. When considering PDEs, only a

relatively small set of problems is fully determined by conserved quantities. In general

the functions obtained by sampling the solutions are not balanced. One possibility, to

be further investigated, might consist in adapting what detailed in [29] to the technique

proposed in the current work.
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